A Unifying Framework for Characterizing and
Computing Width Measures

Robert Ganian
GRASTA 2022 (based on a contribution to ITCS 2022)

joint work with: Eduard Eiben, Thekla Hamm, Lars Jaffke, O-joung Kwon

Example 1: Treewidth

1/20

Example 1: Treewidth

1/20

Example 1: Treewidth

1/20

Example 1: Treewidth

1/20

Example 1: Treewidth

1/20

Example 1: Treewidth

1/20

Example 1: Treewidth

Width of tree decomposition: max bag size —1.

1/20

Example 1: Treewidth

Width of tree decomposition: max bag size —1.
Treewidth of G: min width of any of its tree decompositions.

1/20

Example 2: Clique-width

2/20

Example 2: Clique-width

2/20

Example 2: Clique-width

2/20

Example 2: Clique-width

2/20

Example 2: Clique-width

b(2)
(3)
a(1) o

d(l) 7712/ \7713

\' |

D
o \.2 .3/ N,
(a) ®) (e (d)

2/20

Example 2: Clique-width

b(2)
C(S) 2,3
a(1) 6\9
d(l) it 2/ \771 3
\' |
(&)
01/ AN . ‘3/ AN .
(a)) (o (d)

2/20

Example 2: Clique-width

b(2) P32
0(2) 772‘3
a(1) 6\9
d(l) it 2/ \771 3
\' |
(&)
01/ AN . ‘3/ AN .
(a)) (o (d)

2/20

Example 2: Clique-width

N
P32 o3
| (c)
2,3
|
@
/ \
M2 .3
| |
5%
01/ \‘2 ‘3/ \01
(a) () (o (d)

2/20

Example 2: Clique-width

M3
\
AN
5(2) P32 o3
c(2) nlg (€)
a(1) |
D
d(l) 7712/ \7715
e(3) \' |
D
o Ney e
(a) ® (0 (d)

2/20

Example 2: Clique-width

N
b(2) P32 o3
c(2) 772‘3 (e)
a(1) |
@
d(l) 7712/ \7713
e(3) ‘ |
5%
I N
(a) 0 (o) (d)

Width: number of labels

2/20

Algorithmic use of small-width decompositions

M3
|
52
/ \
P3—2 o3
| (e)
72,3
|
52}
/ \
M2 M3
| |
52
RN RN
) L) o3 o
(a ® (o (d)

3/20

Algorithmic use of small-width decompositions

M3
|
52
/ \
P3—2 o3
| (e)
72,3
|
52}
/ \
M2 M3
| |
52
RN RN
) L) o3 o
(a ® (o (d)

Dynamic programming over tree-structure

3/20

Algorithmic use of small-width decompositions

M3
|
52
/ \
P3—2 o3
| (e)
72,3
|
52}
/ \
M2 M3
| |
52
RN RN
) L) o3 o
(a ® (o (d)

Dynamic programming over tree-structure;
polynomial time if width is constant.

3/20

(Some) width measures and their expressive power

mim-width ‘ twin-width

clique-width rank-width boolean-width

treewidth ~ branchwidth ~ maximum matching width

treedepth ‘ cut-width

4/20

(Some) width measures and their expressive power

mim-width ‘ twin-width

clique-width rank-width boolean-width

treewidth ~ branchwidth ~— maximum matching width

treedepth ‘ cut-width

Width wy asymptotically dominates width ws if for all G,
w1 (G) < f(w(G)) for some f.

4/20

(Some) width measures and their expressive power

mim-width ‘ twin-width

clique-width rank-width boolean-width

treewidth ~ branchwidth — maximum matching width

treedepth ‘ cut-width

Width wy asymptotically dominates width ws if for all G,
wi(G) < f(wo(G)) for some f. They are asymptotically equivalent if
they dominate each other.

4/20

mim-width twin-width

clique-width rank-width boolean-width

5/20

mim-width

twin-width

clique-width rank-width

High expressive power

(t. A)-TrEE CoNvEX*
I

H-CONVEX TrIAD CONVEX*

mimw = O(1)

CIRCULAR k-TRAPEZOID mimw < 2k

CO-k-DEGEN.*
mimw < k + 1

k-PoLYGON* ‘
k-TRAPEZOID
H-GRAPHS
(k= E(H)]) DILWORTH-K* mimw < k
CIRCULAR ‘ -

TRAPEZOID Do

‘ mimw < 4
DILWORTH-2"

Cimeviar o
Compe MIMW < 2

boolean-width

5/20

mim-width twin-width

clique-width rank-width boolean-width
High expressive power Algorithmic applications

(ﬁ.A)-TRE‘E CONVEX* + INDEPENDENT SET, DOMINATING SET, and many

H-Cowvex Twa» Cowvex® variants.

CIRCULAR k-TRAPEZOID iy € 25 * H-HOMOMORPHISM, H-COVERING, ODD CYCLE

k-POLYGON* ‘ CO-k-DEGEN.* TRANSVERSAL, ...
o k-TRAPEZOID mimw < k4 1
-Grarns DIWORTH-K mimw < + FEEDBACK VERTEX SET, CONNEGTED DS,

CIRCULAR ‘

TRAPEZOID CONNECTED VERTEX COVER...

DILWORTH-4*
‘ mimw < 4
DILWORTH-2"

Cimeviar o
Compe MIMW < 2

5/20

twin-width

High expressive power

boolean-width

Algorithmic applications

INDEPENDENT SET, DOMINATING SET, and many
variants.

H-HOMOMORPHISM, H-COVERING, ODD CYCLE
TRANSVERSAL, ...

FEEDBACK VERTEX SET, CONNECTED DS,
CONNECTED VERTEX COVER...

Open problem:
approximating mim-width
5/20

(Some) width measures and their expressive power Il

mim-width ‘ twin-width

clique-width rank-width boolean-width

treewidth branchwidth — maximum matching width

treedepth ‘ cut-width

6/20

(Some) width measures and their expressive power Il

mim-width ‘ twin-width

clique-width rank-width boolean-width

treewidth branchwidth — maximum matching width

treedepth ‘ cut-width

What does width even mean in this context?

6/20

(Some) width measures and their expressive power Il

mim-width ‘ twin-width

clique-width rank-width boolean-width

treewidth branchwidth — maximum matching width

treedepth ‘ cut-width

What does width even mean in this context?

Search for unifying theories.

6/20

Step 1: Unifying the decomposition method

7/20

Step 1: Unifying the decomposition method

7/20

Step 1: Unifying the decomposition method

7/20

Step 1: Unifying the decomposition method

Step 1: Unifying the decomposition method

7/20

Step 1: Unifying the decomposition method

Width: Complexity of the cuts appearing during the
decomposition process.

7/20

Step 1: Branch decompositions

8/20

Step 1: Branch decompositions

Maximum matching width (= treewidth):

Max. matching size across the cut.
8/20

Step 1: Branch decompositions

(1)

a
C<1~0b
f<t—ce

d

Maximum matching width (= treewidth):

Max. matching size across the cut.

8/20

Step 1: Branch decompositions

(1)

a
a
et b d
RNy ‘
e
d

Maximum matching width (= treewidth):

Max. matching size across the cut.
8/20

Step 1: Branch decompositions

S
QU

Rank-width (= clique-width):

GF(2)-rank of binary adjacency matrix of the cut. 6120

Step 1: Branch decompositions

a b c
) (1)
a d
d ¢ f b e c f
(1) |a b d e
cl0 1 0 1
fl10 1 0 1

Rank-width (= clique-width):

GF(2)-rank of binary adjacency matrix of the cut. 6120

Step 1: Branch decompositions

Rank-width (= clique-width):

GF(2)-rank of binary adjacency matrix of the cut. 6120

Step 1: Branch decompositions

a
a
St b d
i Z . F
MIM-width:

Max. size of an induced matching across the cut. 6120

Step 2: Unifying the way of measuring complexity of cuts

All three measures admit asymptotically-equivalent characterizations
via branchwidth... but the cut-functions are fundamentally different.

Do we really need to consider all possible kinds of cut-functions?

9/20

Step 2: Unifying the way of measuring complexity of cuts

Z-Branchwidth
For a family of bipartite graphs .7, .% -branchwidth measures the
complexity of a cut (A, B) as

max{|F|: F € % is an induced subgraph in G[A, B]}.

9/20

Step 2: Unifying the way of measuring complexity of cuts

Z-Branchwidth
For a family of bipartite graphs .7, .% -branchwidth measures the
complexity of a cut (A, B) as

max{|V(F)NA|: F €.Z is an induced subgraph in G[A, B]}.

9/20

Step 2: Unifying the way of measuring complexity of cuts

Z-Branchwidth
For a family of bipartite graphs .7, .% -branchwidth measures the
complexity of a cut (A, B) as

max{|V(F)NA|: F €.Z is an induced subgraph in G[A, B]}.

« Symmetry: Allow only bipartite graphs with equally sized sides.

9/20

Step 2: Unifying the way of measuring complexity of cuts

Z-Branchwidth
For a family of bipartite graphs .7, .% -branchwidth measures the
complexity of a cut (A, B) as

max{|V(F)NA|: F €.Z is an induced subgraph in G[A, B]}.

« Symmetry: Allow only bipartite graphs with equally sized sides.

* Unnatural to “skip” values.

9/20

Step 2: Unifying the way of measuring complexity of cuts

Z-Branchwidth
For a family of bipartite graphs .7, .% -branchwidth measures the
complexity of a cut (A, B) as

max{|V(F)NA|: F €.Z is an induced subgraph in G[A, B]}.

« Symmetry: Allow only bipartite graphs with equally sized sides.
* Unnatural to “skip” values.

« The structure of a graph in .% “witnessing” width k should say
something about the structure of graphs witnessing width k" < k.

9/20

Partner-hereditary (ph)

A family of bipartite graphs .% is partner-hereditary (ph) if: For each
F € 7, fix a bipartition ({a1,...,an},{b1,...,bn}). Then, for all

1< [n], FlUic{ @i, bi}] € 7.

10/20

Partner-hereditary (ph)

A family of bipartite graphs .% is partner-hereditary (ph) if: For each
F € 7, fix a bipartition ({a1,...,an},{b1,...,bn}). Then, for all
1< [n], FlUic{ @i, bi}] € 7.

a1 by a; e——eo by a; e e by
az e bo az e——e by az e o by
as e b3 a3 e—eo by as e o b3

an; \obn ap e—e b, Ay o e b,

F 7 Fy

10/20

Partner-hereditary (ph)

A family of bipartite graphs .7 is partner-hereditary (ph) if: For each
F € 7, fix a bipartition ({a1,...,an},{b1,...,bn}). Then, for all

ay b1
as e bo
as e b3

an; \0 by,
F1

e .74 is not ph.

a7

IC[n], FlUie{a,bi}] € 7

a
a2

as

an

—o b a; e e by
oo by as e o by
— o b3 as e ° b3
o b, Uy o e b,

Fr Fy

10/20

Partner-hereditary (ph)

A family of bipartite graphs .% is partner-hereditary (ph) if: For each
F € 7, fix a bipartition ({a1,...,an},{b1,...,bn}). Then, for all
1< [n], FlUic{ @i, bi}] € 7.

a1 by a; e——eo by a; e e by

as e bo a2 e——o by az e ° by

as e b3 a3 e—eo by as e o b3

N 4y o b, an o . b,
F1 Fa Fo

e Zyisnotph. e .%;isph.

10/20

Partner-hereditary (ph)

A family of bipartite graphs .% is partner-hereditary (ph) if: For each
F € 7, fix a bipartition ({a1,...,an},{b1,...,bn}). Then, for all

1< [n], FlUic{ @i, bi}] € 7.

a1 by a; e——eo by a; e e by

as e bo a2 e——o by az e ° by

as e b3 a3 e—eo by as e o b3

N 4y oo b, an o . b,
F F Fo

e Ziisnotph. e .%,isph. e.%;U.%isph.

10/20

What does this capture?

Width | 7
Treewidth

Matchings, antimatchings,

balanced chains, complete bipartite

11/20

What does this capture?

Width | .7
Treewidth | Matchings, antimatchings,

balanced chains, complete bipartite
Clique-width | Matchings, antimatchings,

balanced chains

11/20

What does this capture?

Width | .7
Treewidth | Matchings, antimatchings,

balanced chains, complete bipartite
Clique-width | Matchings, antimatchings,
balanced chains

Mim-width | Matchings

11/20

Back to .% -branchwidth

Size-identifiable (si)
A ph graph family .% is size-identifiable (si) if for all n, there is
precisely one graph of order 2nin .%.

12/20

Back to .% -branchwidth

Size-identifiable (si)
A ph graph family .% is size-identifiable (si) if for all n, there is
precisely one graph of order 2nin .%.

Theorem

Let % be a ph graph family. Let F* be union of all si graph families
contained in % up to constantly many exceptions. Then, .% -bw and
F-bw are asymptotically equivalent.

12/20

Back to .% -branchwidth

Size-identifiable (si)
A ph graph family .% is size-identifiable (si) if for all n, there is
precisely one graph of order 2nin .%.

Theorem

Let % be a ph graph family. Let F* be union of all si graph families
contained in % up to constantly many exceptions. Then, .% -bw and
F-bw are asymptotically equivalent.

Theorem
There are only six si ph graph families.

12/20

The si ph graph families

]:w Fmatch Fehain

az by az by az by

bs

2
>
P
2
@
>
o
2
&
o
El

an A bn, an, /\- br, an e

]:complete]:antimatch]:schain

13/20

What does this capture?

Width | .7
Treewidth | Matchings, antimatchings,

balanced chains, complete bipartite
Clique-width | Matchings, antimatchings,
balanced chains

Mim-width | Matchings

14/20

mim-width ‘ twin-width

clique-width rank-width boolean-width

treewidth ~ branchwidth ~ maximum matching width

treedepth ‘ cut-width

15/20

Step 1:
Unifying decomposition
(branch decomposition)

mim-width ‘ twin-width

clique-width rank-width boolean-width

treewidth ~ branchwidth ~ maximum matching width

treedepth ‘ cut-width

15/20

Step 1: Step 2:
Unifying decomposition| —| Unifying cut-functions
(branch decomposition) (F-bw for ph F)
mim-width ‘ twin-width
clique-width rank-width boolean-width

treewidth ~ branchwidth ~ maximum matching width

treedepth ‘ cut-width

15/20

Step 1:
Unifying decomposition
(branch decomposition)

—

Step 2:
Unifying cut-functions
(F-bw for ph F)

; captures
'
mim-width ‘ twin-width
clique-width rank-width boolean-width
treewidth ~ branchwidth ~ maximum matching width
treedepth ‘ cut-width

15/20

Step 1: Step 2: Only six ph classes
Unifying decomposition| —| Unifying cut-functions || “truly matter” for
(branch decomposition) (F-bw for ph F) F-bw.
\ captures
v
mim-width ‘ twin-width
clique-width rank-width boolean-width

treewidth ~ branchwidth ~ maximum matching width

treedepth ‘ cut-width

15/20

Approximating .% -branchwidth

mim-width ’ twin-width

clique-width rank-width boolean-width

treewidth branchwidth ~— maximum matching width

treedepth ‘ cut-width

« Until now: .% -branchwidth can be used to characterize width

measures.

+ From now: Use .% -branchwidth to compute
approximately-optimal decompositions for width measures.

16/20

Step 1: Step 2: Only six ph classes
Unifying decomposition| —| Unifying cut-functions || “truly matter” for
(branch decomposition) (F-bw for ph F) F-bw.
\ captures
v
mim-width ‘ twin-width
clique-width rank-width boolean-width

treewidth ~ branchwidth ~ maximum matching width

treedepth ‘ cut-width

17/20

Step 1: Step 2: Only =sime=ph classes
Unifying decomposition| —| Unifying cut-functions | =™ “truly [matter” for
(branch decomposition) (F-bw for ph F) F-bw.
: I
\ captures three
v
mim-width ‘ twin-width
clique-width rank-width boolean-width

treewidth ~ branchwidth ~ maximum matching width

treedepth ‘ cut-width

17/20

Primal families

Theorem

Let % be any union of si ph graph families. Let .%* be the union of
the classes of matchings, antimatchings, and chains contained in .7 .
Then an optimal .%* -branch decomposition of any graph G has

F -branchwidth at most 3 - .7 -bw(G) +1.

[T S ay by a by
ay e————o by as by az by
a3 e———— by az by as by
n a, /\ by a, »A by,

]:match]:antimatch]'-chain

18/20

Primal families

Theorem

Let % be any union of si ph graph families. Let .%* be the union of
the classes of matchings, antimatchings, and chains contained in .7 .
Then an optimal .%* -branch decomposition of any graph G has

F -branchwidth at most 3 - .7 -bw(G) +1.

[T S ay by a by
ay e————o by as by az by
a3 e———— by az by as by
n a, /\ by a, »A by,

]:match]:antima(ch]'-chain

It suffices to give an algorithm computing .# *-branchwidth for unions
F* of these three primal graph families.

18/20

Approximating .7 *-branchwidth

Theorem
Let .Z* be a union of primal graph families. The problem of
computing the .% *-branchwidth of a graph G

1. is fixed-parameter tractable parameterized by the treewidth plus the
maximum degree of G,

2. is fixed-parameter tractable parameterized by the treedepth of G, and

3. has a linear kernel parameterized by the feedback edge set number
of G.

19/20

Approximating .7 *-branchwidth

Theorem
Let .Z* be a union of primal graph families. The problem of
computing the .% *-branchwidth of a graph G

1. is fixed-parameter tractable parameterized by the treewidth plus the
maximum degree of G,

2. is fixed-parameter tractable parameterized by the treedepth of G, and

3. has a linear kernel parameterized by the feedback edge set number
of G.

Consequence
We can compute the mim-width under any of the above structural
parameterizations exactly.

19/20

Conclusion

Step 1: Step 2: Only three ph classes
Unifying decomposition| ™| Unifying cut-functions [~ | “truly matter” for JF-
(branch decomposition) (F-bw for ph F) bw.
' captures
v
mim-width ‘ twin-width
clique-width rank-width boolean-width

treewidth branchwidth — maximum matching width

treedepth ‘ cut-width

20/20

Conclusion

Step 1:
Unifying decomposition
(branch decomposition)

—

Step 2:
Unifying cut-functions
(F-bw for ph F)

Only three ph classes
“truly matter” for F-
bw.

—

mim-width ‘

captures

@ -

twin-width

clique-width rank-width

boolean-width

treewidth branchwidth

maximum matching width

treedepth ‘

cut-width

On graphs of

e low treewidth + max.
degree,

e treedepth, or
e FES number,

we can approximate any
F-bw efficiently.

20/20

Thank You!

