
A Unifying Framework for Characterizing and

Computing Width Measures

Robert Ganian

GRASTA 2022 (based on a contribution to ITCS 2022)

joint work with: Eduard Eiben, Thekla Hamm, Lars Jaffke, O-joung Kwon

Example 1: Treewidth

1/20

Example 1: Treewidth

G

1/20

Example 1: Treewidth

G

1/20

Example 1: Treewidth

G

v v

1/20

Example 1: Treewidth

G

u

v u, v

1/20

Example 1: Treewidth

G

u

v

v

u, v

vv

1/20

Example 1: Treewidth

G

u

v

v

u, v

vv

Width of tree decomposition: max bag size −1.

1/20

Example 1: Treewidth

G

u

v

v

u, v

vv

Width of tree decomposition: max bag size −1.
Treewidth of G: min width of any of its tree decompositions.

1/20

Example 2: Clique-width

2/20

Example 2: Clique-width

a(1)

•1
(a)

2/20

Example 2: Clique-width

a(1)

b(2)

•1 •2
⊕

(a) (b)

2/20

Example 2: Clique-width

a(1)

b(2)

•1 •2
⊕

η1,2

(a) (b)

2/20

Example 2: Clique-width

a(1)

b(2)

c(3)

d(1)

•1 •2
⊕

•3 •1
⊕

η1,2 η1,3

⊕

(a) (b) (c) (d)

2/20

Example 2: Clique-width

a(1)

b(2)

c(3)

d(1)

•1 •2
⊕

•3 •1
⊕

η1,2 η1,3

⊕

η2,3

(a) (b) (c) (d)

2/20

Example 2: Clique-width

a(1)

b(2)

c(2)

d(1)

•1 •2
⊕

•3 •1
⊕

η1,2 η1,3

⊕

η2,3

ρ3→2

(a) (b) (c) (d)

2/20

Example 2: Clique-width

a(1)

b(2)

c(2)

d(1)

e(3)

•1 •2
⊕

•3 •1
⊕

η1,2 η1,3

⊕

η2,3

ρ3→2 •3

⊕

(a) (b)

(e)

(c) (d)

2/20

Example 2: Clique-width

a(1)

b(2)

c(2)

d(1)

e(3)

•1 •2
⊕

•3 •1
⊕

η1,2 η1,3

⊕

η2,3

ρ3→2 •3

⊕

η1,3

(a) (b)

(e)

(c) (d)

2/20

Example 2: Clique-width

a(1)

b(2)

c(2)

d(1)

e(3)

•1 •2
⊕

•3 •1
⊕

η1,2 η1,3

⊕

η2,3

ρ3→2 •3

⊕

η1,3

(a) (b)

(e)

(c) (d)

Width: number of labels

2/20

Algorithmic use of small-width decompositions

•1 •2
⊕

•3 •1
⊕

η1,2 η1,3

⊕

η2,3

ρ3→2 •3

⊕

η1,3

(a) (b)

(e)

(c) (d)

Dynamic programming over tree-structure;
polynomial time if width is constant.

3/20

Algorithmic use of small-width decompositions

•1 •2
⊕

•3 •1
⊕

η1,2 η1,3

⊕

η2,3

ρ3→2 •3

⊕

η1,3

(a) (b)

(e)

(c) (d)

Dynamic programming over tree-structure

;
polynomial time if width is constant.

3/20

Algorithmic use of small-width decompositions

•1 •2
⊕

•3 •1
⊕

η1,2 η1,3

⊕

η2,3

ρ3→2 •3

⊕

η1,3

(a) (b)

(e)

(c) (d)

Dynamic programming over tree-structure;
polynomial time if width is constant.

3/20

(Some) width measures and their expressive power

treedepth cut-width

treewidth branchwidth maximum matching width

clique-width rank-width boolean-width

mim-width twin-width

4/20

(Some) width measures and their expressive power

treedepth cut-width

treewidth branchwidth maximum matching width

clique-width rank-width boolean-width

mim-width twin-width

Width w1 asymptotically dominates width w2 if for all G,

w1(G)≤ f (w2(G)) for some f .

4/20

(Some) width measures and their expressive power

treedepth cut-width

treewidth branchwidth maximum matching width

clique-width rank-width boolean-width

mim-width twin-width

Width w1 asymptotically dominates width w2 if for all G,

w1(G)≤ f (w2(G)) for some f . They are asymptotically equivalent if

they dominate each other.

4/20

...Mim-WHAT??

clique-width rank-width boolean-width

mim-width twin-width

· · ·

High expressive power

Leaf Power

Interval?

Permutation?

k-Polygon?

Trapezoid?

k-Trapezoid

Biconvex

Convex?

mimw ≤ 2

mimw = 1

Dilworth-k?

Dilworth-4?

Dilworth-2?

Bounded
Tolerance

mimw ≤ 4

mimw ≤ k

mimw ≤ 2k

Circular
Arc?

Circular
Trapezoid

H-Graphs

Circular k-Trapezoid

(k = |E(H)|)

Circular
Permutation?

Rooted Dir. Path?

Bipartite Permutation

Co-k-Degen.?

mimw ≤ k + 1

mimw = O(1)H-Convex

Circular
Convex?

Triad Convex?

(t,∆)-Tree Convex?

Algorithmic applications

• INDEPENDENT SET, DOMINATING SET, and many
variants.

• H -HOMOMORPHISM, H -COVERING, ODD CYCLE

TRANSVERSAL, ...

• FEEDBACK VERTEX SET, CONNECTED DS,
CONNECTED VERTEX COVER...

• ...

Open problem:

approximating mim-width

5/20

...Mim-WHAT??

clique-width rank-width boolean-width

mim-width twin-width

· · ·

High expressive power

Leaf Power

Interval?

Permutation?

k-Polygon?

Trapezoid?

k-Trapezoid

Biconvex

Convex?

mimw ≤ 2

mimw = 1

Dilworth-k?

Dilworth-4?

Dilworth-2?

Bounded
Tolerance

mimw ≤ 4

mimw ≤ k

mimw ≤ 2k

Circular
Arc?

Circular
Trapezoid

H-Graphs

Circular k-Trapezoid

(k = |E(H)|)

Circular
Permutation?

Rooted Dir. Path?

Bipartite Permutation

Co-k-Degen.?

mimw ≤ k + 1

mimw = O(1)H-Convex

Circular
Convex?

Triad Convex?

(t,∆)-Tree Convex?

Algorithmic applications

• INDEPENDENT SET, DOMINATING SET, and many
variants.

• H -HOMOMORPHISM, H -COVERING, ODD CYCLE

TRANSVERSAL, ...

• FEEDBACK VERTEX SET, CONNECTED DS,
CONNECTED VERTEX COVER...

• ...

Open problem:

approximating mim-width

5/20

...Mim-WHAT??

clique-width rank-width boolean-width

mim-width twin-width

· · ·

High expressive power

Leaf Power

Interval?

Permutation?

k-Polygon?

Trapezoid?

k-Trapezoid

Biconvex

Convex?

mimw ≤ 2

mimw = 1

Dilworth-k?

Dilworth-4?

Dilworth-2?

Bounded
Tolerance

mimw ≤ 4

mimw ≤ k

mimw ≤ 2k

Circular
Arc?

Circular
Trapezoid

H-Graphs

Circular k-Trapezoid

(k = |E(H)|)

Circular
Permutation?

Rooted Dir. Path?

Bipartite Permutation

Co-k-Degen.?

mimw ≤ k + 1

mimw = O(1)H-Convex

Circular
Convex?

Triad Convex?

(t,∆)-Tree Convex?

Algorithmic applications

• INDEPENDENT SET, DOMINATING SET, and many
variants.

• H -HOMOMORPHISM, H -COVERING, ODD CYCLE

TRANSVERSAL, ...

• FEEDBACK VERTEX SET, CONNECTED DS,
CONNECTED VERTEX COVER...

• ...

Open problem:

approximating mim-width

5/20

...Mim-WHAT??

clique-width rank-width boolean-width

mim-width twin-width

· · ·

High expressive power

Leaf Power

Interval?

Permutation?

k-Polygon?

Trapezoid?

k-Trapezoid

Biconvex

Convex?

mimw ≤ 2

mimw = 1

Dilworth-k?

Dilworth-4?

Dilworth-2?

Bounded
Tolerance

mimw ≤ 4

mimw ≤ k

mimw ≤ 2k

Circular
Arc?

Circular
Trapezoid

H-Graphs

Circular k-Trapezoid

(k = |E(H)|)

Circular
Permutation?

Rooted Dir. Path?

Bipartite Permutation

Co-k-Degen.?

mimw ≤ k + 1

mimw = O(1)H-Convex

Circular
Convex?

Triad Convex?

(t,∆)-Tree Convex?

Algorithmic applications

• INDEPENDENT SET, DOMINATING SET, and many
variants.

• H -HOMOMORPHISM, H -COVERING, ODD CYCLE

TRANSVERSAL, ...

• FEEDBACK VERTEX SET, CONNECTED DS,
CONNECTED VERTEX COVER...

• ...

Open problem:

approximating mim-width
5/20

(Some) width measures and their expressive power II

treedepth cut-width

treewidth branchwidth maximum matching width

clique-width rank-width boolean-width

mim-width twin-width

What does width even mean in this context?

Search for unifying theories.

6/20

(Some) width measures and their expressive power II

treedepth cut-width

treewidth branchwidth maximum matching width

clique-width rank-width boolean-width

mim-width twin-width

What does width even mean in this context?

Search for unifying theories.

6/20

(Some) width measures and their expressive power II

treedepth cut-width

treewidth branchwidth maximum matching width

clique-width rank-width boolean-width

mim-width twin-width

What does width even mean in this context?

Search for unifying theories.

6/20

Step 1: Unifying the decomposition method

G

7/20

Step 1: Unifying the decomposition method

G

⇓

7/20

Step 1: Unifying the decomposition method

G

⇓

⇓ ⇓

7/20

Step 1: Unifying the decomposition method

G

⇓

⇓ ⇓

⇓ ⇓ ⇓ ⇓
...

7/20

Step 1: Unifying the decomposition method

G

⇓

7/20

Step 1: Unifying the decomposition method

G

⇓

Width: Complexity of the cuts appearing during the

decomposition process.

7/20

Step 1: Branch decompositions

a b c

d e f

a

b e

d

c f

8/20

Step 1: Branch decompositions

a b c

d e f

a

b e

d

c f

Maximum matching width (≡ treewidth):
Max. matching size across the cut.

8/20

Step 1: Branch decompositions

a b c

d e f

a

b e

d

c f

c

a

b

ef

d

(1)

(1)

Maximum matching width (≡ treewidth):
Max. matching size across the cut.

8/20

Step 1: Branch decompositions

a b c

d e f

a

b e

d

c f

c

a

b

ef

d

(1)

(1)

(2)

(2)

a

b

e

c

d

f

Maximum matching width (≡ treewidth):
Max. matching size across the cut.

8/20

Step 1: Branch decompositions

a b c

d e f

a

b e

d

c f

Rank-width (≡ clique-width):
GF(2)-rank of binary adjacency matrix of the cut.

8/20

Step 1: Branch decompositions

a b c

d e f

a

b e

d

c f

(1)

(1)

c

f

a b d e

0 0

0 0

1 1

11

Rank-width (≡ clique-width):
GF(2)-rank of binary adjacency matrix of the cut.

8/20

Step 1: Branch decompositions

a b c

d e f

a

b e

d

c f

(1)

(1)

c

f

a b d e

0 0

0 0

1 1

11

(2)

(2)

a

b

e

c d f

0 0

0

1

1 1

1 1 1

Rank-width (≡ clique-width):
GF(2)-rank of binary adjacency matrix of the cut.

8/20

Step 1: Branch decompositions

a b c

d e f

a

b e

d

c f

c

a

b

ef

d

(1)

(1)

(2)

(2)

a

b

e

c

d

f

MIM-width:
Max. size of an induced matching across the cut.

8/20

Step 2: Unifying the way of measuring complexity of cuts

All three measures admit asymptotically-equivalent characterizations

via branchwidth... but the cut-functions are fundamentally different.

Do we really need to consider all possible kinds of cut-functions?

9/20

Step 2: Unifying the way of measuring complexity of cuts

F -Branchwidth

For a family of bipartite graphs F , F -branchwidth measures the

complexity of a cut (A,B) as

max{|F | : F ∈F is an induced subgraph in G[A,B]}.

9/20

Step 2: Unifying the way of measuring complexity of cuts

F -Branchwidth

For a family of bipartite graphs F , F -branchwidth measures the

complexity of a cut (A,B) as

max{|V (F)∩A| : F ∈F is an induced subgraph in G[A,B]}.

9/20

Step 2: Unifying the way of measuring complexity of cuts

F -Branchwidth

For a family of bipartite graphs F , F -branchwidth measures the

complexity of a cut (A,B) as

max{|V (F)∩A| : F ∈F is an induced subgraph in G[A,B]}.

• Symmetry: Allow only bipartite graphs with equally sized sides.

9/20

Step 2: Unifying the way of measuring complexity of cuts

F -Branchwidth

For a family of bipartite graphs F , F -branchwidth measures the

complexity of a cut (A,B) as

max{|V (F)∩A| : F ∈F is an induced subgraph in G[A,B]}.

• Symmetry: Allow only bipartite graphs with equally sized sides.

• Unnatural to “skip” values.

9/20

Step 2: Unifying the way of measuring complexity of cuts

F -Branchwidth

For a family of bipartite graphs F , F -branchwidth measures the

complexity of a cut (A,B) as

max{|V (F)∩A| : F ∈F is an induced subgraph in G[A,B]}.

• Symmetry: Allow only bipartite graphs with equally sized sides.

• Unnatural to “skip” values.

• The structure of a graph in F “witnessing” width k should say

something about the structure of graphs witnessing width k ′ < k .

9/20

PH

Partner-hereditary (ph)

A family of bipartite graphs F is partner-hereditary (ph) if: For each

F ∈F , fix a bipartition ({a1, . . . ,an},{b1, . . . ,bn}). Then, for all

I ⊆ [n], F [
⋃

i∈I{ai ,bi}] ∈F .

...
...

a1

a2

a3

an

b1

b2

b3

bn

F1

...
...

a1

a2

a3

an

b1

b2

b3

bn

F2

...
...

a1

a2

a3

an

b1

b2

b3

bn

F∅

· · ·

•F1 is not ph. •F2 is ph. •F1∪F /0 is ph.

10/20

PH

Partner-hereditary (ph)

A family of bipartite graphs F is partner-hereditary (ph) if: For each

F ∈F , fix a bipartition ({a1, . . . ,an},{b1, . . . ,bn}). Then, for all

I ⊆ [n], F [
⋃

i∈I{ai ,bi}] ∈F .

...
...

a1

a2

a3

an

b1

b2

b3

bn

F1

...
...

a1

a2

a3

an

b1

b2

b3

bn

F2

...
...

a1

a2

a3

an

b1

b2

b3

bn

F∅

· · ·

•F1 is not ph. •F2 is ph. •F1∪F /0 is ph.

10/20

PH

Partner-hereditary (ph)

A family of bipartite graphs F is partner-hereditary (ph) if: For each

F ∈F , fix a bipartition ({a1, . . . ,an},{b1, . . . ,bn}). Then, for all

I ⊆ [n], F [
⋃

i∈I{ai ,bi}] ∈F .

...
...

a1

a2

a3

an

b1

b2

b3

bn

F1

...
...

a1

a2

a3

an

b1

b2

b3

bn

F2

...
...

a1

a2

a3

an

b1

b2

b3

bn

F∅

· · ·

•F1 is not ph.

•F2 is ph. •F1∪F /0 is ph.

10/20

PH

Partner-hereditary (ph)

A family of bipartite graphs F is partner-hereditary (ph) if: For each

F ∈F , fix a bipartition ({a1, . . . ,an},{b1, . . . ,bn}). Then, for all

I ⊆ [n], F [
⋃

i∈I{ai ,bi}] ∈F .

...
...

a1

a2

a3

an

b1

b2

b3

bn

F1

...
...

a1

a2

a3

an

b1

b2

b3

bn

F2

...
...

a1

a2

a3

an

b1

b2

b3

bn

F∅

· · ·

•F1 is not ph. •F2 is ph.

•F1∪F /0 is ph.

10/20

PH

Partner-hereditary (ph)

A family of bipartite graphs F is partner-hereditary (ph) if: For each

F ∈F , fix a bipartition ({a1, . . . ,an},{b1, . . . ,bn}). Then, for all

I ⊆ [n], F [
⋃

i∈I{ai ,bi}] ∈F .

...
...

a1

a2

a3

an

b1

b2

b3

bn

F1

...
...

a1

a2

a3

an

b1

b2

b3

bn

F2

...
...

a1

a2

a3

an

b1

b2

b3

bn

F∅

· · ·

•F1 is not ph. •F2 is ph. •F1∪F /0 is ph.

10/20

What does this capture?

Width F

Treewidth Matchings, antimatchings,

balanced chains, complete bipartite

Clique-width Matchings, antimatchings,

balanced chains

Mim-width Matchings

11/20

What does this capture?

Width F

Treewidth Matchings, antimatchings,

balanced chains, complete bipartite

Clique-width Matchings, antimatchings,

balanced chains

Mim-width Matchings

11/20

What does this capture?

Width F

Treewidth Matchings, antimatchings,

balanced chains, complete bipartite

Clique-width Matchings, antimatchings,

balanced chains

Mim-width Matchings

11/20

Back to F -branchwidth

Size-identifiable (si)

A ph graph family F is size-identifiable (si) if for all n, there is

precisely one graph of order 2n in F .

Theorem

Let F be a ph graph family. Let F ↓ be union of all si graph families

contained in F up to constantly many exceptions. Then, F -bw and

F ↓-bw are asymptotically equivalent.

Theorem

There are only six si ph graph families.

12/20

Back to F -branchwidth

Size-identifiable (si)

A ph graph family F is size-identifiable (si) if for all n, there is

precisely one graph of order 2n in F .

Theorem

Let F be a ph graph family. Let F ↓ be union of all si graph families

contained in F up to constantly many exceptions. Then, F -bw and

F ↓-bw are asymptotically equivalent.

Theorem

There are only six si ph graph families.

12/20

Back to F -branchwidth

Size-identifiable (si)

A ph graph family F is size-identifiable (si) if for all n, there is

precisely one graph of order 2n in F .

Theorem

Let F be a ph graph family. Let F ↓ be union of all si graph families

contained in F up to constantly many exceptions. Then, F -bw and

F ↓-bw are asymptotically equivalent.

Theorem

There are only six si ph graph families.

12/20

The si ph graph families

...
...

a1

a2

a3

an

b1

b2

b3

bn

...
...

a1

a2

a3

an

b1

b2

b3

bn

...
...

a1

a2

a3

an

b1

b2

b3

bn

...
...

a1

a2

a3

an

b1

b2

b3

bn

...
...

a1

a2

a3

an

b1

b2

b3

bn

...
...

a1

a2

a3

an

b1

b2

b3

bn

F∅ Fmatch Fchain

Fcomplete Fantimatch Fschain

· · ·

· · · · · · · · ·

13/20

What does this capture?

Width F

Treewidth Matchings, antimatchings,

balanced chains, complete bipartite

Clique-width Matchings, antimatchings,

balanced chains

Mim-width Matchings

14/20

Recap

treedepth cut-width

treewidth branchwidth maximum matching width

clique-width rank-width boolean-width

mim-width twin-width

15/20

Recap

Step 1:
Unifying decomposition
(branch decomposition)

treedepth cut-width

treewidth branchwidth maximum matching width

clique-width rank-width boolean-width

mim-width twin-width

15/20

Recap

Step 1:
Unifying decomposition
(branch decomposition)

Step 2:
Unifying cut-functions
(F -bw for ph F)

treedepth cut-width

treewidth branchwidth maximum matching width

clique-width rank-width boolean-width

mim-width twin-width

15/20

Recap

Step 1:
Unifying decomposition
(branch decomposition)

Step 2:
Unifying cut-functions
(F -bw for ph F)

captures

treedepth cut-width

mim-width twin-width

clique-width rank-width boolean-width

maximum matching widthbranchwidthtreewidth

15/20

Recap

Step 1:
Unifying decomposition
(branch decomposition)

Step 2:
Unifying cut-functions
(F -bw for ph F)

Only six ph classes
“truly matter” for
F -bw.

captures

treedepth cut-width

mim-width twin-width

clique-width rank-width boolean-width

maximum matching widthbranchwidthtreewidth

15/20

Approximating F -branchwidth

treedepth cut-width

mim-width twin-width

clique-width rank-width boolean-width

maximum matching widthbranchwidthtreewidth

• Until now: F -branchwidth can be used to characterize width

measures.

• From now: Use F -branchwidth to compute

approximately-optimal decompositions for width measures.

16/20

Recap

Step 1:
Unifying decomposition
(branch decomposition)

Step 2:
Unifying cut-functions
(F -bw for ph F)

Only six ph classes
“truly matter” for
F -bw.

captures

treedepth cut-width

mim-width twin-width

clique-width rank-width boolean-width

maximum matching widthbranchwidthtreewidth

17/20

Recap

Step 1:
Unifying decomposition
(branch decomposition)

Step 2:
Unifying cut-functions
(F -bw for ph F)

Only six ph classes
“truly matter” for
F -bw.

captures three

treedepth cut-width

mim-width twin-width

clique-width rank-width boolean-width

maximum matching widthbranchwidthtreewidth

17/20

Primal families

Theorem

Let F be any union of si ph graph families. Let F ∗ be the union of

the classes of matchings, antimatchings, and chains contained in F .

Then an optimal F ∗-branch decomposition of any graph G has

F -branchwidth at most 3 ·F -bw(G)+1.

...
...

a1

a2

a3

an

b1

b2

b3

bn

...
...

a1

a2

a3

an

b1

b2

b3

bn

...
...

a1

a2

a3

an

b1

b2

b3

bn

Fmatch FchainFantimatch

· · ·· · ·

It suffices to give an algorithm computing F ∗-branchwidth for unions

F ∗ of these three primal graph families.

18/20

Primal families

Theorem

Let F be any union of si ph graph families. Let F ∗ be the union of

the classes of matchings, antimatchings, and chains contained in F .

Then an optimal F ∗-branch decomposition of any graph G has

F -branchwidth at most 3 ·F -bw(G)+1.

...
...

a1

a2

a3

an

b1

b2

b3

bn

...
...

a1

a2

a3

an

b1

b2

b3

bn

...
...

a1

a2

a3

an

b1

b2

b3

bn

Fmatch FchainFantimatch

· · ·· · ·

It suffices to give an algorithm computing F ∗-branchwidth for unions

F ∗ of these three primal graph families.

18/20

Approximating F ∗-branchwidth

Theorem

Let F ∗ be a union of primal graph families. The problem of

computing the F ∗-branchwidth of a graph G

1. is fixed-parameter tractable parameterized by the treewidth plus the
maximum degree of G,

2. is fixed-parameter tractable parameterized by the treedepth of G, and

3. has a linear kernel parameterized by the feedback edge set number
of G.

Consequence

We can compute the mim-width under any of the above structural

parameterizations exactly.

19/20

Approximating F ∗-branchwidth

Theorem

Let F ∗ be a union of primal graph families. The problem of

computing the F ∗-branchwidth of a graph G

1. is fixed-parameter tractable parameterized by the treewidth plus the
maximum degree of G,

2. is fixed-parameter tractable parameterized by the treedepth of G, and

3. has a linear kernel parameterized by the feedback edge set number
of G.

Consequence

We can compute the mim-width under any of the above structural

parameterizations exactly.

19/20

Conclusion

Step 1:
Unifying decomposition
(branch decomposition)

Step 2:
Unifying cut-functions
(F -bw for ph F)

Only three ph classes
“truly matter” for F -
bw.

captures

treedepth cut-width

mim-width twin-width

clique-width rank-width boolean-width

maximum matching widthbranchwidthtreewidth

20/20

Conclusion

Step 1:
Unifying decomposition
(branch decomposition)

Step 2:
Unifying cut-functions
(F -bw for ph F)

Only three ph classes
“truly matter” for F -
bw.

captures On graphs of

• low treewidth + max.
degree,

• treedepth, or

• FES number,

we can approximate any
F -bw efficiently.

treedepth cut-width

mim-width twin-width

clique-width rank-width boolean-width

maximum matching widthbranchwidthtreewidth

20/20

Thank You!

20/20

