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Branch decompositions

Branch decomposition (rooted) of graph G is a pair (T, δ)
-T is a ternary tree (binary) and
-δ is a bijection between leaves of T and vertices of G (or E(G))
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Defining a width parameter using a cut function
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I Cut function (symmetric) f : 2V (G) → N

I fwidth(T, δ) = maxuv∈E(T ){f(Au)} = maxu∈V (T ){f(Au)}
I fwidth(G) = min(T,δ){fwidth(T, δ)}



Defining a width parameter using a cut function

a

b

c

e

f

h

g

d

gd

he f c

b

A B

a

I Cut function (symmetric) f : 2V (G) → N

I fwidth(T, δ) = maxuv∈E(T ){f(Au)} = maxu∈V (T ){f(Au)}

I fwidth(G) = min(T,δ){fwidth(T, δ)}



Defining a width parameter using a cut function

a

b

c

e

f

h

g

d

gd

he f c

b

A B

a

I Cut function (symmetric) f : 2V (G) → N

I fwidth(T, δ) = maxuv∈E(T ){f(Au)} = maxu∈V (T ){f(Au)}
I fwidth(G) = min(T,δ){fwidth(T, δ)}



Examples

Carving-width

Rank-width

Boolean-width

MM-width mmw(G):
cut function mm(A) = size of Maximum Matching of G(A,A)
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Example:
mmw(Kn) = n/3 (ternary tree and max matching of Ka,b is min(a, b)).
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Rest of talk

1. mmw(G) ≤ tw(G) + 1 [Vatshelle’12]

2. tw(G) ≤ 3mmw(G) by non-monotone cop strategy [Vatshelle’12]

3. This strategy can be made monotone [Sæther’13]

4. mm cut function is submodular [Sæther’13]



mmw(G) ≤ brw(G)

Branchwidth
brw(G) defined by cut function br : 2E(G) → N , with
br(Ea) = |midset(Ea, Ea)| = number of vertices both in edge mapped
to a-subtree and in edge not mapped to a-subtree.
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a

I Assume (u, y) in matching M of G(Aa, Aa) of Tmm.
Then either u or y in mid-set of (Ea, Ea) of Tbr.
Thus mmw(G) ≤ brw(G) ≤ tw(G) + 1
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tw(G) ≤ 3mmw(G)− 1

Treewidth tw(G) is number of cops (-1) needed to capture robber when:

I Robber is visible and moves fast along cop-free paths

I Cops move by helicopter

For G, given (Tmm, δ) of MM-width k, here is 3k-cop strategy on G:

I Start at root of Tmm and move down:

I When reaching w with children a, b: know robber in Aw = Aa ∪Ab
and we have cops on a Minimum Vertex Cover Cw of G(Aw, Bw).
By König’s Theorem |Cw| ≤ k. Cw is a separator.

I Add ≤ k cops on Ca and ≤ k cops on Cb
I wlog robber in Aa: Move to a and keep cops only on Ca

Non-monotone since vertex x could go in/out/in of the Vertex Covers.



tw(G) ≤ 3mmw(G)− 1

Treewidth tw(G) is number of cops (-1) needed to capture robber when:

I Robber is visible and moves fast along cop-free paths

I Cops move by helicopter

For G, given (Tmm, δ) of MM-width k, here is 3k-cop strategy on G:

I Start at root of Tmm and move down:

I When reaching w with children a, b: know robber in Aw = Aa ∪Ab
and we have cops on a Minimum Vertex Cover Cw of G(Aw, Bw).
By König’s Theorem |Cw| ≤ k. Cw is a separator.

I Add ≤ k cops on Ca and ≤ k cops on Cb
I wlog robber in Aa: Move to a and keep cops only on Ca

Non-monotone since vertex x could go in/out/in of the Vertex Covers.



tw(G) ≤ 3mmw(G)− 1
Treewidth tw(G) is number of cops (-1) needed to capture robber when:

I Robber is visible and moves fast along cop-free paths
I Cops move by helicopter

For G, given (Tmm, δ) of MM-width k, here is 3k-cop strategy on G:

I Start at root of Tmm and move down:

I When reaching w with children a, b: know robber in Aw = Aa ∪Ab
and we have cops on a Minimum Vertex Cover Cw of G(Aw, Bw).
By König’s Theorem |Cw| ≤ k. Cw is a separator.

a

w

b

Ab
Aa

Bw

Aa Ab

Bw V(G)

I Add ≤ k cops on Ca and ≤ k cops on Cb
I wlog robber in Aa: Move to a and keep cops only on Ca

Non-monotone since vertex x could go in/out/in of the Vertex Covers.



tw(G) ≤ 3mmw(G)− 1
Treewidth tw(G) is number of cops (-1) needed to capture robber when:

I Robber is visible and moves fast along cop-free paths
I Cops move by helicopter

For G, given (Tmm, δ) of MM-width k, here is 3k-cop strategy on G:

I Start at root of Tmm and move down:

I When reaching w with children a, b: know robber in Aw = Aa ∪Ab
and we have cops on a Minimum Vertex Cover Cw of G(Aw, Bw).
By König’s Theorem |Cw| ≤ k. Cw is a separator.

a

w

b

Ab
Aa

Bw

Aa Ab

Bw V(G)

I Add ≤ k cops on Ca and ≤ k cops on Cb

I wlog robber in Aa: Move to a and keep cops only on Ca

Non-monotone since vertex x could go in/out/in of the Vertex Covers.



tw(G) ≤ 3mmw(G)− 1
Treewidth tw(G) is number of cops (-1) needed to capture robber when:

I Robber is visible and moves fast along cop-free paths
I Cops move by helicopter

For G, given (Tmm, δ) of MM-width k, here is 3k-cop strategy on G:

I Start at root of Tmm and move down:

I When reaching w with children a, b: know robber in Aw = Aa ∪Ab
and we have cops on a Minimum Vertex Cover Cw of G(Aw, Bw).
By König’s Theorem |Cw| ≤ k. Cw is a separator.

a

w

b

Ab
Aa

Bw

Aa Ab

Bw V(G)

I Add ≤ k cops on Ca and ≤ k cops on Cb
I wlog robber in Aa: Move to a and keep cops only on Ca

Non-monotone since vertex x could go in/out/in of the Vertex Covers.



tw(G) ≤ 3mmw(G)− 1
Treewidth tw(G) is number of cops (-1) needed to capture robber when:

I Robber is visible and moves fast along cop-free paths
I Cops move by helicopter

For G, given (Tmm, δ) of MM-width k, here is 3k-cop strategy on G:

I Start at root of Tmm and move down:

I When reaching w with children a, b: know robber in Aw = Aa ∪Ab
and we have cops on a Minimum Vertex Cover Cw of G(Aw, Bw).
By König’s Theorem |Cw| ≤ k. Cw is a separator.

a

w

b

Ab
Aa

Bw

Aa Ab

Bw V(G)

I Add ≤ k cops on Ca and ≤ k cops on Cb
I wlog robber in Aa: Move to a and keep cops only on Ca

Non-monotone since vertex x could go in/out/in of the Vertex Covers.



Monotone strategy [Sæther]
Given max matching M of G(A,B) define König Vertex Cover C(M):
-For every edge in M put A-vertex in C(M); unless robber can then
escape from A, i.e. unless there is an alternating path containing the edge
and starting in an unsaturated A-vertex; if so put B-vertex in C(M).
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A

Fact
If M1,M2 are max matchings then C(M1) = C(M2)

M1

M2

M1+M2
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Using König Vertex Covers 3k-cops strategy is monotone
Robber is always on A-side, and A-side shrinks as we move down Tmm.
Cop movement legal if we keep all cops on old A-side and add no new
cops on old B-side.
Combining legal movements gives monotone strategy.

Lemma
Moving cops from Cw to Cw ∪ Ca ∪ Cb for G(Aw,Bw) is legal.
Moving from Cw ∪ Ca ∪ Cb for G(Aw,Bw) to Ca for G(Aa,Ba) legal.
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Max matching is a submodular cut function
Recall: for A ⊆ V (G) define mm(A) =size of max matching of G(A,A)

Lemma
For A,B ⊆ V (G) have mm(A) +mm(B) ≥ mm(A ∪B) +mm(A ∩B)

For any matchings MA∪B and MA∩B there exists matchings MA and
MB such that MA

⋃̇
MB =MA∪B

⋃̇
MA∩B (as multisets). Note

MA∪B
⋃̇
MA∩B forms vertex-disjoint paths and cycles. Let P be such.

Show matchings NA and NB on the same edges as P , then take disjoint
union of these to get MA and MB . Edges of P alternate Blue and Red,
so at most one vertex v of P in A \B ∪B \A, say wlog v ∈ B \A.
Then P ∩MA∩B is a matching of A and P ∩MA∪B is a matching of B.

A\B

B\A

A \B
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MA∩B

A ∩B

B \A
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Use of MM-width

MM-width has been used to define a parameter between treewidth and
clique-width [ST’14]

Graphs of MM-width at most k are closed under minors.
For k = 1 the set of Minimal Forbidden Minors is {C4}.
What about larger k?

Other uses of MM-width?

Thank you!
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