
A Review of the Graph Burning Problem

Shahin Kamali

(Joint work with A. Bonato, A. Miller, M., and K. Zhang)

May 18th, 2022

GRASTA, Porquerolles, France

1 / 23

Graph Burning Problem

Given an undirected graph G , the goal is
to burn in a minimum number of
rounds [Bonato et al., 2014].

At each given round:

A new fire can be initiated at any
vertex.
The existing fires expand to their
neighboring vertices.
The burning completes when all
vertices are on fire.

5 4 23 16 2 43 5 6

6 5 34 27 3 54 6 7

13 12 1011 914 10 1211 13 14

15 14 1213 1115 10 1211 13 14

14 15 1415 1315 12 1211 13 14

7

8

15

15

15

14 13 1514 1515 14 1213 13 14 15

p1

p2

...

p9 (=m)

p10

p11

p12

s

cgc2c1 ...

round: 0

Decision problem:

Can we burn G in k rounds?
Equivalently, can we cover the graph with “disks” of radii
0, 1, 2, . . . , k − 1?

2 / 23

Graph Burning Problem

Given an undirected graph G , the goal is
to burn in a minimum number of
rounds [Bonato et al., 2014].

At each given round:

A new fire can be initiated at any
vertex.
The existing fires expand to their
neighboring vertices.
The burning completes when all
vertices are on fire.

5 4 23 16 2 43 5 6

6 5 34 27 3 54 6 7

13 12 1011 914 10 1211 13 14

15 14 1213 1115 10 1211 13 14

14 15 1415 1315 12 1211 13 14

7

8

15

15

15

14 13 1514 1515 14 1213 13 14 15

p1

p2

...

p9 (=m)

p10

p11

p12

s

cgc2c1 ...

round: 0

Decision problem:

Can we burn G in k rounds?
Equivalently, can we cover the graph with “disks” of radii
0, 1, 2, . . . , k − 1?

2 / 23

Graph Burning Problem

Given an undirected graph G , the goal is
to burn in a minimum number of
rounds [Bonato et al., 2014].

At each given round:

A new fire can be initiated at any
vertex.
The existing fires expand to their
neighboring vertices.

The burning completes when all
vertices are on fire.

5 4 23 16 2 43 5 6

6 5 34 27 3 54 6 7

13 12 1011 914 10 1211 13 14

15 14 1213 1115 10 1211 13 14

14 15 1415 1315 12 1211 13 14

7

8

15

15

15

14 13 1514 1515 14 1213 13 14 15

p1

p2

...

p9 (=m)

p10

p11

p12

s

cgc2c1 ...

round: 0

Decision problem:

Can we burn G in k rounds?
Equivalently, can we cover the graph with “disks” of radii
0, 1, 2, . . . , k − 1?

2 / 23

Graph Burning Problem

Given an undirected graph G , the goal is
to burn in a minimum number of
rounds [Bonato et al., 2014].

At each given round:

A new fire can be initiated at any
vertex.
The existing fires expand to their
neighboring vertices.

The burning completes when all
vertices are on fire.

5 4 23 16 2 43 5 6

6 5 34 27 3 54 6 7

13 12 1011 914 10 1211 13 14

15 14 1213 1115 10 1211 13 14

14 15 1415 1315 12 1211 13 14

7

8

15

15

15

14 13 1514 1515 14 1213 13 14 15

p1

p2

...

p9 (=m)

p10

p11

p12

s

cgc2c1 ...

round: 0

Decision problem:

Can we burn G in k rounds?
Equivalently, can we cover the graph with “disks” of radii
0, 1, 2, . . . , k − 1?

2 / 23

Graph Burning Problem

Given an undirected graph G , the goal is
to burn in a minimum number of
rounds [Bonato et al., 2014].

At each given round:

A new fire can be initiated at any
vertex.
The existing fires expand to their
neighboring vertices.

The burning completes when all
vertices are on fire.

5 4 23 16 2 43 5 6

6 5 34 27 3 54 6 7

13 12 1011 914 10 1211 13 14

15 14 1213 1115 10 1211 13 14

14 15 1415 1315 12 1211 13 14

7

8

15

15

15

14 13 1514 1515 14 1213 13 14 15

p1

p2

...

p9 (=m)

p10

p11

p12

1 A

s

cgc2c1 ...

round: 1

Decision problem:

Can we burn G in k rounds?
Equivalently, can we cover the graph with “disks” of radii
0, 1, 2, . . . , k − 1?

2 / 23

Graph Burning Problem

Given an undirected graph G , the goal is
to burn in a minimum number of
rounds [Bonato et al., 2014].

At each given round:

A new fire can be initiated at any
vertex.
The existing fires expand to their
neighboring vertices.

The burning completes when all
vertices are on fire.

5 4 23 16 2 43 5 6

6 5 34 27 3 54 6 7

13 12 1011 914 10 1211 13 14

15 14 1213 1115 10 1211 13 14

14 15 1415 1315 12 1211 13 14

7

8

15

15

15

14 13 1514 1515 14 1213 13 14 15

p1

p2

...

p9 (=m)

p10

p11

p12

2

2 1

2

2

A

s

cgc2c1 ...

round: 2

Decision problem:

Can we burn G in k rounds?
Equivalently, can we cover the graph with “disks” of radii
0, 1, 2, . . . , k − 1?

2 / 23

Graph Burning Problem

Given an undirected graph G , the goal is
to burn in a minimum number of
rounds [Bonato et al., 2014].

At each given round:

A new fire can be initiated at any
vertex.
The existing fires expand to their
neighboring vertices.

The burning completes when all
vertices are on fire.

5 4 23 16 2 43 5 6

6 5 34 27 3 54 6 7

13 12 1011 914 10 1211 13 14

15 14 1213 1115 10 1211 13 14

14 15 1415 1315 12 1211 13 14

7

8

15

15

15

14 13 1514 1515 14 1213 13 14 15

p1

p2

...

p9 (=m)

p10

p11

p12

2

2 1

2 2

2

A

B

s

cgc2c1 ...

round: 2

Decision problem:

Can we burn G in k rounds?
Equivalently, can we cover the graph with “disks” of radii
0, 1, 2, . . . , k − 1?

2 / 23

Graph Burning Problem

Given an undirected graph G , the goal is
to burn in a minimum number of
rounds [Bonato et al., 2014].

At each given round:

A new fire can be initiated at any
vertex.
The existing fires expand to their
neighboring vertices.

The burning completes when all
vertices are on fire.

5 4 23 16 2 43 5 6

6 5 34 27 3 54 6 7

13 12 1011 914 10 1211 13 14

15 14 1213 1115 10 1211 13 14

14 15 1415 1315 12 1211 13 14

7

8

15

15

15

14 13 1514 1515 14 1213 13 14 15

p1

p2

...

p9 (=m)

p10

p11

p12

3
3

2

3

3

3

3

3

3
2 1

2 2

3

3
2

3

A

B

C

s

cgc2c1 ...

round: 3

Decision problem:

Can we burn G in k rounds?
Equivalently, can we cover the graph with “disks” of radii
0, 1, 2, . . . , k − 1?

2 / 23

Graph Burning Problem

Given an undirected graph G , the goal is
to burn in a minimum number of
rounds [Bonato et al., 2014].

At each given round:

A new fire can be initiated at any
vertex.
The existing fires expand to their
neighboring vertices.
The burning completes when all
vertices are on fire.

5 4 23 16 2 43 5 6

6 5 34 27 3 54 6 7

13 12 1011 914 10 1211 13 14

15 14 1213 1115 10 1211 13 14

14 15 1415 1315 12 1211 13 14

7

8

15

15

15

14 13 1514 1515 14 1213 13 14 15

p1

p2

...

p9 (=m)

p10

p11

p12

3
3

2

3

3

3

3

3

3

3
2 1

2 2

3

3
2

3

A

B

C

s

cgc2c1 ...

round: 3

Decision problem:

Can we burn G in k rounds?
Equivalently, can we cover the graph with “disks” of radii
0, 1, 2, . . . , k − 1?

2 / 23

Graph Burning Problem

Given an undirected graph G , the goal is
to burn in a minimum number of
rounds [Bonato et al., 2014].

At each given round:

A new fire can be initiated at any
vertex.
The existing fires expand to their
neighboring vertices.
The burning completes when all
vertices are on fire.

5 4 23 16 2 43 5 6

6 5 34 27 3 54 6 7

13 12 1011 914 10 1211 13 14

15 14 1213 1115 10 1211 13 14

14 15 1415 1315 12 1211 13 14

7

8

15

15

15

14 13 1514 1515 14 1213 13 14 15

p1

p2

...

p9 (=m)

p10

p11

p12

3
3

2

3

3

3

3

3

3

3
2 1

2 2

3

3
2

3

A

B

C

s

cgc2c1 ...

round: 3

Decision problem:

Can we burn G in k rounds?

Equivalently, can we cover the graph with “disks” of radii
0, 1, 2, . . . , k − 1?

2 / 23

Graph Burning Problem

Given an undirected graph G , the goal is
to burn in a minimum number of
rounds [Bonato et al., 2014].

At each given round:

A new fire can be initiated at any
vertex.
The existing fires expand to their
neighboring vertices.
The burning completes when all
vertices are on fire.

Decision problem:

Can we burn G in k rounds?
Equivalently, can we cover the graph with “disks” of radii
0, 1, 2, . . . , k − 1?

2 / 23

Motivation

How an adversary can “contaminate” a network.

A social network with a fake news (e.g., Facebook users are
impacted by what their connections based on they are exposed to
and without direct communication [Kramer et al., 2014]).

The burning number is the smallest number of rounds to burn a
network

It measures how vulnerable a network is against adversarial
“attacks”.

3 / 23

Motivation

How an adversary can “contaminate” a network.

A social network with a fake news (e.g., Facebook users are
impacted by what their connections based on they are exposed to
and without direct communication [Kramer et al., 2014]).

The burning number is the smallest number of rounds to burn a
network

It measures how vulnerable a network is against adversarial
“attacks”.

3 / 23

Burning vs. k-center

The burning problem is related to the k-center problem.

k-center: given a parameter k, cover all vertices with k disks of
minimum uniform radii.
burning: cover all vertices with disks of radii 0, 1, . . . , k − 1 for
minimum k.

A

B

C

burning k-center with k = 5

4 / 23

Burning Paths

A path Pn of length n can be covered with disks of radii
0, 1, 2, . . . , ⌈

√
n⌉ [Bonato et al. 2014].

The burning graph conjecture: The burning number of any
connected graph is at most ⌈

√
n⌉ [Bonato et al. 2014].

The burning number of any connected graph is at most√
1.5n + o(

√
n) rounds [Land and Lu, 2016].

5 / 23

Burning Paths

A path Pn of length n can be covered with disks of radii
0, 1, 2, . . . , ⌈

√
n⌉ [Bonato et al. 2014].

The burning graph conjecture: The burning number of any
connected graph is at most ⌈

√
n⌉ [Bonato et al. 2014].

The burning number of any connected graph is at most√
1.5n + o(

√
n) rounds [Land and Lu, 2016].

5 / 23

Burning Paths

A path Pn of length n can be covered with disks of radii
0, 1, 2, . . . , ⌈

√
n⌉ [Bonato et al. 2014].

The burning graph conjecture: The burning number of any
connected graph is at most ⌈

√
n⌉ [Bonato et al. 2014].

The burning number of any connected graph is at most√
1.5n + o(

√
n) rounds [Land and Lu, 2016].

5 / 23

Burning Paths

A path Pn of length n can be covered with disks of radii
0, 1, 2, . . . , ⌈

√
n⌉ [Bonato et al. 2014].

The burning graph conjecture: The burning number of any
connected graph is at most ⌈

√
n⌉ [Bonato et al. 2014].

The burning number of any connected graph is at most√
1.5n + o(

√
n) rounds [Land and Lu, 2016].

5 / 23

Burning Paths

A path Pn of length n can be covered with disks of radii
0, 1, 2, . . . , ⌈

√
n⌉ [Bonato et al. 2014].

The burning graph conjecture: The burning number of any
connected graph is at most ⌈

√
n⌉ [Bonato et al. 2014].

The burning number of any connected graph is at most√
1.5n + o(

√
n) rounds [Land and Lu, 2016].

5 / 23

Burning Paths

A path Pn of length n can be covered with disks of radii
0, 1, 2, . . . , ⌈

√
n⌉ [Bonato et al. 2014].

The burning graph conjecture: The burning number of any
connected graph is at most ⌈

√
n⌉ [Bonato et al. 2014].

The burning number of any connected graph is at most√
1.5n + o(

√
n) rounds [Land and Lu, 2016].

The burning number of any connected graph is at most√
4n/3 + o(

√
n) rounds [Bonato and S.K., 2021], [Bastide,

Bonamy, Bonato, Charbit, S.K., Pierron, Rabie, 2021].

5 / 23

Burning Upper Bounds

Observation: to prove f (n) rounds are sufficient to burn any graph
of size n, it suffices to prove f (n) rounds are sufficient to burn trees.

Given (arbitrarily rooted) tree T of size n, it is easy to burn T in

≈
√
2n rounds.

Process disks of radii {0, 1, . . . , ⌈
√
2n⌉ − 1} in any order and use a

disk of radius r to cover the “deepest” subtree of height r .

6 / 23

Burning Upper Bounds

Observation: to prove f (n) rounds are sufficient to burn any graph
of size n, it suffices to prove f (n) rounds are sufficient to burn trees.

Given (arbitrarily rooted) tree T of size n, it is easy to burn T in

≈
√
2n rounds.

Process disks of radii {0, 1, . . . , ⌈
√
2n⌉ − 1} in any order and use a

disk of radius r to cover the “deepest” subtree of height r .

6 / 23

Burning Upper Bounds

Observation: to prove f (n) rounds are sufficient to burn any graph
of size n, it suffices to prove f (n) rounds are sufficient to burn trees.

Given (arbitrarily rooted) tree T of size n, it is easy to burn T in

≈
√
2n rounds.

Process disks of radii {0, 1, . . . , ⌈
√
2n⌉ − 1} in any order and use a

disk of radius r to cover the “deepest” subtree of height r .

6 / 23

Burning Upper Bounds

Observation: to prove f (n) rounds are sufficient to burn any graph
of size n, it suffices to prove f (n) rounds are sufficient to burn trees.

Given (arbitrarily rooted) tree T of size n, it is easy to burn T in

≈
√
2n rounds.

Process disks of radii {0, 1, . . . , ⌈
√
2n⌉ − 1} in any order and use a

disk of radius r to cover the “deepest” subtree of height r .

6 / 23

Burning Upper Bounds

Observation: to prove f (n) rounds are sufficient to burn any graph
of size n, it suffices to prove f (n) rounds are sufficient to burn trees.

Given (arbitrarily rooted) tree T of size n, it is easy to burn T in

≈
√
2n rounds.

Process disks of radii {0, 1, . . . , ⌈
√
2n⌉ − 1} in any order and use a

disk of radius r to cover the “deepest” subtree of height r .

6 / 23

Burning Upper Bounds

Improvement: use a disk of radius r to cover at least 1.5r vertices.

At each iteration, use either the disk of the largest radius x (if the
deepest subtree of height x covers 1.5x vertices) or otherwise a disk
of radius r , where r depends on the structure of the tree.
E.g., we want to burn this graph with n = 48 in

√
4n/3 = 8 rounds.

7 / 23

Burning conjecture summary

Open problem: improve the upper bound of
√
4n/3 + o(

√
n) for

general graphs.

The burning conjecture holds for graphs of minimum degree 4
[Bastide, Bonamy, Bonato, Charbit, S.K., Pierron, Rabie, 2021].

And graph families as spider trees, caterpillars, etc. (see the survey
by [Bonato, 2020]).

8 / 23

Burning conjecture summary

Open problem: improve the upper bound of
√
4n/3 + o(

√
n) for

general graphs.

The burning conjecture holds for graphs of minimum degree 4
[Bastide, Bonamy, Bonato, Charbit, S.K., Pierron, Rabie, 2021].

And graph families as spider trees, caterpillars, etc. (see the survey
by [Bonato, 2020]).

8 / 23

Burning conjecture summary

Open problem: improve the upper bound of
√
4n/3 + o(

√
n) for

general graphs.

The burning conjecture holds for graphs of minimum degree 4
[Bastide, Bonamy, Bonato, Charbit, S.K., Pierron, Rabie, 2021].

And graph families as spider trees, caterpillars, etc. (see the survey
by [Bonato, 2020]).

8 / 23

Computational Complexity

Finding the optimal schedule is NP-hard for disjoint set of paths,
trees, other graph families [Bessy et al., 2017].

It is claimed that the problem is APX-hard [Mondal et al., 2021]
(no (1 + ϵ)-approximation exists assuming P ̸= NP).

9 / 23

Computational Complexity

Finding the optimal schedule is NP-hard for disjoint set of paths,
trees, other graph families [Bessy et al., 2017].

It is claimed that the problem is APX-hard [Mondal et al., 2021]
(no (1 + ϵ)-approximation exists assuming P ̸= NP).

9 / 23

Approximation Algorithms

If there are r vertices of pairwise distance ≥ 2r − 1 in a graph G ,
then G cannot be burned in less than r rounds.

Example: suppose there are r = 4 vertices of pairwise 2r − 1 = 7 in
a graph G .

It is not possible to cover G with 3 disks of radii 3.
Therefore it is not possible to cover G with 3 disks of radii 0, 1, 2.

10 / 23

Approximation Algorithms

If there are r vertices of pairwise distance ≥ 2r − 1 in a graph G ,
then G cannot be burned in less than r rounds.

Example: suppose there are r = 4 vertices of pairwise 2r − 1 = 7 in
a graph G .

It is not possible to cover G with 3 disks of radii 3.

Therefore it is not possible to cover G with 3 disks of radii 0, 1, 2.

10 / 23

Approximation Algorithms

If there are r vertices of pairwise distance ≥ 2r − 1 in a graph G ,
then G cannot be burned in less than r rounds.

Example: suppose there are r = 4 vertices of pairwise 2r − 1 = 7 in
a graph G .

It is not possible to cover G with 3 disks of radii 3.
Therefore it is not possible to cover G with 3 disks of radii 0, 1, 2.

10 / 23

Constant Approximation Algorithm

Define a subroutine Burn-Guess(G ,g) which returns:

Either a schedule that completes burning in at most 3g − 3 rounds.
Or ‘Bad-Guess’, which guarantees burning cannot be complete in
g − 1 rounds.

The smallest value of g∗ for which Burn-Guess returns a schedule
gives a burning scheme that completes in 3g∗ − 3 while the optimal
schedule will require g∗ − 1 rounds to complete.

Approximation ratio of at most 3.

11 / 23

Constant Approximation Algorithm

Define a subroutine Burn-Guess(G ,g) which returns:

Either a schedule that completes burning in at most 3g − 3 rounds.
Or ‘Bad-Guess’, which guarantees burning cannot be complete in
g − 1 rounds.

The smallest value of g∗ for which Burn-Guess returns a schedule
gives a burning scheme that completes in 3g∗ − 3 while the optimal
schedule will require g∗ − 1 rounds to complete.

Approximation ratio of at most 3.

11 / 23

Burn-Guess Process

Initially empty sets S of “centers” and L of “labeled vertices”.

Take an arbitrary unlabeled vertex u, add it to S and add all
unlabeled vertices within distance 2g − 2 of u to L.

If the number of centers becomes g , then return Bad-Guess.
If all vertices are added to L, return an arbitrary ordering of centers
as the burning scheme (which completes in at most
(g − 1) + (2g − 2) = 3g − 3 rounds).

E.g., here g = 4 and later we look at g = 5.

12 / 23

Burn-Guess Process

Initially empty sets S of “centers” and L of “labeled vertices”.

Take an arbitrary unlabeled vertex u, add it to S and add all
unlabeled vertices within distance 2g − 2 of u to L.

If the number of centers becomes g , then return Bad-Guess.
If all vertices are added to L, return an arbitrary ordering of centers
as the burning scheme (which completes in at most
(g − 1) + (2g − 2) = 3g − 3 rounds).

E.g., here g = 4 and later we look at g = 5.

12 / 23

Burn-Guess Process

Initially empty sets S of “centers” and L of “labeled vertices”.

Take an arbitrary unlabeled vertex u, add it to S and add all
unlabeled vertices within distance 2g − 2 of u to L.

If the number of centers becomes g , then return Bad-Guess.
If all vertices are added to L, return an arbitrary ordering of centers
as the burning scheme (which completes in at most
(g − 1) + (2g − 2) = 3g − 3 rounds).

E.g., here g = 4 and later we look at g = 5.

12 / 23

Burn-Guess Process

Initially empty sets S of “centers” and L of “labeled vertices”.

Take an arbitrary unlabeled vertex u, add it to S and add all
unlabeled vertices within distance 2g − 2 of u to L.

If the number of centers becomes g , then return Bad-Guess.
If all vertices are added to L, return an arbitrary ordering of centers
as the burning scheme (which completes in at most
(g − 1) + (2g − 2) = 3g − 3 rounds).

E.g., here g = 4 and later we look at g = 5.

12 / 23

Burn-Guess Process

Initially empty sets S of “centers” and L of “labeled vertices”.

Take an arbitrary unlabeled vertex u, add it to S and add all
unlabeled vertices within distance 2g − 2 of u to L.

If the number of centers becomes g , then return Bad-Guess.
If all vertices are added to L, return an arbitrary ordering of centers
as the burning scheme (which completes in at most
(g − 1) + (2g − 2) = 3g − 3 rounds).

E.g., here g = 4 and later we look at g = 5.

12 / 23

Burn-Guess Process

Initially empty sets S of “centers” and L of “labeled vertices”.

Take an arbitrary unlabeled vertex u, add it to S and add all
unlabeled vertices within distance 2g − 2 of u to L.

If the number of centers becomes g , then return Bad-Guess.
If all vertices are added to L, return an arbitrary ordering of centers
as the burning scheme (which completes in at most
(g − 1) + (2g − 2) = 3g − 3 rounds).

E.g., here g = 4 and later we look at g = 5.

12 / 23

Burn-Guess Process

Initially empty sets S of “centers” and L of “labeled vertices”.

Take an arbitrary unlabeled vertex u, add it to S and add all
unlabeled vertices within distance 2g − 2 of u to L.

If the number of centers becomes g , then return Bad-Guess.
If all vertices are added to L, return an arbitrary ordering of centers
as the burning scheme (which completes in at most
(g − 1) + (2g − 2) = 3g − 3 rounds).

E.g., here g = 4 and later we look at g = 5.

12 / 23

Burn-Guess Process

Initially empty sets S of “centers” and L of “labeled vertices”.

Take an arbitrary unlabeled vertex u, add it to S and add all
unlabeled vertices within distance 2g − 2 of u to L.

If the number of centers becomes g , then return Bad-Guess.
If all vertices are added to L, return an arbitrary ordering of centers
as the burning scheme (which completes in at most
(g − 1) + (2g − 2) = 3g − 3 rounds).

E.g., here g = 4 and later we look at g = 5.

12 / 23

Burn-Guess Process

Initially empty sets S of “centers” and L of “labeled vertices”.

Take an arbitrary unlabeled vertex u, add it to S and add all
unlabeled vertices within distance 2g − 2 of u to L.

If the number of centers becomes g , then return Bad-Guess.
If all vertices are added to L, return an arbitrary ordering of centers
as the burning scheme (which completes in at most
(g − 1) + (2g − 2) = 3g − 3 rounds).

E.g., here g = 4 and later we look at g = 5.

12 / 23

Burn-Guess Process

Initially empty sets S of “centers” and L of “labeled vertices”.

Take an arbitrary unlabeled vertex u, add it to S and add all
unlabeled vertices within distance 2g − 2 of u to L.

If the number of centers becomes g , then return Bad-Guess.
If all vertices are added to L, return an arbitrary ordering of centers
as the burning scheme (which completes in at most
(g − 1) + (2g − 2) = 3g − 3 rounds).

E.g., here g = 4 and later we look at g = 5.

12 / 23

Burn-Guess Process

Initially empty sets S of “centers” and L of “labeled vertices”.

Take an arbitrary unlabeled vertex u, add it to S and add all
unlabeled vertices within distance 2g − 2 of u to L.

If the number of centers becomes g , then return Bad-Guess.

If all vertices are added to L, return an arbitrary ordering of centers
as the burning scheme (which completes in at most
(g − 1) + (2g − 2) = 3g − 3 rounds).

E.g., here g = 4 and later we look at g = 5.

12 / 23

Burn-Guess Process

Initially empty sets S of “centers” and L of “labeled vertices”.

Take an arbitrary unlabeled vertex u, add it to S and add all
unlabeled vertices within distance 2g − 2 of u to L.

If the number of centers becomes g , then return Bad-Guess.

If all vertices are added to L, return an arbitrary ordering of centers
as the burning scheme (which completes in at most
(g − 1) + (2g − 2) = 3g − 3 rounds).

E.g., here g = 4 and later we look at g = 5.

12 / 23

Burn-Guess Process

Initially empty sets S of “centers” and L of “labeled vertices”.

Take an arbitrary unlabeled vertex u, add it to S and add all
unlabeled vertices within distance 2g − 2 of u to L.

If the number of centers becomes g , then return Bad-Guess.

If all vertices are added to L, return an arbitrary ordering of centers
as the burning scheme (which completes in at most
(g − 1) + (2g − 2) = 3g − 3 rounds).

E.g., here g = 4 and later we look at g = 5.

12 / 23

Burn-Guess Process

Initially empty sets S of “centers” and L of “labeled vertices”.

Take an arbitrary unlabeled vertex u, add it to S and add all
unlabeled vertices within distance 2g − 2 of u to L.

If the number of centers becomes g , then return Bad-Guess.

If all vertices are added to L, return an arbitrary ordering of centers
as the burning scheme (which completes in at most
(g − 1) + (2g − 2) = 3g − 3 rounds).

E.g., here g = 4 and later we look at g = 5.

12 / 23

Burn-Guess Process

Initially empty sets S of “centers” and L of “labeled vertices”.

Take an arbitrary unlabeled vertex u, add it to S and add all
unlabeled vertices within distance 2g − 2 of u to L.

If the number of centers becomes g , then return Bad-Guess.

If all vertices are added to L, return an arbitrary ordering of centers
as the burning scheme (which completes in at most
(g − 1) + (2g − 2) = 3g − 3 rounds).

E.g., here g = 4 and later we look at g = 5.

12 / 23

Burn-Guess Process

Initially empty sets S of “centers” and L of “labeled vertices”.

Take an arbitrary unlabeled vertex u, add it to S and add all
unlabeled vertices within distance 2g − 2 of u to L.

If the number of centers becomes g , then return Bad-Guess.

If all vertices are added to L, return an arbitrary ordering of centers
as the burning scheme (which completes in at most
(g − 1) + (2g − 2) = 3g − 3 rounds).

E.g., here g = 4 and later we look at g = 5.

12 / 23

Burn-Guess Process

Initially empty sets S of “centers” and L of “labeled vertices”.

Take an arbitrary unlabeled vertex u, add it to S and add all
unlabeled vertices within distance 2g − 2 of u to L.

If the number of centers becomes g , then return Bad-Guess.

If all vertices are added to L, return an arbitrary ordering of centers
as the burning scheme (which completes in at most
(g − 1) + (2g − 2) = 3g − 3 rounds).

E.g., here g = 4 and later we look at g = 5.

12 / 23

Burn-Guess Process

Initially empty sets S of “centers” and L of “labeled vertices”.

Take an arbitrary unlabeled vertex u, add it to S and add all
unlabeled vertices within distance 2g − 2 of u to L.

If the number of centers becomes g , then return Bad-Guess.
If all vertices are added to L, return an arbitrary ordering of centers
as the burning scheme (which completes in at most
(g − 1) + (2g − 2) = 3g − 3 rounds).

E.g., here g = 4 and later we look at g = 5.

12 / 23

General Graph Summary

There is a polynomial algorithm with approximation ratio of 3 for
burning any graph G = (V ,E) [Bessy & Rautenbach, 2016]
[Bonato & S.K., 2019].

What about graph families? can we get better approximation ratio
for families of graphs?

13 / 23

Burning Trees

It is possible to achieve an approximation factor of 2.

Burn-Guess-Tree (τ, g) returns either a schedule that completes in
at most 2g − 2 rounds or ‘Bad-Guess’, which means burning cannot
complete in g − 1 rounds.

14 / 23

Burning Trees

It is possible to achieve an approximation factor of 2.

Burn-Guess-Tree (τ, g) returns either a schedule that completes in
at most 2g − 2 rounds or ‘Bad-Guess’, which means burning cannot
complete in g − 1 rounds.

14 / 23

Trees

Burn-Guess-Tree treats τ as a rooted tree:

Maintain sets T of “terminals”, C of centers, and L of labeled
vertices.
Take the deepest unlabeled node x , add x to T .
let p be the (g − 1)-ancestor of x ; add p to C and add all nodes
within distance g − 1 of p to L.
When |T | = g , return Bad-Guess.
When all vertices are labeled, return any ordering of C as the
burning schedule. All nodes are within distance g − 1 of g centers.
Here, g = 4 returns Bad-Guess and g = 5 returns a schedule.

15 / 23

Trees

Burn-Guess-Tree treats τ as a rooted tree:

Maintain sets T of “terminals”, C of centers, and L of labeled
vertices.

Take the deepest unlabeled node x , add x to T .
let p be the (g − 1)-ancestor of x ; add p to C and add all nodes
within distance g − 1 of p to L.
When |T | = g , return Bad-Guess.
When all vertices are labeled, return any ordering of C as the
burning schedule. All nodes are within distance g − 1 of g centers.
Here, g = 4 returns Bad-Guess and g = 5 returns a schedule.

15 / 23

Trees

Burn-Guess-Tree treats τ as a rooted tree:

Maintain sets T of “terminals”, C of centers, and L of labeled
vertices.
Take the deepest unlabeled node x , add x to T .
let p be the (g − 1)-ancestor of x ; add p to C and add all nodes
within distance g − 1 of p to L.

When |T | = g , return Bad-Guess.
When all vertices are labeled, return any ordering of C as the
burning schedule. All nodes are within distance g − 1 of g centers.
Here, g = 4 returns Bad-Guess and g = 5 returns a schedule.

15 / 23

Trees

Burn-Guess-Tree treats τ as a rooted tree:

Maintain sets T of “terminals”, C of centers, and L of labeled
vertices.
Take the deepest unlabeled node x , add x to T .
let p be the (g − 1)-ancestor of x ; add p to C and add all nodes
within distance g − 1 of p to L.

When |T | = g , return Bad-Guess.
When all vertices are labeled, return any ordering of C as the
burning schedule. All nodes are within distance g − 1 of g centers.

Here, g = 4 returns Bad-Guess and g = 5 returns a schedule.

15 / 23

Trees

Burn-Guess-Tree treats τ as a rooted tree:

Maintain sets T of “terminals”, C of centers, and L of labeled
vertices.
Take the deepest unlabeled node x , add x to T .
let p be the (g − 1)-ancestor of x ; add p to C and add all nodes
within distance g − 1 of p to L.

When |T | = g , return Bad-Guess.
When all vertices are labeled, return any ordering of C as the
burning schedule. All nodes are within distance g − 1 of g centers.

Here, g = 4 returns Bad-Guess and g = 5 returns a schedule.

15 / 23

Trees

Burn-Guess-Tree treats τ as a rooted tree:

Maintain sets T of “terminals”, C of centers, and L of labeled
vertices.
Take the deepest unlabeled node x , add x to T .
let p be the (g − 1)-ancestor of x ; add p to C and add all nodes
within distance g − 1 of p to L.

When |T | = g , return Bad-Guess.
When all vertices are labeled, return any ordering of C as the
burning schedule. All nodes are within distance g − 1 of g centers.

Here, g = 4 returns Bad-Guess and g = 5 returns a schedule.

15 / 23

Trees

Burn-Guess-Tree treats τ as a rooted tree:

Maintain sets T of “terminals”, C of centers, and L of labeled
vertices.
Take the deepest unlabeled node x , add x to T .
let p be the (g − 1)-ancestor of x ; add p to C and add all nodes
within distance g − 1 of p to L.

When |T | = g , return Bad-Guess.
When all vertices are labeled, return any ordering of C as the
burning schedule. All nodes are within distance g − 1 of g centers.

Here, g = 4 returns Bad-Guess and g = 5 returns a schedule.

15 / 23

Trees

Burn-Guess-Tree treats τ as a rooted tree:

Maintain sets T of “terminals”, C of centers, and L of labeled
vertices.
Take the deepest unlabeled node x , add x to T .
let p be the (g − 1)-ancestor of x ; add p to C and add all nodes
within distance g − 1 of p to L.

When |T | = g , return Bad-Guess.
When all vertices are labeled, return any ordering of C as the
burning schedule. All nodes are within distance g − 1 of g centers.

Here, g = 4 returns Bad-Guess and g = 5 returns a schedule.

15 / 23

Trees

Burn-Guess-Tree treats τ as a rooted tree:

Maintain sets T of “terminals”, C of centers, and L of labeled
vertices.
Take the deepest unlabeled node x , add x to T .
let p be the (g − 1)-ancestor of x ; add p to C and add all nodes
within distance g − 1 of p to L.

When |T | = g , return Bad-Guess.
When all vertices are labeled, return any ordering of C as the
burning schedule. All nodes are within distance g − 1 of g centers.

Here, g = 4 returns Bad-Guess and g = 5 returns a schedule.

15 / 23

Trees

Burn-Guess-Tree treats τ as a rooted tree:

Maintain sets T of “terminals”, C of centers, and L of labeled
vertices.
Take the deepest unlabeled node x , add x to T .
let p be the (g − 1)-ancestor of x ; add p to C and add all nodes
within distance g − 1 of p to L.

When |T | = g , return Bad-Guess.
When all vertices are labeled, return any ordering of C as the
burning schedule. All nodes are within distance g − 1 of g centers.

Here, g = 4 returns Bad-Guess and g = 5 returns a schedule.

15 / 23

Trees

Burn-Guess-Tree treats τ as a rooted tree:

Maintain sets T of “terminals”, C of centers, and L of labeled
vertices.
Take the deepest unlabeled node x , add x to T .
let p be the (g − 1)-ancestor of x ; add p to C and add all nodes
within distance g − 1 of p to L.
When |T | = g , return Bad-Guess.

When all vertices are labeled, return any ordering of C as the
burning schedule. All nodes are within distance g − 1 of g centers.

Here, g = 4 returns Bad-Guess and g = 5 returns a schedule.

15 / 23

Trees

Burn-Guess-Tree treats τ as a rooted tree:

Maintain sets T of “terminals”, C of centers, and L of labeled
vertices.
Take the deepest unlabeled node x , add x to T .
let p be the (g − 1)-ancestor of x ; add p to C and add all nodes
within distance g − 1 of p to L.
When |T | = g , return Bad-Guess.
When all vertices are labeled, return any ordering of C as the
burning schedule. All nodes are within distance g − 1 of g centers.
Here, g = 4 returns Bad-Guess and g = 5 returns a schedule.

15 / 23

Burning Trees Summary

There is a polynomial algorithm with approximation ratio of 2 for
burning any tree [Bonato & S.K., 2019].

Open question: what is the best approximation factor attainable
for trees? or graphs of bounded treewidth? is it possible to get an
PTAS?

16 / 23

Forests of Disjoint Paths

The burning problem is NP-hard when the input graph is a forest of
disjoint paths [Bessy et al., 2017].

Given disks of radii 0, 1, . . . , k − 1, it is not clear which disk should
be assigned to which path.

If there are Θ(1) disjoint paths, there is a polynomial-time algorithm
that generates an optimal burning scheme [Bonato and S.K., 2019].

Apply a dynamic programming approach!

17 / 23

Forests of Disjoint Paths

Given any positive value ϵ, there is a fully polynomial-time
approximation algorithm (FPTAS) that generates a burning scheme
that completes within a factor 1 + ϵ of an optimal
scheme [Bonato and S.K., 2019].

Reduce the burning problem to the bin covering problem, and use
an existing FPTAS of [Jansen and Solis-Oba, 2003] for the bin
covering to get an FPTAS for the burning problem.
Bin covering: “cover” a maximum number of bins of unit size with
a given multi-set of items with sizes in (0, 1].

18 / 23

Forests of Disjoint Paths

Given any positive value ϵ, there is a fully polynomial-time
approximation algorithm (FPTAS) that generates a burning scheme
that completes within a factor 1 + ϵ of an optimal
scheme [Bonato and S.K., 2019].

Reduce the burning problem to the bin covering problem, and use
an existing FPTAS of [Jansen and Solis-Oba, 2003] for the bin
covering to get an FPTAS for the burning problem.

Bin covering: “cover” a maximum number of bins of unit size with
a given multi-set of items with sizes in (0, 1].

18 / 23

Forests of Disjoint Paths

Given any positive value ϵ, there is a fully polynomial-time
approximation algorithm (FPTAS) that generates a burning scheme
that completes within a factor 1 + ϵ of an optimal
scheme [Bonato and S.K., 2019].

Reduce the burning problem to the bin covering problem, and use
an existing FPTAS of [Jansen and Solis-Oba, 2003] for the bin
covering to get an FPTAS for the burning problem.
Bin covering: “cover” a maximum number of bins of unit size with
a given multi-set of items with sizes in (0, 1].

18 / 23

Forests of Disjoint Paths

Reduction: Given a path forest G with b paths generate an instance
of the bin covering problem such that G can be burned in k rounds
iff it is possible to cover b bins.

Think of paths as uniform “bins” that need to be “covered” by
items (disks) of radii 0, 1, . . . , k − 1.

19 / 23

Forests of Disjoint Paths

Reduction: Given a path forest G with b paths generate an instance
of the bin covering problem such that G can be burned in k rounds
iff it is possible to cover b bins.

Think of paths as uniform “bins” that need to be “covered” by
items (disks) of radii 0, 1, . . . , k − 1.

19 / 23

Burning Forests of Disjoint Paths Summary

There is a fully polynomial-time approximation scheme (FPTAS) for
burning any forest of disjoint paths [Bonato and S.K., 2019].

The complexity of the problem is settled for forests of disjoint paths.

20 / 23

Tree Decomposition & Burning

In a Robertson-Seymour path decomposition:

Path-length [Dourisboure and Gavoille, 2007] is the max distance
of vertices in any bag.
The graph below has path-width 2 and path-length 3.

A graph has path-length 1 if and only if it is an interval graph.

The burning number of a graph with path-length pl and diameter
d is at most ⌈

√
d⌉+ pl [S.K., A. Miller, and K. Zhang, 2020].

a

b

c

e f

g

h i k

d j

a, b, c c, d, e d, e, f d, f, g d, f, h h,i i, j, k

21 / 23

Tree Decomposition & Burning

In a Robertson-Seymour path decomposition:

Path-length [Dourisboure and Gavoille, 2007] is the max distance
of vertices in any bag.
The graph below has path-width 2 and path-length 3.

A graph has path-length 1 if and only if it is an interval graph.

The burning number of a graph with path-length pl and diameter
d is at most ⌈

√
d⌉+ pl [S.K., A. Miller, and K. Zhang, 2020].

a

b

c

e f

g

h i k

d j

a, b, c c, d, e d, e, f d, f, g d, f, h h,i i, j, k

21 / 23

Tree Decomposition & Burning

In a Robertson-Seymour path decomposition:

Path-length [Dourisboure and Gavoille, 2007] is the max distance
of vertices in any bag.
The graph below has path-width 2 and path-length 3.
A graph has path-length 1 if and only if it is an interval graph.

The burning number of a graph with path-length pl and diameter
d is at most ⌈

√
d⌉+ pl [S.K., A. Miller, and K. Zhang, 2020].

a

b

c

e f

g

h i k

d j

a, b, c c, d, e d, e, f d, f, g d, f, h h,i i, j, k

21 / 23

Burning of Graph Families

There is an approximation algorithm with factor 1 + o(1) for
burning any graph G of constant path-length [S.K. et al., 2020].

If the diameter of G is constant, we can optimally solve the problem.
Otherwise, burn the graph in

√
d + pl rounds, getting an

approximation factor at most
√
d+pl√
d

= 1 + o(1).

There is an approximation algorithm with factor 2 + o(1) for
burning any graph G of constant tree-length [S.K. et al., 2020].

22 / 23

Burning of Graph Families

There is an approximation algorithm with factor 1 + o(1) for
burning any graph G of constant path-length [S.K. et al., 2020].

If the diameter of G is constant, we can optimally solve the problem.

Otherwise, burn the graph in
√
d + pl rounds, getting an

approximation factor at most
√
d+pl√
d

= 1 + o(1).

There is an approximation algorithm with factor 2 + o(1) for
burning any graph G of constant tree-length [S.K. et al., 2020].

22 / 23

Burning of Graph Families

There is an approximation algorithm with factor 1 + o(1) for
burning any graph G of constant path-length [S.K. et al., 2020].

If the diameter of G is constant, we can optimally solve the problem.
Otherwise, burn the graph in

√
d + pl rounds, getting an

approximation factor at most
√
d+pl√
d

= 1 + o(1).

There is an approximation algorithm with factor 2 + o(1) for
burning any graph G of constant tree-length [S.K. et al., 2020].

22 / 23

Burning of Graph Families

There is an approximation algorithm with factor 1 + o(1) for
burning any graph G of constant path-length [S.K. et al., 2020].

If the diameter of G is constant, we can optimally solve the problem.
Otherwise, burn the graph in

√
d + pl rounds, getting an

approximation factor at most
√
d+pl√
d

= 1 + o(1).

There is an approximation algorithm with factor 2 + o(1) for
burning any graph G of constant tree-length [S.K. et al., 2020].

22 / 23

Burning Graph Complexity

Graph family Apx. Factor Details

general graphs 3 [Bonato and S.K., 2019]

trees 2 [Bonato and S.K., 2019]

cacti 2.75 [S.K. and Shabani, 2021]

forests of disjoint paths 1 + ϵ (FPTAS) [Bonato and S.K., 2019]

graphs of bounded path-length 1 + o(1) [S.K. et al., 2020]

graphs of bounded tree-length 2 + o(1) [S.K. et al., 2020]

23 / 23

References

References

[Bessy et al., 2017] Bessy, S.;
Bonato, A.; Janssen, J. C. M.;
Rautenbach, D.; and Roshanbin, E.
(2017).
”Burning a graph is hard”.
Discrete Applied Mathematics, 232, pp. 73–87.

[Bonato et al., 2014] Bonato, A.; Janssen, J.
C. M.; and Roshanbin, E. (2014).
”Burning a Graph as a Model of Social
Contagion”.
In Workshop of Workshop on Algorithms and
Models for the Web Graph, pages 13–22.

[Bonato and S.K., 2019] Bonato, A. and S.K.
(2019).
”Approximation Algorithms for Graph Burning”.
In Proc. Theory and Applications of Models of
Computation TAMC, volume 11436 of Lecture
Notes in Computer Science, pages 74–92. Springer.

[Dourisboure and Gavoille, 2007] Dourisboure, Y.
and Gavoille, C. (2007).
”Tree-decompositions with bags of small
diameter”.
Discrete Mathematics, 307(16), pp. 2008–2029.

[Jansen and Solis-Oba, 2003] Jansen, K. and
Solis-Oba, R. (2003).
”An asymptotic fully polynomial time
approximation scheme for bin covering”.
Theoretical Computer Science, 306(1-3), pp.
543–551.

[Kramer et al., 2014] Kramer, A. D. I.;
Guillory, J. E.; and Hancock, J. T.
(2014).
”Experimental evidence of massive-scale emotional
contagion through social networks”.
In Proceedings of the National Academy of
Sciences, pages 8788–8790.

[Land and Lu, 2016] Land, M. R. and Lu, L.
(2016).
”An Upper Bound on the Burning Number of
Graphs”.
In Proceedings of Workshop on Algorithms and
Models for the Web Graph, pages 1–8.

[Mondal et al., 2021] Mondal, D.; Parthiban,
N.; Kavitha, V.; and Rajasingh, I.
(2021).
”APX-Hardness and Approximation for the
k-Burning Number Problem”.
In Uehara, R.; Hong, S.; and Nandy, S. C., editors,
Proc. Algorithms and Computation - 15th
International Conference, volume 12635 of Lecture
Notes in Computer Science, pages 272–283.
Springer.

23 / 23

[S.K. et al., 2020] S.K.; Miller, A.; and
Zhang, K. (2020).
”Burning Two Worlds”.
In Proc. SOFSEM 2020, volume 12011 of Lecture
Notes in Computer Science, pages 113–124.
Springer.

[S.K. and Shabani, 2021] S.K. and Shabani, M.
(2021).
”Burning Cacti”.
Ongoing work.

23 / 23

	References

