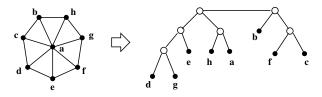
Similarity of treewidth and MM-width by a cops and robber game

Jan Arne Telle presenting results of Martin Vatshelle and Sigve H. Sæther

Department of Informatics, University of Bergen, Norway

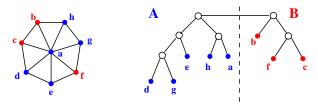
Branch decompositions

Branch decomposition (rooted) of graph G is a pair (T, δ) -T is a ternary tree (binary) and - δ is a bijection between leaves of T and vertices of G (or E(G))



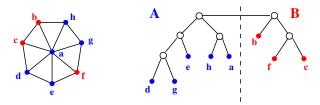
-one cut of G for each edge of T

Defining a width parameter using a cut function



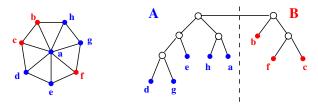
• Cut function (symmetric) $f: 2^{V(G)} \rightarrow N$

Defining a width parameter using a cut function



- Cut function (symmetric) $f: 2^{V(G)} \to N$
- $\blacktriangleright fwidth(T, \delta) = \max_{u \in E(T)} \{f(A_u)\} = \max_{u \in V(T)} \{f(A_u)\}$

Defining a width parameter using a cut function



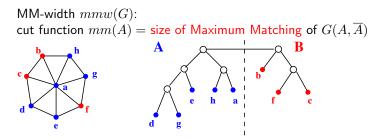
- Cut function (symmetric) $f: 2^{V(G)} \rightarrow N$
- $fwidth(T, \delta) = \max_{uv \in E(T)} \{f(A_u)\} = \max_{u \in V(T)} \{f(A_u)\}$
- $fwidth(G) = \min_{(T,\delta)} \{fwidth(T,\delta)\}$

Examples

Carving-width

Rank-width

Boolean-width



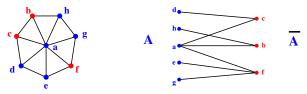
Examples

Carving-width

Rank-width

Boolean-width

MM-width mmw(G): cut function mm(A) = size of Maximum Matching of $G(A, \overline{A})$



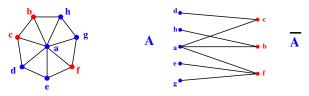
Examples

Carving-width

Rank-width

Boolean-width

MM-width mmw(G): cut function mm(A) = size of Maximum Matching of $G(A, \overline{A})$



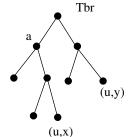
Example: $mmw(K_n) = n/3$ (ternary tree and max matching of $K_{a,b}$ is min(a,b)).

Rest of talk

- 1. $mmw(G) \le tw(G) + 1$ [Vatshelle'12]
- 2. $tw(G) \leq 3mmw(G)$ by non-monotone cop strategy [Vatshelle'12]
- 3. This strategy can be made monotone [Sæther'13]
- 4. mm cut function is submodular [Sæther'13]

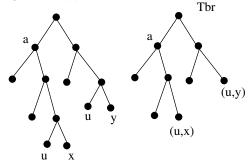
Branchwidth

brw(G) defined by cut function $br: 2^{E(G)} \to N$, with $br(E_a) = |midset(E_a, \overline{E_a})| =$ number of vertices both in edge mapped to *a*-subtree and in edge not mapped to *a*-subtree.



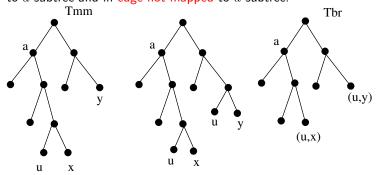
Branchwidth

brw(G) defined by cut function $br:2^{E(G)}\to N$, with $br(E_a)=|midset(E_a,\overline{E_a})|=$ number of vertices both in edge mapped to a-subtree and in edge not mapped to a-subtree.



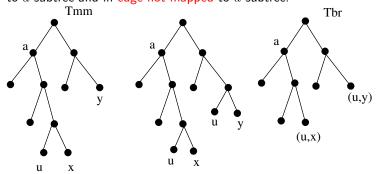
Branchwidth

brw(G) defined by cut function $br: 2^{E(G)} \to N$, with $br(E_a) = |midset(E_a, \overline{E_a})| =$ number of vertices both in edge mapped to *a*-subtree and in edge not mapped to *a*-subtree.



Branchwidth

brw(G) defined by cut function $br: 2^{E(G)} \to N$, with $br(E_a) = |midset(E_a, \overline{E_a})| =$ number of vertices both in edge mapped to *a*-subtree and in edge not mapped to *a*-subtree.



• Assume (u, y) in matching M of $G(A_a, \overline{A_a})$ of Tmm. Then either u or y in mid-set of $(E_a, \overline{E_a})$ of Tbr. Thus $mmw(G) \leq brw(G) \leq tw(G) + 1$

Treewidth tw(G) is number of cops (-1) needed to capture robber when:

- Robber is visible and moves fast along cop-free paths
- Cops move by helicopter

Treewidth tw(G) is number of cops (-1) needed to capture robber when:

- Robber is visible and moves fast along cop-free paths
- Cops move by helicopter

For G, given (Tmm, δ) of MM-width k, here is <u>3k-cop</u> strategy on G:

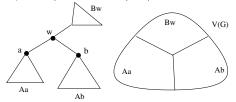
• Start at root of Tmm and move down:

Treewidth tw(G) is number of cops (-1) needed to capture robber when:

- Robber is visible and moves fast along cop-free paths
- Cops move by helicopter

For G, given (Tmm, δ) of MM-width k, here is <u>3k-cop</u> strategy on G:

- Start at root of Tmm and move down:
- When reaching w with children a, b: know robber in A_w = A_a ∪ A_b and we have cops on a Minimum Vertex Cover C_w of G(A_w, B_w). By König's Theorem |C_w| ≤ k. C_w is a separator.

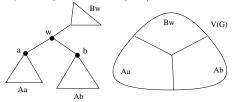


Treewidth tw(G) is number of cops (-1) needed to capture robber when:

- Robber is visible and moves fast along cop-free paths
- Cops move by helicopter

For G, given (Tmm, δ) of MM-width k, here is 3k-cop strategy on G:

- Start at root of Tmm and move down:
- When reaching w with children a, b: know robber in A_w = A_a ∪ A_b and we have cops on a Minimum Vertex Cover C_w of G(A_w, B_w). By König's Theorem |C_w| ≤ k. C_w is a separator.



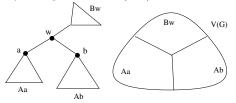
• Add $\leq k$ cops on C_a and $\leq k$ cops on C_b

Treewidth tw(G) is number of cops (-1) needed to capture robber when:

- Robber is visible and moves fast along cop-free paths
- Cops move by helicopter

For G, given (Tmm, δ) of MM-width k, here is <u>3k-cop</u> strategy on G:

- Start at root of Tmm and move down:
- When reaching w with children a, b: know robber in A_w = A_a ∪ A_b and we have cops on a Minimum Vertex Cover C_w of G(A_w, B_w). By König's Theorem |C_w| ≤ k. C_w is a separator.



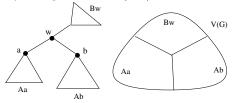
- Add $\leq k$ cops on C_a and $\leq k$ cops on C_b
- wlog robber in A_a : Move to a and keep cops only on C_a

Treewidth tw(G) is number of cops (-1) needed to capture robber when:

- Robber is visible and moves fast along cop-free paths
- Cops move by helicopter

For G, given (Tmm, δ) of MM-width k, here is <u>3k-cop</u> strategy on G:

- Start at root of Tmm and move down:
- When reaching w with children a, b: know robber in A_w = A_a ∪ A_b and we have cops on a Minimum Vertex Cover C_w of G(A_w, B_w). By König's Theorem |C_w| ≤ k. C_w is a separator.

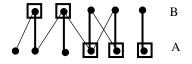


• Add $\leq k$ cops on C_a and $\leq k$ cops on C_b

• wlog robber in A_a : Move to a and keep cops only on C_a Non-monotone since vertex x could go in/out/in of the Vertex Covers.

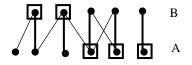
Monotone strategy [Sæther]

Given max matching M of G(A, B) define König Vertex Cover C(M): -For every edge in M put A-vertex in C(M); unless robber can then escape from A, i.e. unless there is an alternating path containing the edge and starting in an unsaturated A-vertex; if so put B-vertex in C(M).



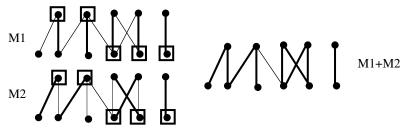
Monotone strategy [Sæther]

Given max matching M of G(A, B) define König Vertex Cover C(M): -For every edge in M put A-vertex in C(M); unless robber can then escape from A, i.e. unless there is an alternating path containing the edge and starting in an unsaturated A-vertex; if so put B-vertex in C(M).



Fact

If M1, M2 are max matchings then C(M1) = C(M2)



Using König Vertex Covers 3k-cops strategy is monotone

Robber is always on A-side, and A-side shrinks as we move down Tmm. Cop movement legal if we keep all cops on old A-side and add no new cops on old B-side.

Combining legal movements gives monotone strategy.

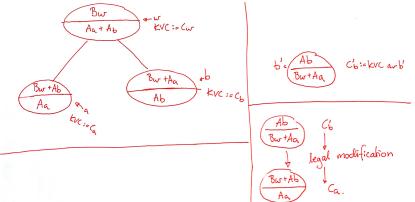
Using König Vertex Covers 3k-cops strategy is monotone

Robber is always on A-side, and A-side shrinks as we move down Tmm. Cop movement legal if we keep all cops on old A-side and add no new cops on old B-side.

Combining legal movements gives monotone strategy.

Lemma

Moving cops from Cw to $Cw \cup Ca \cup Cb$ for G(Aw, Bw) is legal. Moving from $Cw \cup Ca \cup Cb$ for G(Aw, Bw) to Ca for G(Aa, Ba) legal.



Max matching is a submodular cut function

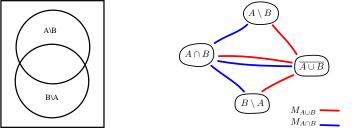
Recall: for $A \subseteq V(G)$ define mm(A) =size of max matching of $G(A, \overline{A})$ Lemma For $A, B \subseteq V(G)$ have $mm(A) + mm(B) \ge mm(A \cup B) + mm(A \cap B)$

Max matching is a submodular cut function

Recall: for $A \subseteq V(G)$ define mm(A) =size of max matching of $G(A, \overline{A})$ Lemma

For $A,B\subseteq V(G)$ have $mm(A)+mm(B)\geq mm(A\cup B)+mm(A\cap B)$

For any matchings $M_{A\cup B}$ and $M_{A\cap B}$ there exists matchings M_A and M_B such that $M_A \bigcup M_B = M_{A\cup B} \bigcup M_{A\cap B}$ (as multisets). Note $M_{A\cup B} \bigcup M_{A\cap B}$ forms vertex-disjoint paths and cycles. Let P be such. Show matchings N_A and N_B on the same edges as P, then take disjoint union of these to get M_A and M_B . Edges of P alternate Blue and Red, so at most one vertex v of P in $A \setminus B \cup B \setminus A$, say wlog $v \in B \setminus A$. Then $P \cap M_{A\cap B}$ is a matching of A and $P \cap M_{A\cup B}$ is a matching of B.



MM-width has been used to define a parameter between treewidth and clique-width $\left[\text{ST}'14\right]$

Graphs of MM-width at most k are closed under minors. For k = 1 the set of Minimal Forbidden Minors is $\{C_4\}$. What about larger k?

Other uses of MM-width?

MM-width has been used to define a parameter between treewidth and clique-width $\left[\text{ST}'14\right]$

Graphs of MM-width at most k are closed under minors. For k = 1 the set of Minimal Forbidden Minors is $\{C_4\}$. What about larger k?

Other uses of MM-width?

Thank you!

Thank you!