The Game of Cops and Robber on String Graphs

Harmender Gahlawat

GRASTA 2022 Porquerolles, France

May 17, 2022

1/55

PacMan

→ ∃ →

Image: A image: A

May 17, 2022

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ -

イロト イヨト イヨト イヨト

May 17, 2022

ヨト くヨトー

Playground

A simple, connected and finite graph.

Two teams

k cops and a single robber.

э

Playground

A simple, connected and finite graph.

Two teams

k cops and a single robber.

Rules of game

- First cops place themselves on some vertices of the graph.
- Robber enters on a vertex.

6 / 55

∃ >

Playground

A simple, connected and finite graph.

Two teams

k cops and a single robber.

Rules of game

- First cops place themselves on some vertices of the graph.
- Robber enters on a vertex.
- Cops and robber take alternating turns (moves).

Playground

A simple, connected and finite graph.

Two teams

k cops and a single robber.

Rules of game

- First cops place themselves on some vertices of the graph.
- Robber enters on a vertex.
- Cops and robber take alternating turns (moves).
- In a move, a player can move to an adjacent vertex.

Playground

A simple, connected and finite graph.

Two teams

k cops and a single robber.

Rules of game

- First cops place themselves on some vertices of the graph.
- Robber enters on a vertex.
- Cops and robber take alternating turns (moves).
- In a move, a player can move to an adjacent vertex.

Winning

- Cops win if some cop and robber occupy the same vertex. (Capture)
- Robber wins otherwise.

H. Gahlawat (BGU)

Demo(Playground)

H. Gahlawat (BGU)

Demo(Initialization)

Demo(Initialization)

May 17, 2022

.0 / 55

Demo(Capture)

Playground

A simple, connected and finite graph.

Two teams

k cops and a single robber.

Rules of game

- Cops place themselves on some vertices of the graph.
- Robber enters on a vertex.
- Cops and robber take alternating turns (moves).
- In a move, a player can move to an adjacent vertex.

Winning

- Cops win if some cop and robber occupy the same vertex. (Capture)
- Robber wins otherwise.

H. Gahlawat (BGU)

In the book *Amusements in Mathematics*, published in 1917, Henry Ernest Dudeney asked the following question.

One Cop vs Robber

- First considered by A. Quilliot in his doctoral thesis in 1978.
- Considered independently by Nowakowski and Winkler in 1983.
- Both characterized the *cop-win* graphs, where one cop can win.

17 / 55

Some Copwin Graphs

• • • • • • • •

★ 문 ▶ 문 문

Some Not Copwin Graphs

H. Gahlawat (BGU)

Cops and Robbers

May 17, 2022

More cops to come...

• Aigner and Fromme generalised the game to multiple cops.

47 ▶

э

More cops to come...

- Aigner and Fromme generalised the game to multiple cops.
- Introduced the concept of *cop number*.

< 1 k

э

More cops to come...

- Aigner and Fromme generalised the game to multiple cops.
- Introduced the concept of *cop number*.

Cop number

- is the minimum number of cops required to capture a robber in the graph.
- is denoted by c(G).
- is upper bounded by *domination number*.

Definitions

Guarding a subgraph

Let H be a subgraph of G. Cops guard H if \mathcal{R} cannot enter H without being captured.

Lemma [Aigner and Fromme, 1984]

Let P be an isometric path in G. Then one cop can guard P.

Theorem [Aigner and Fromme, 1984]

Let \mathcal{P} be the class of planar graphs. Then $c(\mathcal{P}) = 3$.

.

H. Gahlawat (BGU)

May 17, 2022

< 47 ▶

æ

H. Gahlawat (BGU)

May 17, 2022

< 47 ▶

æ

H. Gahlawat (BGU)

May 17, 2022

< 47 ▶

æ

H. Gahlawat (BGU)

May 17, 2022

< 行

æ

∃ ⊳

문 문 문

H. Gahlawat (BGU)

May 17, 2022

29 / 55

Cops and Robber on Planar Graphs

Let P be an isometric path in G. Then 5 cops can guard N[P].

Let P be an isometric path in G. Then 5 cops can guard N[P].

Theorem [GGJKK, 2018]

For a string graph G, $c(G) \leq 15$.

32 / 55

伺 ト イヨト イヨト

Let P be an isometric path in G. Then 5 cops can guard N[P].

Theorem [GGJKK, 2018]

For a string graph G, $c(G) \leq 15$.

Lemma [BDFM, 2012]

Let P be an isometric path in a unit-disk graph G. Then three cops can prevent the robber to cross P.

32 / 55

通 ト イ ヨ ト イ ヨ ト

Let P be an isometric path in G. Then 5 cops can guard N[P].

Theorem [GGJKK, 2018]

For a string graph G, $c(G) \leq 15$.

Lemma [BDFM, 2012]

Let P be an isometric path in a unit-disk graph G. Then three cops can prevent the robber to cross P.

Theorem [BDFM, 2012]

Let G be a unit-disk graph. Then $c(G) \leq 9$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Unique isometric path

A u, v-path P is the *unique isometric path* if all other u, v-paths are longer than P.

Unique isometric path

A u, v-path P is the *unique isometric path* if all other u, v-paths are longer than P.

Lemma 2 [Das and G.]

Let P be a unique isometric path in G. Then 4 cops can guard N[P].

H. Gahlawat (BGU)

Proof

H. Gahlawat (BGU)

Cops and Robbers

May 17, 2022

Proof

H. Gahlawat (BGU)

Proof

H. Gahlawat (BGU)

Cops and Robbers

Cops and Robber on String graphs

Cops and Robber on String graphs

• Guard a isometric *u*, *v*-path such that *u* is a top-most and *v* is a bottom-most vertex.

- Guard a isometric *u*, *v*-path such that *u* is a top-most and *v* is a bottom-most vertex.
- Extend the isometric path in robber region.

Extending an isometric path

H. Gahlawat (BG	U)
-----------------	----

Extending an isometric path

|--|

< 行

2 / 55

문 문 문

Extending an isometric path

Theorem 1 [Das and G.]

Let G be a string graph. Then $c(G) \leq 13$.

< 4 **⊡** ► <

æ

Theorem 1 [Das and G.]

Let G be a string graph. Then $c(G) \leq 13$.

Result [GGJKK, 2018]

A string graph G with girth 5 and cop number k is k-degenerate and hence k + 1 colorable.

Theorem 1 [Das and G.]

Let G be a string graph. Then $c(G) \leq 13$.

Result [GGJKK, 2018]

A string graph G with girth 5 and cop number k is k-degenerate and hence k + 1 colorable.

Corollary 1 [Das and G.]

If G is a girth 5 string graph, then G is 13-degenerate and 14-colorable.

A (1) < A (1) < A (1) </p>

• Each cop has to move in every round to an adjacent vertex.

- Each cop has to move in every round to an adjacent vertex.
- Cop number of a graph G is denoted by $c_A(G)$.

- Each cop has to move in every round to an adjacent vertex.
- Cop number of a graph G is denoted by $c_A(G)$.
- For a graph G, $c_A(G) \leq 2c(G)$.

- Each cop has to move in every round to an adjacent vertex.
- Cop number of a graph G is denoted by $c_A(G)$.
- For a graph G, $c_A(G) \leq 2c(G)$.
- Goromikov et al. (2018) asked if there is some constant k such that for any planar graph G, $c_A(G) \le k$.

Observation 1

Let P be an isometric path of a planar graph G. Two cops can guard P.

Observation 1

Let P be an isometric path of a planar graph G. Two cops can guard P.

Lemma 2 [Das and G.]

Let P be a unique isometric path in a graph G. Then 1 active cop can guard P.

Guarding Isometric Paths using Active Cops

Proof

H. Gahlawat (BGU)

Cops and Robbers

Theorem 3 [Das and G.]

Let G be a planar graph. Then $c_A(G) \leq 4$.

э

PacMan

∃ →

Image: A image: A

3

Joret et al.(2010) showed that subdividing each edge of G an equal number of times does not decrease c(G).

PacMan and Cops and Robber on Subgraphs of Grids

Partial Grids

PacMan and Cops and Robber on Subgraphs of Grids

Partial Grids

H. Gahlawat (BGU)

Cops and Robber on String graphs of genus g

• Gavenciak et al. (2018) showed that for a string graph G having genus *g*, $c(G) \le 10g + 15$.

э

Cops and Robber on String graphs of genus g

- Gavenciak et al. (2018) showed that for a string graph G having genus g, $c(G) \le 10g + 15$.
- Using our results, it gives $c(G) \le 10g + 13$.

Cops and Robber on String graphs of genus g

- Gavenciak et al. (2018) showed that for a string graph G having genus g, $c(G) \le 10g + 15$.
- Using our results, it gives $c(G) \leq 10g + 13$.
- Let C be an isometric cycle of G. What is the least k such that k cops can guard N[C]?
Cops and Robber on String graphs of genus g

- Gavenciak et al. (2018) showed that for a string graph G having genus g, $c(G) \le 10g + 15$.
- Using our results, it gives $c(G) \leq 10g + 13$.
- Let C be an isometric cycle of G. What is the least k such that k cops can guard N[C]? If k < 10, then kg + 13 cops have an obvious winning strategy.

Active Cops and Robber on Planar graphs

Is there a planar graph G such that $c_A(G) = 4$?

æ

54 / 55

3 × < 3 ×

< A > <

Active Cops and Robber on Planar graphs

Is there a planar graph G such that $c_A(G) = 4$?

String Graphs with High Cop Number

Constructing string graphs of high cop number.

Active Cops and Robber on Planar graphs

Is there a planar graph G such that $c_A(G) = 4$?

String Graphs with High Cop Number

Constructing string graphs of high cop number.

Meyniel's Conjecture

For any graph G, $c(G) = O(\sqrt{n})$.

★掃▶ ★ 注▶ ★ 注▶ → 注

Thank You

イロト イポト イヨト イヨト

3