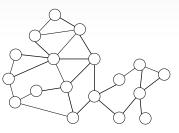
A Review of the Graph Burning Problem

Shahin Kamali

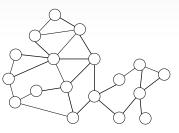
(Joint work with A. Bonato, A. Miller, M., and K. Zhang)

May 18th, 2022 GRASTA, Porquerolles, France

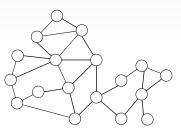
• Given an undirected graph *G*, the goal is to **burn** in a minimum number of **rounds** [Bonato et al., 2014].



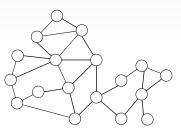
• Given an undirected graph *G*, the goal is to **burn** in a minimum number of **rounds** [Bonato et al., 2014].



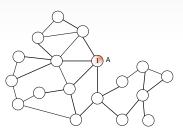
- Given an undirected graph G, the goal is to burn in a minimum number of rounds [Bonato et al., 2014].
- At each given round:
 - A new fire can be initiated at any vertex.
 - The existing fires expand to their neighboring vertices.



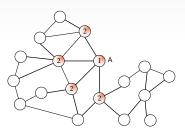
- Given an undirected graph G, the goal is to burn in a minimum number of rounds [Bonato et al., 2014].
- At each given round:
 - A new fire can be initiated at any vertex.
 - The existing fires expand to their neighboring vertices.



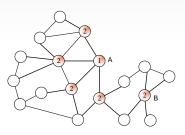
- Given an undirected graph G, the goal is to burn in a minimum number of rounds [Bonato et al., 2014].
- At each given round:
 - A new fire can be initiated at any vertex.
 - The existing fires expand to their neighboring vertices.



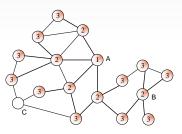
- Given an undirected graph G, the goal is to burn in a minimum number of rounds [Bonato et al., 2014].
- At each given round:
 - A new fire can be initiated at any vertex.
 - The existing fires expand to their neighboring vertices.



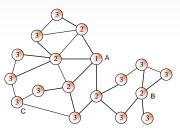
- Given an undirected graph G, the goal is to burn in a minimum number of rounds [Bonato et al., 2014].
- At each given round:
 - A new fire can be initiated at any vertex.
 - The existing fires expand to their neighboring vertices.



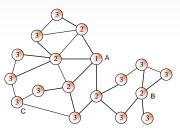
- Given an undirected graph G, the goal is to burn in a minimum number of rounds [Bonato et al., 2014].
- At each given round:
 - A new fire can be initiated at any vertex.
 - The existing fires expand to their neighboring vertices.



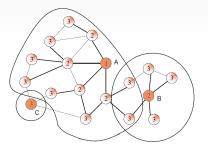
- Given an undirected graph G, the goal is to burn in a minimum number of rounds [Bonato et al., 2014].
- At each given round:
 - A new fire can be initiated at any vertex.
 - The existing fires expand to their neighboring vertices.
 - The burning completes when all vertices are on fire.



- Given an undirected graph G, the goal is to burn in a minimum number of rounds [Bonato et al., 2014].
- At each given round:
 - A new fire can be initiated at any vertex.
 - The existing fires expand to their neighboring vertices.
 - The burning completes when all vertices are on fire.
 - Decision problem:
 - Can we burn G in k rounds?



- Given an undirected graph *G*, the goal is to **burn** in a minimum number of **rounds** [Bonato et al., 2014].
- At each given round:
 - A new fire can be initiated at any vertex.
 - The existing fires expand to their neighboring vertices.
 - The burning completes when all vertices are on fire.
 - Decision problem:
 - Can we burn G in k rounds?
 - Equivalently, can we cover the graph with "disks" of radii $0, 1, 2, \ldots, k 1$?



Motivation

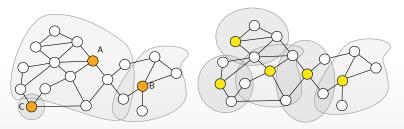
- How an adversary can "contaminate" a network.
 - A social network with a fake news (e.g., Facebook users are impacted by what their connections based on they are exposed to and without direct communication [Kramer et al., 2014]).

Motivation

- How an adversary can "contaminate" a network.
 - A social network with a fake news (e.g., Facebook users are impacted by what their connections based on they are exposed to and without direct communication [Kramer et al., 2014]).
- The **burning number** is the smallest number of rounds to burn a network
 - It measures how vulnerable a network is against adversarial "attacks".

Burning vs. *k*-center

- The burning problem is related to the *k*-center problem.
 - k-center: given a parameter k, cover all vertices with k disks of minimum **uniform** radii.
 - burning: cover all vertices with disks of radii $0, 1, \ldots, k-1$ for minimum k.



burning

k-center with k = 5

• A path P_n of length n can be covered with disks of radii $0, 1, 2, ..., \lceil \sqrt{n} \rceil$ [Bonato et al. 2014].

• A path P_n of length n can be covered with disks of radii $0, 1, 2, ..., \lceil \sqrt{n} \rceil$ [Bonato et al. 2014].

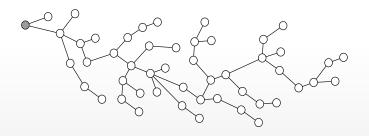
• A path P_n of length n can be covered with disks of radii $0, 1, 2, ..., \lceil \sqrt{n} \rceil$ [Bonato et al. 2014].

- A path P_n of length n can be covered with disks of radii $0, 1, 2, ..., \lceil \sqrt{n} \rceil$ [Bonato et al. 2014].
- The burning graph conjecture: The burning number of any connected graph is at most $\lceil \sqrt{n} \rceil$ [Bonato et al. 2014].

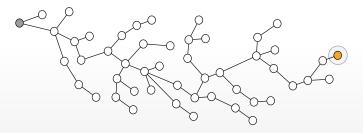
- A path P_n of length n can be covered with disks of radii $0, 1, 2, ..., \lceil \sqrt{n} \rceil$ [Bonato et al. 2014].
- The burning graph conjecture: The burning number of any connected graph is at most $\lceil \sqrt{n} \rceil$ [Bonato et al. 2014].
 - The burning number of any connected graph is at most $\sqrt{1.5n} + o(\sqrt{n})$ rounds [Land and Lu, 2016].

- A path P_n of length n can be covered with disks of radii $0, 1, 2, \ldots, \lceil \sqrt{n} \rceil$ [Bonato et al. 2014].
- The burning graph conjecture: The burning number of any connected graph is at most $\lceil \sqrt{n} \rceil$ [Bonato et al. 2014].
 - The burning number of any connected graph is at most $\sqrt{1.5n} + o(\sqrt{n})$ rounds [Land and Lu, 2016].
 - The burning number of any connected graph is at most $\sqrt{4n/3} + o(\sqrt{n})$ rounds [Bonato and S.K., 2021], [Bastide, Bonamy, Bonato, Charbit, S.K., Pierron, Rabie, 2021].

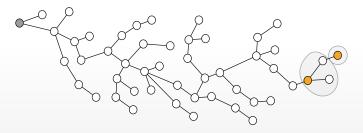
• **Observation:** to prove f(n) rounds are sufficient to burn **any** graph of size *n*, it suffices to prove f(n) rounds are sufficient to burn **trees**.



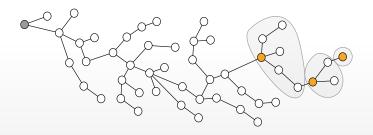
- **Observation:** to prove f(n) rounds are sufficient to burn **any** graph of size *n*, it suffices to prove f(n) rounds are sufficient to burn **trees**.
- Given (arbitrarily rooted) tree T of size n, it is easy to burn T in $\approx \sqrt{2n}$ rounds.
 - Process disks of radii {0,1,..., ⌈√2n⌉ − 1} in any order and use a disk of radius *r* to cover the "deepest" subtree of height *r*.



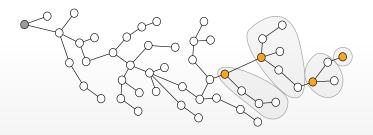
- **Observation:** to prove f(n) rounds are sufficient to burn **any** graph of size *n*, it suffices to prove f(n) rounds are sufficient to burn **trees**.
- Given (arbitrarily rooted) tree T of size n, it is easy to burn T in $\approx \sqrt{2n}$ rounds.
 - Process disks of radii {0,1,..., ⌈√2n⌉ − 1} in any order and use a disk of radius *r* to cover the "deepest" subtree of height *r*.



- **Observation:** to prove f(n) rounds are sufficient to burn **any** graph of size *n*, it suffices to prove f(n) rounds are sufficient to burn **trees**.
- Given (arbitrarily rooted) tree T of size n, it is easy to burn T in $\approx \sqrt{2n}$ rounds.
 - Process disks of radii {0,1,..., [√2n] − 1} in any order and use a disk of radius r to cover the "deepest" subtree of height r.



- **Observation:** to prove f(n) rounds are sufficient to burn **any** graph of size *n*, it suffices to prove f(n) rounds are sufficient to burn **trees**.
- Given (arbitrarily rooted) tree T of size n, it is easy to burn T in $\approx \sqrt{2n}$ rounds.
 - Process disks of radii {0,1,..., [√2n] − 1} in any order and use a disk of radius r to cover the "deepest" subtree of height r.



- Improvement: use a disk of radius r to cover at least 1.5r vertices.
 - At each iteration, use either the disk of the largest radius x (if the deepest subtree of height x covers 1.5x vertices) or otherwise a disk of radius r, where r depends on the structure of the tree.
 - E.g., we want to burn this graph with n = 48 in $\sqrt{4n/3} = 8$ rounds.

Burning conjecture summary

• **Open problem:** improve the upper bound of $\sqrt{4n/3} + o(\sqrt{n})$ for general graphs.

Burning conjecture summary

- **Open problem:** improve the upper bound of $\sqrt{4n/3} + o(\sqrt{n})$ for general graphs.
- The burning conjecture holds for graphs of minimum degree 4 [Bastide, Bonamy, Bonato, Charbit, S.K., Pierron, Rabie, 2021].

Burning conjecture summary

- **Open problem:** improve the upper bound of $\sqrt{4n/3} + o(\sqrt{n})$ for general graphs.
- The burning conjecture holds for graphs of minimum degree 4 [Bastide, Bonamy, Bonato, Charbit, S.K., Pierron, Rabie, 2021].
- And graph families as spider trees, caterpillars, etc. (see the survey by [Bonato, 2020]).

Computational Complexity

• Finding the optimal schedule is NP-hard for disjoint set of paths, trees, other graph families [Bessy et al., 2017].

Computational Complexity

- Finding the optimal schedule is NP-hard for disjoint set of paths, trees, other graph families [Bessy et al., 2017].
- It is claimed that the problem is APX-hard [Mondal et al., 2021] (no $(1 + \epsilon)$ -approximation exists assuming $P \neq NP$).

Approximation Algorithms

• If there are r vertices of pairwise distance $\geq 2r - 1$ in a graph G, then G cannot be burned in less than r rounds.

Approximation Algorithms

• If there are r vertices of pairwise distance $\geq 2r - 1$ in a graph G, then G cannot be burned in less than r rounds.

Approximation Algorithms

- If there are r vertices of pairwise distance $\geq 2r 1$ in a graph G, then G cannot be burned in less than r rounds.
- Example: suppose there are r = 4 vertices of pairwise 2r 1 = 7 in a graph *G*.
 - It is not possible to cover G with 3 disks of radii 3.
 - Therefore it is not possible to cover G with 3 disks of radii 0, 1, 2.

Constant Approximation Algorithm

- Define a subroutine Burn-Guess(G,g) which returns:
 - Either a schedule that completes burning in at most 3g 3 rounds.
 - Or 'Bad-Guess', which guarantees burning cannot be complete in g-1 rounds.

Constant Approximation Algorithm

- Define a subroutine Burn-Guess(G,g) which returns:
 - Either a schedule that completes burning in at most 3g 3 rounds.
 - Or 'Bad-Guess', which guarantees burning cannot be complete in g-1 rounds.
- The smallest value of g^* for which Burn-Guess returns a schedule gives a burning scheme that completes in $3g^* 3$ while the optimal schedule will require $g^* 1$ rounds to complete.
 - Approximation ratio of at most 3.

• Initially empty sets S of "centers" and L of "labeled vertices".

- Initially empty sets S of "centers" and L of "labeled vertices".
- Take an arbitrary unlabeled vertex u, add it to S and add all unlabeled vertices within distance 2g 2 of u to L.

- Initially empty sets S of "centers" and L of "labeled vertices".
- Take an arbitrary unlabeled vertex u, add it to S and add all unlabeled vertices within distance 2g 2 of u to L.

- Initially empty sets S of "centers" and L of "labeled vertices".
- Take an arbitrary unlabeled vertex u, add it to S and add all unlabeled vertices within distance 2g 2 of u to L.

- Initially empty sets S of "centers" and L of "labeled vertices".
- Take an arbitrary unlabeled vertex u, add it to S and add all unlabeled vertices within distance 2g 2 of u to L.

- Initially empty sets S of "centers" and L of "labeled vertices".
- Take an arbitrary unlabeled vertex u, add it to S and add all unlabeled vertices within distance 2g 2 of u to L.

- Initially empty sets S of "centers" and L of "labeled vertices".
- Take an arbitrary unlabeled vertex u, add it to S and add all unlabeled vertices within distance 2g 2 of u to L.

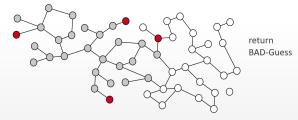


- Initially empty sets S of "centers" and L of "labeled vertices".
- Take an arbitrary unlabeled vertex u, add it to S and add all unlabeled vertices within distance 2g 2 of u to L.

- Initially empty sets S of "centers" and L of "labeled vertices".
- Take an arbitrary unlabeled vertex u, add it to S and add all unlabeled vertices within distance 2g 2 of u to L.

- Initially empty sets S of "centers" and L of "labeled vertices".
- Take an arbitrary unlabeled vertex u, add it to S and add all unlabeled vertices within distance 2g 2 of u to L.

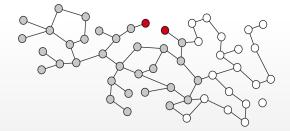
- Initially empty sets S of "centers" and L of "labeled vertices".
- Take an arbitrary unlabeled vertex u, add it to S and add all unlabeled vertices within distance 2g 2 of u to L.
 - If the number of centers becomes g, then return Bad-Guess.



- Initially empty sets S of "centers" and L of "labeled vertices".
- Take an arbitrary unlabeled vertex u, add it to S and add all unlabeled vertices within distance 2g 2 of u to L.
 - If the number of centers becomes g, then return Bad-Guess.

- Initially empty sets S of "centers" and L of "labeled vertices".
- Take an arbitrary unlabeled vertex u, add it to S and add all unlabeled vertices within distance 2g 2 of u to L.
 - If the number of centers becomes g, then return Bad-Guess.

- Initially empty sets S of "centers" and L of "labeled vertices".
- Take an arbitrary unlabeled vertex u, add it to S and add all unlabeled vertices within distance 2g 2 of u to L.
 - If the number of centers becomes g, then return Bad-Guess.



- Initially empty sets S of "centers" and L of "labeled vertices".
- Take an arbitrary unlabeled vertex u, add it to S and add all unlabeled vertices within distance 2g 2 of u to L.
 - If the number of centers becomes g, then return Bad-Guess.

- Initially empty sets S of "centers" and L of "labeled vertices".
- Take an arbitrary unlabeled vertex u, add it to S and add all unlabeled vertices within distance 2g 2 of u to L.
 - If the number of centers becomes g, then return Bad-Guess.

- Initially empty sets S of "centers" and L of "labeled vertices".
- Take an arbitrary unlabeled vertex u, add it to S and add all unlabeled vertices within distance 2g 2 of u to L.
 - If the number of centers becomes g, then return Bad-Guess.

- Initially empty sets S of "centers" and L of "labeled vertices".
- Take an arbitrary unlabeled vertex u, add it to S and add all unlabeled vertices within distance 2g 2 of u to L.
 - If the number of centers becomes g, then return Bad-Guess.
 - If all vertices are added to L, return an arbitrary ordering of centers as the burning scheme (which completes in at most (g - 1) + (2g - 2) = 3g - 3 rounds).
- E.g., here g = 4 and later we look at g = 5.

General Graph Summary

- There is a polynomial algorithm with approximation ratio of 3 for burning any graph G = (V, E) [Bessy & Rautenbach, 2016] [Bonato & S.K., 2019].
- What about graph families? can we get better approximation ratio for families of graphs?

Burning Trees

• It is possible to achieve an approximation factor of 2.

Burning Trees

- It is possible to achieve an approximation factor of 2.
- Burn-Guess-Tree (τ, g) returns either a schedule that completes in at most 2g 2 rounds or 'Bad-Guess', which means burning cannot complete in g 1 rounds.

• Burn-Guess-Tree treats τ as a rooted tree:

- Burn-Guess-Tree treats τ as a rooted tree:
 - Maintain sets T of "terminals", C of centers, and L of labeled vertices.

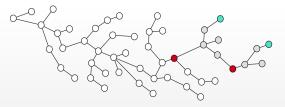
- Burn-Guess-Tree treats τ as a rooted tree:
 - Maintain sets T of "terminals", C of centers, and L of labeled vertices.
 - Take the deepest unlabeled node x, add x to T.
 - let p be the (g 1)-ancestor of x; add p to C and add all nodes within distance g 1 of p to L.

- Burn-Guess-Tree treats τ as a rooted tree:
 - Maintain sets T of "terminals", C of centers, and L of labeled vertices.
 - Take the deepest unlabeled node x, add x to T.
 - let p be the (g 1)-ancestor of x; add p to C and add all nodes within distance g 1 of p to L.

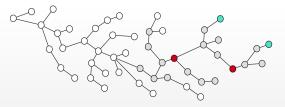
- Burn-Guess-Tree treats τ as a rooted tree:
 - Maintain sets T of "terminals", C of centers, and L of labeled vertices.
 - Take the deepest unlabeled node x, add x to T.
 - let p be the (g 1)-ancestor of x; add p to C and add all nodes within distance g 1 of p to L.

- Burn-Guess-Tree treats τ as a rooted tree:
 - Maintain sets T of "terminals", C of centers, and L of labeled vertices.
 - Take the deepest unlabeled node x, add x to T.
 - let p be the (g 1)-ancestor of x; add p to C and add all nodes within distance g 1 of p to L.

- Burn-Guess-Tree treats τ as a rooted tree:
 - Maintain sets T of "terminals", C of centers, and L of labeled vertices.
 - Take the deepest unlabeled node x, add x to T.
 - let p be the (g 1)-ancestor of x; add p to C and add all nodes within distance g 1 of p to L.



- Burn-Guess-Tree treats τ as a rooted tree:
 - Maintain sets T of "terminals", C of centers, and L of labeled vertices.
 - Take the deepest unlabeled node x, add x to T.
 - let p be the (g 1)-ancestor of x; add p to C and add all nodes within distance g 1 of p to L.



- Burn-Guess-Tree treats τ as a rooted tree:
 - Maintain sets T of "terminals", C of centers, and L of labeled vertices.
 - Take the deepest unlabeled node x, add x to T.
 - let p be the (g 1)-ancestor of x; add p to C and add all nodes within distance g 1 of p to L.

- Burn-Guess-Tree treats τ as a rooted tree:
 - Maintain sets T of "terminals", C of centers, and L of labeled vertices.
 - Take the deepest unlabeled node x, add x to T.
 - let p be the (g 1)-ancestor of x; add p to C and add all nodes within distance g 1 of p to L.

- Burn-Guess-Tree treats τ as a rooted tree:
 - Maintain sets T of "terminals", C of centers, and L of labeled vertices.
 - Take the deepest unlabeled node x, add x to T.
 - let p be the (g 1)-ancestor of x; add p to C and add all nodes within distance g 1 of p to L.
 - When |T| = g, return Bad-Guess.
 - Here, g = 4 returns Bad-Guess and g = 5 returns a schedule.

- Burn-Guess-Tree treats τ as a rooted tree:
 - Maintain sets T of "terminals", C of centers, and L of labeled vertices.
 - Take the deepest unlabeled node x, add x to T.
 - let p be the (g 1)-ancestor of x; add p to C and add all nodes within distance g 1 of p to L.
 - When |T| = g, return Bad-Guess.
 - When all vertices are labeled, return any ordering of C as the burning schedule. All nodes are within distance g - 1 of g centers.
 - Here, g = 4 returns Bad-Guess and g = 5 returns a schedule.

Burning Trees Summary

- There is a polynomial algorithm with approximation ratio of 2 for burning any tree [Bonato & S.K., 2019].
- **Open question:** what is the best approximation factor attainable for trees? or graphs of bounded treewidth? is it possible to get an PTAS?

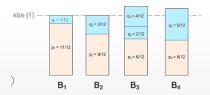
Forests of Disjoint Paths

- The burning problem is NP-hard when the input graph is a forest of disjoint paths [Bessy et al., 2017].
 - Given disks of radii $0, 1, \ldots, k 1$, it is not clear which disk should be assigned to which path.
- If there are Θ(1) disjoint paths, there is a polynomial-time algorithm that generates an optimal burning scheme [Bonato and S.K., 2019].
 - Apply a dynamic programming approach!

• Given any positive value ϵ , there is a fully polynomial-time approximation algorithm (FPTAS) that generates a burning scheme that completes within a factor $1 + \epsilon$ of an optimal scheme [Bonato and S.K., 2019].

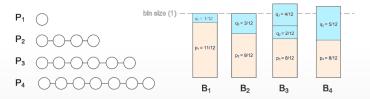
- Given any positive value ϵ , there is a fully polynomial-time approximation algorithm (FPTAS) that generates a burning scheme that completes within a factor $1 + \epsilon$ of an optimal scheme [Bonato and S.K., 2019].
 - Reduce the burning problem to the bin covering problem, and use an existing FPTAS of [Jansen and Solis-Oba, 2003] for the bin covering to get an FPTAS for the burning problem.

- Given any positive value ϵ , there is a fully polynomial-time approximation algorithm (FPTAS) that generates a burning scheme that completes within a factor $1 + \epsilon$ of an optimal scheme [Bonato and S.K., 2019].
 - Reduce the burning problem to the bin covering problem, and use an existing FPTAS of [Jansen and Solis-Oba, 2003] for the bin covering to get an FPTAS for the burning problem.
 - **Bin covering:** "cover" a maximum number of bins of unit size with a given multi-set of items with sizes in (0, 1].



• Reduction: Given a path forest G with b paths generate an instance of the bin covering problem such that G can be burned in k rounds iff it is possible to cover b bins.

- Reduction: Given a path forest *G* with *b* paths generate an instance of the bin covering problem such that *G* can be burned in *k* rounds iff it is possible to cover *b* bins.
 - Think of paths as uniform "bins" that need to be "covered" by items (disks) of radii $0, 1, \ldots, k 1$.

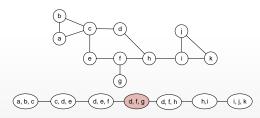


Burning Forests of Disjoint Paths Summary

- There is a fully polynomial-time approximation scheme (FPTAS) for burning any forest of disjoint paths [Bonato and S.K., 2019].
- The complexity of the problem is settled for forests of disjoint paths.

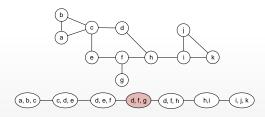
Tree Decomposition & Burning

- In a Robertson-Seymour path decomposition:
 - Path-length [Dourisboure and Gavoille, 2007] is the max **distance** of vertices in any bag.
 - The graph below has path-width 2 and path-length 3.



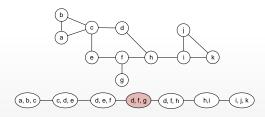
Tree Decomposition & Burning

- In a Robertson-Seymour path decomposition:
 - Path-length [Dourisboure and Gavoille, 2007] is the max **distance** of vertices in any bag.
 - The graph below has path-width 2 and path-length 3.
- The burning number of a graph with **path-length** pl and diameter d is at most $\lceil \sqrt{d} \rceil + pl$ [S.K., A. Miller, and K. Zhang, 2020].



Tree Decomposition & Burning

- In a Robertson-Seymour path decomposition:
 - Path-length [Dourisboure and Gavoille, 2007] is the max **distance** of vertices in any bag.
 - The graph below has path-width 2 and path-length 3.
 - A graph has path-length 1 if and only if it is an interval graph.
- The burning number of a graph with **path-length** pl and diameter d is at most $\lceil \sqrt{d} \rceil + pl$ [S.K., A. Miller, and K. Zhang, 2020].



 There is an approximation algorithm with factor 1 + o(1) for burning any graph G of constant path-length [S.K. et al., 2020].

- There is an approximation algorithm with factor 1 + o(1) for burning any graph *G* of constant path-length [S.K. et al., 2020].
 - If the diameter of G is constant, we can optimally solve the problem.

- There is an approximation algorithm with factor 1 + o(1) for burning any graph G of constant path-length [S.K. et al., 2020].
 - If the diameter of G is constant, we can optimally solve the problem.
 - Otherwise, burn the graph in $\sqrt{d} + pl$ rounds, getting an approximation factor at most $\frac{\sqrt{d}+pl}{\sqrt{d}} = 1 + o(1)$.

- There is an approximation algorithm with factor 1 + o(1) for burning any graph G of constant path-length [S.K. et al., 2020].
 - If the diameter of G is constant, we can optimally solve the problem.
 - Otherwise, burn the graph in $\sqrt{d} + pl$ rounds, getting an approximation factor at most $\frac{\sqrt{d}+pl}{\sqrt{d}} = 1 + o(1)$.
- There is an approximation algorithm with factor 2 + o(1) for burning any graph G of constant tree-length [S.K. et al., 2020].

Burning Graph Complexity

Graph family	Apx. Factor	Details
general graphs	3	[Bonato and S.K., 2019]
trees	2	[Bonato and S.K., 2019]
cacti	2.75	[S.K. and Shabani, 2021]
forests of disjoint paths	$1 + \epsilon$ (FPTAS)	[Bonato and S.K., 2019]
graphs of bounded path-length	1 + o(1)	[S.K. et al., 2020]
graphs of bounded tree-length	2 + o(1)	[S.K. et al., 2020]

References

References

[Bessy et al., 2017] Bessy, S.; Bonato, A.; Janssen, J. C. M.; Rautenbach, D.: and Roshanbin, E. (2017)."Burning a graph is hard".

Discrete Applied Mathematics, 232, pp. 73-87.

[Bonato et al., 2014] Bonato, A.; Janssen, J. C. M.; and Roshanbin, E. (2014). "Burning a Graph as a Model of Social Contagion".

In Workshop of Workshop on Algorithms and Models for the Web Graph, pages 13-22.

[Bonato and S.K., 2019] Bonato, A. and S.K. (2019).

"Approximation Algorithms for Graph Burning".

In Proc. Theory and Applications of Models of Computation TAMC, volume 11436 of Lecture Notes in Computer Science, pages 74-92. Springer.

[Dourisboure and Gavoille, 2007] Dourisboure, Y.

and Gavoille, C. (2007).

"Tree-decompositions with bags of small diameter"

Discrete Mathematics, 307(16), pp. 2008-2029.

[Jansen and Solis-Oba, 2003] Jansen, K. and Solis-Oba, R. (2003).

"An asymptotic fully polynomial time approximation scheme for bin covering". Theoretical Computer Science, 306(1-3), pp. 543-551.

[Kramer et al., 2014] Kramer, A. D. I.; Guillory, J. E.: and Hancock, J. T. (2014).

"Experimental evidence of massive-scale emotional contagion through social networks".

In Proceedings of the National Academy of Sciences, pages 8788-8790.

[Land and Lu. 2016] Land, M. R. and Lu. L. (2016).

"An Upper Bound on the Burning Number of Graphs".

In Proceedings of Workshop on Algorithms and Models for the Web Graph, pages 1-8.

[Mondal et al., 2021] Mondal, D.; Parthiban, N.; Kavitha, V.; and Rajasingh, I. (2021).

APX-Hardness and Approximation for the k-Burning Number Problem".

In Uehara, R.; Hong, S.; and Nandy, S. C., editors, Proc. Algorithms and Computation - 15th International Conference, volume 12635 of Lecture Notes in Computer Science, pages 272-283. Springer.

[S.K. et al., 2020] **S.K.; Miller, A.; and Zhang, K. (2020).** "Burning Two Worlds".

In Proc. SOFSEM 2020, volume 12011 of Lecture Notes in Computer Science, pages 113–124. Springer. [S.K. and Shabani, 2021] S.K. and Shabani, M. (2021). "Burning Cacti". Ongoing work.