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Example 1: Treewidth

Width of tree decomposition: max bag size —1.
Treewidth of G: min width of any of its tree decompositions.

1/20



Example 2: Clique-width

2/20



Example 2: Clique-width

2/20



Example 2: Clique-width

2/20



Example 2: Clique-width

2/20



Example 2: Clique-width

b(2)
(3)
a(1) o

d(l) 7712/ \7713

\' |

D
o \.2 .3/ N,
(a) ®) (e (d)

2/20



Example 2: Clique-width

b(2)
C(S) 2,3
a(1) 6\9
d(l) it 2/ \771 3
\' |
(&)
01/ AN . ‘3/ AN .
(a) ) (o (d)

2/20



Example 2: Clique-width

b(2) P32
0(2) 772‘3
a(1) 6\9
d(l) it 2/ \771 3
\' |
(&)
01/ AN . ‘3/ AN .
(a) ) (o (d)

2/20



Example 2: Clique-width

N
P32 o3
| (c)
2,3
|
@
/ \
M2 .3
| |
5%
01/ \‘2 ‘3/ \01
(a) () (o (d)

2/20



Example 2: Clique-width

M3
\
AN
5(2) P32 o3
c(2) nlg (€)
a(1) |
D
d(l) 7712/ \7715
e(3) \' |
D
o Ney e
(a) ® (0 (d)

2/20
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Algorithmic use of small-width decompositions
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Dynamic programming over tree-structure;
polynomial time if width is constant.
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(Some) width measures and their expressive power

mim-width ‘ twin-width

clique-width rank-width boolean-width

treewidth ~ branchwidth — maximum matching width

treedepth ‘ cut-width

Width wy asymptotically dominates width ws if for all G,
wi(G) < f(wo(G)) for some f. They are asymptotically equivalent if
they dominate each other.
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mim-width

twin-width

clique-width rank-width
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mim-width twin-width

clique-width rank-width boolean-width
High expressive power Algorithmic applications
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twin-width

High expressive power

boolean-width

Algorithmic applications

INDEPENDENT SET, DOMINATING SET, and many
variants.

H-HOMOMORPHISM, H-COVERING, ODD CYCLE
TRANSVERSAL, ...

FEEDBACK VERTEX SET, CONNECTED DS,
CONNECTED VERTEX COVER...

Open problem:
approximating mim-width
5/20
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(Some) width measures and their expressive power Il

mim-width ‘ twin-width

clique-width rank-width boolean-width

treewidth branchwidth — maximum matching width

treedepth ‘ cut-width

What does width even mean in this context?

Search for unifying theories.
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Step 1: Unifying the decomposition method

Width: Complexity of the cuts appearing during the
decomposition process.
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Step 1: Branch decompositions

Maximum matching width (= treewidth):

Max. matching size across the cut.
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Step 1: Branch decompositions
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Step 1: Branch decompositions
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Step 1: Branch decompositions

Rank-width (= clique-width):

GF(2)-rank of binary adjacency matrix of the cut. 6120



Step 1: Branch decompositions
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MIM-width:

Max. size of an induced matching across the cut. 6120



Step 2: Unifying the way of measuring complexity of cuts

All three measures admit asymptotically-equivalent characterizations
via branchwidth... but the cut-functions are fundamentally different.

Do we really need to consider all possible kinds of cut-functions?
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Step 2: Unifying the way of measuring complexity of cuts

Z-Branchwidth
For a family of bipartite graphs .7, .% -branchwidth measures the
complexity of a cut (A, B) as

max{|V(F)NA|: F €.Z is an induced subgraph in G[A, B]}.

« Symmetry: Allow only bipartite graphs with equally sized sides.
* Unnatural to “skip” values.

« The structure of a graph in .% “witnessing” width k should say
something about the structure of graphs witnessing width k" < k.
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Partner-hereditary (ph)

A family of bipartite graphs .% is partner-hereditary (ph) if: For each
F € 7, fix a bipartition ({a1,...,an},{b1,...,bn}). Then, for all

1< [n], FlUic{ @i, bi}] € 7.
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What does this capture?

Width | 7
Treewidth

Matchings, antimatchings,

balanced chains, complete bipartite
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Back to .% -branchwidth

Size-identifiable (si)
A ph graph family .% is size-identifiable (si) if for all n, there is
precisely one graph of order 2nin .%.

Theorem

Let % be a ph graph family. Let F* be union of all si graph families
contained in % up to constantly many exceptions. Then, .% -bw and
F-bw are asymptotically equivalent.

Theorem
There are only six si ph graph families.
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The si ph graph families
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Approximating .% -branchwidth

mim-width ’ twin-width

clique-width rank-width boolean-width

treewidth  branchwidth ~— maximum matching width

treedepth ‘ cut-width

« Until now: .% -branchwidth can be used to characterize width

measures.

+ From now: Use .% -branchwidth to compute
approximately-optimal decompositions for width measures.
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Step 1: Step 2: Only =sime=ph classes
Unifying decomposition| —| Unifying cut-functions | =™ “truly [matter” for
(branch decomposition) (F-bw for ph F) F-bw.
: I
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Primal families

Theorem

Let % be any union of si ph graph families. Let .%* be the union of
the classes of matchings, antimatchings, and chains contained in .7 .
Then an optimal .%* -branch decomposition of any graph G has

F -branchwidth at most 3 - .7 -bw(G) +1.
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Theorem

Let % be any union of si ph graph families. Let .%* be the union of
the classes of matchings, antimatchings, and chains contained in .7 .
Then an optimal .%* -branch decomposition of any graph G has

F -branchwidth at most 3 - .7 -bw(G) +1.

[T S ay by a by
ay e————o by as by az by
a3 e———— by az by as by
n a, /\ by a, »A by,

]:match ]:antima(ch ]'-chain

It suffices to give an algorithm computing .# *-branchwidth for unions
F* of these three primal graph families.
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Approximating .7 *-branchwidth

Theorem
Let .Z* be a union of primal graph families. The problem of
computing the .% *-branchwidth of a graph G

1. is fixed-parameter tractable parameterized by the treewidth plus the
maximum degree of G,

2. is fixed-parameter tractable parameterized by the treedepth of G, and

3. has a linear kernel parameterized by the feedback edge set number
of G.
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Approximating .7 *-branchwidth

Theorem
Let .Z* be a union of primal graph families. The problem of
computing the .% *-branchwidth of a graph G

1. is fixed-parameter tractable parameterized by the treewidth plus the
maximum degree of G,

2. is fixed-parameter tractable parameterized by the treedepth of G, and

3. has a linear kernel parameterized by the feedback edge set number
of G.

Consequence
We can compute the mim-width under any of the above structural
parameterizations exactly.
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Conclusion

Step 1: Step 2: Only three ph classes
Unifying decomposition| ™| Unifying cut-functions [~ | “truly matter” for JF-
(branch decomposition) (F-bw for ph F) bw.
' captures
v
mim-width ‘ twin-width
clique-width rank-width boolean-width

treewidth  branchwidth — maximum matching width

treedepth ‘ cut-width
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Conclusion

Step 1:
Unifying decomposition
(branch decomposition)

—

Step 2:
Unifying cut-functions
(F-bw for ph F)

Only three ph classes
“truly matter” for F-
bw.

—

mim-width ‘

captures

@ -

twin-width

clique-width rank-width

boolean-width

treewidth branchwidth

maximum matching width

treedepth ‘

cut-width

On graphs of

e low treewidth + max.
degree,

e treedepth, or
e FES number,

we can approximate any
F-bw efficiently.
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Thank You!



