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Treewidth of G: min width of any of its tree decompositions.
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mim-width twin-width

Width w1 asymptotically dominates width w2 if for all G,

w1(G)≤ f (w2(G)) for some f . They are asymptotically equivalent if

they dominate each other.
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...Mim-WHAT??

clique-width rank-width boolean-width

mim-width twin-width

· · ·

High expressive power

Leaf Power

Interval?

Permutation?

k-Polygon?

Trapezoid?

k-Trapezoid

Biconvex

Convex?

mimw ≤ 2

mimw = 1

Dilworth-k?

Dilworth-4?

Dilworth-2?

Bounded
Tolerance

mimw ≤ 4

mimw ≤ k

mimw ≤ 2k

Circular
Arc?

Circular
Trapezoid

H-Graphs

Circular k-Trapezoid

(k = |E(H)|)

Circular
Permutation?

Rooted Dir. Path?

Bipartite Permutation

Co-k-Degen.?

mimw ≤ k + 1

mimw = O(1)H-Convex

Circular
Convex?

Triad Convex?

(t,∆)-Tree Convex?

Algorithmic applications

• INDEPENDENT SET, DOMINATING SET, and many
variants.

• H -HOMOMORPHISM, H -COVERING, ODD CYCLE

TRANSVERSAL, ...

• FEEDBACK VERTEX SET, CONNECTED DS,
CONNECTED VERTEX COVER...

• ...

Open problem:

approximating mim-width
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(Some) width measures and their expressive power II

treedepth cut-width

treewidth branchwidth maximum matching width

clique-width rank-width boolean-width

mim-width twin-width

What does width even mean in this context?

Search for unifying theories.
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Step 1: Unifying the decomposition method

G

⇓

Width: Complexity of the cuts appearing during the

decomposition process.
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Step 1: Branch decompositions
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Max. size of an induced matching across the cut.
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Step 2: Unifying the way of measuring complexity of cuts

All three measures admit asymptotically-equivalent characterizations

via branchwidth... but the cut-functions are fundamentally different.

Do we really need to consider all possible kinds of cut-functions?
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F -Branchwidth

For a family of bipartite graphs F , F -branchwidth measures the

complexity of a cut (A,B) as

max{|V (F)∩A| : F ∈F is an induced subgraph in G[A,B]}.

• Symmetry: Allow only bipartite graphs with equally sized sides.

• Unnatural to “skip” values.

• The structure of a graph in F “witnessing” width k should say

something about the structure of graphs witnessing width k ′ < k .
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PH

Partner-hereditary (ph)

A family of bipartite graphs F is partner-hereditary (ph) if: For each

F ∈F , fix a bipartition ({a1, . . . ,an},{b1, . . . ,bn}). Then, for all

I ⊆ [n], F [
⋃

i∈I{ai ,bi}] ∈F .

...
...

a1

a2

a3

an

b1

b2

b3

bn

F1

...
...

a1

a2

a3

an

b1

b2

b3

bn

F2

...
...

a1

a2

a3

an

b1

b2

b3

bn

F∅

· · ·

•F1 is not ph. •F2 is ph. •F1∪F /0 is ph.
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What does this capture?

Width F

Treewidth Matchings, antimatchings,

balanced chains, complete bipartite

Clique-width Matchings, antimatchings,

balanced chains

Mim-width Matchings
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Back to F -branchwidth

Size-identifiable (si)

A ph graph family F is size-identifiable (si) if for all n, there is

precisely one graph of order 2n in F .

Theorem

Let F be a ph graph family. Let F ↓ be union of all si graph families

contained in F up to constantly many exceptions. Then, F -bw and

F ↓-bw are asymptotically equivalent.

Theorem

There are only six si ph graph families.
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The si ph graph families
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· · ·
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Approximating F -branchwidth

treedepth cut-width

mim-width twin-width

clique-width rank-width boolean-width

maximum matching widthbranchwidthtreewidth

• Until now: F -branchwidth can be used to characterize width

measures.

• From now: Use F -branchwidth to compute

approximately-optimal decompositions for width measures.
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Recap

Step 1:
Unifying decomposition
(branch decomposition)

Step 2:
Unifying cut-functions
(F -bw for ph F)

Only six ph classes
“truly matter” for
F -bw.

captures three

treedepth cut-width

mim-width twin-width

clique-width rank-width boolean-width

maximum matching widthbranchwidthtreewidth
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Primal families

Theorem

Let F be any union of si ph graph families. Let F ∗ be the union of

the classes of matchings, antimatchings, and chains contained in F .

Then an optimal F ∗-branch decomposition of any graph G has

F -branchwidth at most 3 ·F -bw(G)+1.

...
...

a1

a2

a3

an

b1

b2

b3

bn

...
...

a1

a2

a3

an

b1

b2

b3

bn

...
...

a1

a2

a3

an

b1

b2

b3

bn

Fmatch FchainFantimatch

· · ·· · ·

It suffices to give an algorithm computing F ∗-branchwidth for unions

F ∗ of these three primal graph families.
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F -branchwidth at most 3 ·F -bw(G)+1.

...
...
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an
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b3

bn
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...

a1

a2

a3

an

b1

b2

b3

bn

...
...

a1

a2

a3

an

b1

b2

b3

bn

Fmatch FchainFantimatch

· · ·· · ·

It suffices to give an algorithm computing F ∗-branchwidth for unions

F ∗ of these three primal graph families.
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Approximating F ∗-branchwidth

Theorem

Let F ∗ be a union of primal graph families. The problem of

computing the F ∗-branchwidth of a graph G

1. is fixed-parameter tractable parameterized by the treewidth plus the
maximum degree of G,

2. is fixed-parameter tractable parameterized by the treedepth of G, and

3. has a linear kernel parameterized by the feedback edge set number
of G.

Consequence

We can compute the mim-width under any of the above structural

parameterizations exactly.
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Conclusion

Step 1:
Unifying decomposition
(branch decomposition)

Step 2:
Unifying cut-functions
(F -bw for ph F)

Only three ph classes
“truly matter” for F -
bw.

captures

treedepth cut-width

mim-width twin-width

clique-width rank-width boolean-width

maximum matching widthbranchwidthtreewidth
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Conclusion

Step 1:
Unifying decomposition
(branch decomposition)

Step 2:
Unifying cut-functions
(F -bw for ph F)

Only three ph classes
“truly matter” for F -
bw.

captures On graphs of

• low treewidth + max.
degree,

• treedepth, or

• FES number,

we can approximate any
F -bw efficiently.

treedepth cut-width

mim-width twin-width

clique-width rank-width boolean-width

maximum matching widthbranchwidthtreewidth
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Thank You!
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