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What is this talk about?

We study how much stretch is needed to go
continuously from one curve to another.

@ A homotopy is a continuous deformation of
the top blue curve into the bottom blue
curve that stays on the surface of the hand.

@ An optimal homotopy is one that minimizes
the length of the longest curve.

Informally, how stretchable must a rubber band be
to fit around my hand?
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Motivation |: Similarity measure for curves

@ How to compute whether two trajectories are similar to each other?
— Hausdorff distance, Fréchet distance ...
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Motivation |: Similarity measure for curves

@ How to compute whether two trajectories are similar to each other?
— Hausdorff distance, Fréchet distance ... but they do not see the
mountain.

— Distances that require to sweep the entire area between two curves.
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Motivation II: Quantitative homotopy theory

@ Optimal homotopies provide a way to find geodesics [Birkhoff'1917].

.11‘ ‘p‘

o Classically, topology only looks at topology, but recent trends have
started to look into the quantitative aspects of topological
invariants [Gromov '18].
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Motivation II: Quantitative homotopy theory

@ Optimal homotopies provide a way to find geodesics [Birkhoff'1917].

@ Classically, topology only looks at topology, but recent trends have
started to look into the quantitative aspects of topological
invariants [Gromov '18].
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Motivation IlI: Graph searching on planar graphs

e Similar to searching games on graphs (cops and robbers, node
searching) where we sweep a graph to find a fugitive.
— Connections with width parameters (path-,tree-,branchwidth).

@ Here the rule is that the cops hold hands to form a connected closed
curve sweeping an annulus.

e Many other variants (sweeping a disk or the sphere).
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Riemannian or discrete

@ We can work on the plane or on any surface with or without boundary.

@ We can work with a discrete or a continuous (Riemannian) metric.

i
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Homotopy Height

~ and +/ are two homotopic disjoint simple closed curves on a surface.

Height of a homotopy

The height of a homotopy h between ~ and ~/ is the maximal length of the
intermediate curves:
Height(h) = max |h(t,-)|

Homotopy Height

The Homotopy Height between ~ and 7/ is the smallest possible height of
a homotopy between ~ and +/:

HH(y =) = inf Height(h) = inf max|h(t,-)|

Y=y hiy—y' t

A homotopy of minimal height is called optimal.
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Main questions

Computational question

How to compute the homotopy height between two input curves?

Even brute-forcing the problem is non trivial, as optimal homotopies may a
priori be very complicated.

Mathematical question

Does there always exist an optimal homotopy that is not too complicated?

Two reasonable conjectures:

@ There always exists a homotopy that is an isotopy, i.e., curves stay
simple.

@ There always exists an isotopy that is monotone. (no recontamination)
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Isotopies

In the discrete setting, we allow for tangencies in simple curves.

-

Theorem ([G. Chambers, Liokumovich '14])

In the Riemannian setting, for v and 4/ two non-contractible simple closed
curves, and a homotopy v — 7/ of height L, there exists an isotopy from ~y
to ’}// Of helght L + £, forany = > 0.

@ The proof applies verbatim to the discrete setting.
@ The need for = comes from arbitrarily small perturbations, which are
not needed there.
The (beautiful) proof analyzes carefully all the resolutions of the
intermediate curves and finds a path there using the handshaking lemma.

R AR &
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Monotonicity

However, there are sometimes no optimal monotone isotopies.
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Monotonicity

However, there are sometimes no optimal monotone isotopies.

What if the curves form the boundary of the surface?

Theorem ([E. Chambers, Letscher '09])

Let A be a discrete or Riemannian annulus with boundaries -y and ~/'. Then

there exists an optimal homotopy between ~ and -/ that is a monotone
isotopy.
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Monotonicity

However, there are sometimes no optimal monotone isotopies.

What if the curves form the boundary of the surface?
Theorem ([G. Chambers, Rotman '13])

Let A be a discrete or Riemannian annulus with boundaries -y and ~/'. Then

there exists an optimal homotopy between ~ and -/ that is a monotone
isotopy.
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Monotonicity

However, there are sometimes no optimal monotone isotopies.

What if the curves form the boundary of the surface?
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Let A be a discrete or Riemannian annulus with boundaries -y and ~/'. Then
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Monotonicity

However, there are sometimes no optimal monotone isotopies.

What if the curves form the boundary of the surface?

Theorem ([Chambers, Chambers, dM, Ophelders, Rotman '17-21])

Let A be a discrete or Riemannian annulus with boundaries -y and ~/'. Then

there exists an optimal homotopy between ~ and -/ that is a monotone
isotopy.
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|dea of the proof

We first decompose an optimal isotopy into maximal monotone isotopies
hi,..., h,, forming a zigzag Z of order n.

Y2 VYn-o1

A

Y1 Y3
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Shortcutting monotone isotopies

Let A be an annulus with boundaries - and ~/, and 6 be the shortest
non-contractible curve in A. Then a monotone isotopy between ~ and ~' of
height L can be transformed into an isotopy between ~ and ¢ of height L.

Proof: any intermediate curve can be shortcut at §.
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An inductive argument?

One can modify Z without increasing its height so that ~1 is the shortest
non-contractible curve in the annulus between ~, and 5.

\ Tn—2

WA

Y1 Y3

@ We would like to iterate the argument, obtaining that for all /, +; is
the shortest non-contractible curve in the annulus A(v;,vit1).
@ Then one can shortcut the homotopy between 4" and ~,, 1 at v, 2,

obtaining a zigzag of smaller order.
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... that requires other operations to work.

@ But the shortcutting might already fail for +», because the § between
~2 and 73 might cross ;.

— A more technical surgery is used to circumvent this.
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Computing the homotopy height

Homotopy Height in an annulus

Input: Discrete annulus with boundaries ~ and 7/, integer L.
Output: Is the homotopy height between + and + at most L?

We know that there exists an optimal homotopy
that is an isotopy and that is monotone. But it
may still be exponentially long!
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Computing the homotopy height

Homotopy Height in an annulus

Input: Discrete annulus with boundaries ~ and 7/, integer L.
Output: Is the homotopy height between + and + at most L?

We know that there exists an optimal homotopy
that is an isotopy and that is monotone. But it
may still be exponentially long!

Theorem ([Chambers, dM, Ophelders '17])

There exists an optimal monotone homotopy where every edge is spiked at
most 3 times.

The problem Homotopy Height in an annulus is in NP.

52 /77




Grid minors and grid majors

@ Graph width parameters have important connections with graph minor
theory, what about homotopy height?

e The grid-major height /gridwidth of a graph G is the smallest H so
that G is a minor of a H x W grid for some V.
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Homotopy height and grid-major height

Theorem (Biedl|, E. Chambers, Eppstein, dM, Ophelders'19)

The homotopy height* of a triangulated graph equals the grid-major height.

N

*. variant with moving endpoints on the outerface with edge-slides.
@ Grid-major height is obviously minor-closed.

Computing the homotopy height* is fixed-parameter tractable
(parameterized by the output).

| do not know a practical algorithm for this.
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Summary and open problems

There exist optimal homotopies which are:
@ isotopies
@ monotone
e of polynomial length

This places the algorithmic problem in NP. There is also an (unknown)
FPT algorithm via a characterization by grid majors.

Many remaining questions:
Q Is it NP-hard?
@ Explicit FPT algorithms?
© Approximation algorithms? Best known is O(log n).

© What can we say/compute when the homotopy is allowed to move
outside of the initial curves?
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Summary and open problems

There exist optimal homotopies which are:
@ isotopies
@ monotone
e of polynomial length

This places the algorithmic problem in NP. There is also an (unknown)
FPT algorithm via a characterization by grid majors.

Many remaining questions:
Q Is it NP-hard?
@ Explicit FPT algorithms?
© Approximation algorithms? Best known is O(log n).

© What can we say/compute when the homotopy is allowed to move
outside of the initial curves?

Thank you! Questions?
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