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Graph Burning Problem

Given an undirected graph G , the goal is
to burn in a minimum number of
rounds [Bonato et al., 2014].

At each given round:

A new fire can be initiated at any
vertex.
The existing fires expand to their
neighboring vertices.
The burning completes when all
vertices are on fire.

5 4 23 16 2 43 5 6

6 5 34 27 3 54 6 7

13 12 1011 914 10 1211 13 14

15 14 1213 1115 10 1211 13 14

14 15 1415 1315 12 1211 13 14

7

8

15

15

15

14 13 1514 1515 14 1213 13 14 15

p1

p2

...

p9 (=m)

p10

p11

p12

 

s

cgc2c1 ...

round: 0

Decision problem:

Can we burn G in k rounds?
Equivalently, can we cover the graph with “disks” of radii
0, 1, 2, . . . , k − 1?
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Motivation

How an adversary can “contaminate” a network.

A social network with a fake news (e.g., Facebook users are
impacted by what their connections based on they are exposed to
and without direct communication [Kramer et al., 2014]).

The burning number is the smallest number of rounds to burn a
network

It measures how vulnerable a network is against adversarial
“attacks”.
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Burning vs. k-center

The burning problem is related to the k-center problem.

k-center: given a parameter k, cover all vertices with k disks of
minimum uniform radii.
burning: cover all vertices with disks of radii 0, 1, . . . , k − 1 for
minimum k.

A

B

C

burning k-center with k = 5
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Burning Paths

A path Pn of length n can be covered with disks of radii
0, 1, 2, . . . , ⌈

√
n⌉ [Bonato et al. 2014].

The burning graph conjecture: The burning number of any
connected graph is at most ⌈

√
n⌉ [Bonato et al. 2014].

The burning number of any connected graph is at most√
1.5n + o(

√
n) rounds [Land and Lu, 2016].
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Burning Upper Bounds

Observation: to prove f (n) rounds are sufficient to burn any graph
of size n, it suffices to prove f (n) rounds are sufficient to burn trees.

Given (arbitrarily rooted) tree T of size n, it is easy to burn T in

≈
√
2n rounds.

Process disks of radii {0, 1, . . . , ⌈
√
2n⌉ − 1} in any order and use a

disk of radius r to cover the “deepest” subtree of height r .
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Burning Upper Bounds

Improvement: use a disk of radius r to cover at least 1.5r vertices.

At each iteration, use either the disk of the largest radius x (if the
deepest subtree of height x covers 1.5x vertices) or otherwise a disk
of radius r , where r depends on the structure of the tree.
E.g., we want to burn this graph with n = 48 in

√
4n/3 = 8 rounds.
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Burning conjecture summary

Open problem: improve the upper bound of
√
4n/3 + o(

√
n) for

general graphs.

The burning conjecture holds for graphs of minimum degree 4
[Bastide, Bonamy, Bonato, Charbit, S.K., Pierron, Rabie, 2021].

And graph families as spider trees, caterpillars, etc. (see the survey
by [Bonato, 2020]).
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Computational Complexity

Finding the optimal schedule is NP-hard for disjoint set of paths,
trees, other graph families [Bessy et al., 2017].

It is claimed that the problem is APX-hard [Mondal et al., 2021]
(no (1 + ϵ)-approximation exists assuming P ̸= NP).
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Approximation Algorithms

If there are r vertices of pairwise distance ≥ 2r − 1 in a graph G ,
then G cannot be burned in less than r rounds.

Example: suppose there are r = 4 vertices of pairwise 2r − 1 = 7 in
a graph G .

It is not possible to cover G with 3 disks of radii 3.
Therefore it is not possible to cover G with 3 disks of radii 0, 1, 2.
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Constant Approximation Algorithm

Define a subroutine Burn-Guess(G ,g) which returns:

Either a schedule that completes burning in at most 3g − 3 rounds.
Or ‘Bad-Guess’, which guarantees burning cannot be complete in
g − 1 rounds.

The smallest value of g∗ for which Burn-Guess returns a schedule
gives a burning scheme that completes in 3g∗ − 3 while the optimal
schedule will require g∗ − 1 rounds to complete.

Approximation ratio of at most 3.
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Burn-Guess Process

Initially empty sets S of “centers” and L of “labeled vertices”.

Take an arbitrary unlabeled vertex u, add it to S and add all
unlabeled vertices within distance 2g − 2 of u to L.

If the number of centers becomes g , then return Bad-Guess.
If all vertices are added to L, return an arbitrary ordering of centers
as the burning scheme (which completes in at most
(g − 1) + (2g − 2) = 3g − 3 rounds).

E.g., here g = 4 and later we look at g = 5.
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General Graph Summary

There is a polynomial algorithm with approximation ratio of 3 for
burning any graph G = (V ,E ) [Bessy & Rautenbach, 2016]
[Bonato & S.K., 2019].

What about graph families? can we get better approximation ratio
for families of graphs?
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Burning Trees

It is possible to achieve an approximation factor of 2.

Burn-Guess-Tree (τ, g) returns either a schedule that completes in
at most 2g − 2 rounds or ‘Bad-Guess’, which means burning cannot
complete in g − 1 rounds.
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Trees

Burn-Guess-Tree treats τ as a rooted tree:

Maintain sets T of “terminals”, C of centers, and L of labeled
vertices.
Take the deepest unlabeled node x , add x to T .
let p be the (g − 1)-ancestor of x ; add p to C and add all nodes
within distance g − 1 of p to L.
When |T | = g , return Bad-Guess.
When all vertices are labeled, return any ordering of C as the
burning schedule. All nodes are within distance g − 1 of g centers.
Here, g = 4 returns Bad-Guess and g = 5 returns a schedule.
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Burning Trees Summary

There is a polynomial algorithm with approximation ratio of 2 for
burning any tree [Bonato & S.K., 2019].

Open question: what is the best approximation factor attainable
for trees? or graphs of bounded treewidth? is it possible to get an
PTAS?
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Forests of Disjoint Paths

The burning problem is NP-hard when the input graph is a forest of
disjoint paths [Bessy et al., 2017].

Given disks of radii 0, 1, . . . , k − 1, it is not clear which disk should
be assigned to which path.

If there are Θ(1) disjoint paths, there is a polynomial-time algorithm
that generates an optimal burning scheme [Bonato and S.K., 2019].

Apply a dynamic programming approach!
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Forests of Disjoint Paths

Given any positive value ϵ, there is a fully polynomial-time
approximation algorithm (FPTAS) that generates a burning scheme
that completes within a factor 1 + ϵ of an optimal
scheme [Bonato and S.K., 2019].

Reduce the burning problem to the bin covering problem, and use
an existing FPTAS of [Jansen and Solis-Oba, 2003] for the bin
covering to get an FPTAS for the burning problem.
Bin covering: “cover” a maximum number of bins of unit size with
a given multi-set of items with sizes in (0, 1].
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Forests of Disjoint Paths

Reduction: Given a path forest G with b paths generate an instance
of the bin covering problem such that G can be burned in k rounds
iff it is possible to cover b bins.

Think of paths as uniform “bins” that need to be “covered” by
items (disks) of radii 0, 1, . . . , k − 1.
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Burning Forests of Disjoint Paths Summary

There is a fully polynomial-time approximation scheme (FPTAS) for
burning any forest of disjoint paths [Bonato and S.K., 2019].

The complexity of the problem is settled for forests of disjoint paths.
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Tree Decomposition & Burning

In a Robertson-Seymour path decomposition:

Path-length [Dourisboure and Gavoille, 2007] is the max distance
of vertices in any bag.
The graph below has path-width 2 and path-length 3.

A graph has path-length 1 if and only if it is an interval graph.

The burning number of a graph with path-length pl and diameter
d is at most ⌈

√
d⌉+ pl [S.K., A. Miller, and K. Zhang, 2020].
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Burning of Graph Families

There is an approximation algorithm with factor 1 + o(1) for
burning any graph G of constant path-length [S.K. et al., 2020].

If the diameter of G is constant, we can optimally solve the problem.
Otherwise, burn the graph in

√
d + pl rounds, getting an

approximation factor at most
√
d+pl√
d

= 1 + o(1).

There is an approximation algorithm with factor 2 + o(1) for
burning any graph G of constant tree-length [S.K. et al., 2020].
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Burning Graph Complexity

Graph family Apx. Factor Details

general graphs 3 [Bonato and S.K., 2019]

trees 2 [Bonato and S.K., 2019]

cacti 2.75 [S.K. and Shabani, 2021]

forests of disjoint paths 1 + ϵ (FPTAS) [Bonato and S.K., 2019]

graphs of bounded path-length 1 + o(1) [S.K. et al., 2020]

graphs of bounded tree-length 2 + o(1) [S.K. et al., 2020]
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