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Graph exploration

A team of agents is placed on some subset of nodes of the
network.
The agents are propagated along edges of the network
following a local set of rules defined for each node.
Agents are searching for a treasure hidden in one of the nodes
of the network.
The goal of the agents is to visit each node (i.e. to explore
the whole network).
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The Rotor-router model

Each node v has a fixed local port numbering from 1 to
deg(v)

The state of each node v is a pointer p(v) ∈ {1, ..., deg(v)}.

Rotor-Router Mechanism
For each agent located at node
v at the start of time round t:

I The agent is pushed to the
neighbor along port p(v)

I Pointer p(v) is
incremented modulo the
degree.
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Random walk

What is the random walk?
The agent leaves each node along
one of the adjacent links, chosen
uniformly at random.
From the perspective of a node it
sends on average the same number
of agents in each direction.

Question
Where does the rotor-router come from?

Answer 1
The rotor-router can be seen as a derandomization of the random
walk.
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Single random walk

Cover time of random walk
Expected time until agent visits all vertices.

Graph class Cover time

Expander, Hypercube, Complete Θ(n log n)

2-dim. torus Θ(n log2 n)

Cycle Θ(n2)

Lollipop Graph Θ(n3)

Any graph O(n3), Ω(n log n)
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Multiple random walks (k = number of agents)

Cover time of multiple random walks
Expected time until every node is visited by some agent.

Speedup
Ratio between the cover time for single walk and for multiple walks.

Graph class Speedup

Expander, Hypercube, Complete, Random k
Cycle log k
d-dim. torus (d > 2) k(k < n1−2/d)

Table: Results from [Elsässer, Sauerwald, 2011] and [Alon, Avin, Koucky,
Kozma, Lotker, Tuttle, 2008]

Conjecture [Alon, Avin, Koucky, Kozma, Lotker, Tuttle, 2008]
Speedup is O(k) and Ω(log k) for any graph.
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Continuous Diffusion Model

Each of the nodes v of the graph starts with a certain amount
of resource L0(v) (real-valued, non-negative) – call it load.
In each round, each of the nodes sends an equal part of its
load to its neighbors

Lt+1(v) =
∑

u∈N(v)

Lt(u)

deg(u)

1

1/31/3 1/31/9 2/9 3/9 2/9 1/9
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Analysing continuous diffusion

Continuous diffusion is a linear and deterministic process:

Lt+1 = MLt =⇒ Lt = MtL0,

where M is the stochastic matrix ("random walk matrix") of the
graph.

Problem: dealing with granular load.(not infinitely divisible)
Assume load is expressed in multiple of unit values, each of
which is propagated between neighboring nodes.
We have k units in total, each node v starting with L0(v) units
In general, it is no longer possible to follow the diffusion
equation accurately.
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Discrete diffusion rules

Reference point – continuous diffusion:

L(v)

L(v)/d

L(v)/d

L(v)/d

L(v)/d

d = deg(v), for a while, we will be considering regular graphs.
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Rule 1

Independent random walk for each unit of load.

L(v)

prob = 1/d

prob = 1/d

prob = 1/d

prob = 1/d

Expected number of units of load at each location for the random
walk matches that in continuous diffusion: E[Lt ] = MtL0
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Rule 2
Perform rounding of the continuous diffusion process.

L(v)

bL(v)/dc or dL(v)/de

(keeping sum intact)

bL(v)/dc or dL(v)/de

bL(v)/dc or dL(v)/de

bL(v)/dc or dL(v)/de

Question
Where does the rotor-router come from?

Answer 2
Both rotor-router and the random walk can be seen as
discretization of the continuous diffusion process.
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The Rotor-router model

Configuration of the rotor-router
Initialization of the port numbering
Initial positions of agents.

When analysing the rotor-router we will always assume the worst
possible initial configuration.
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Parameters of the rotor-router

Cover time
When will have each node of the graph been reached by some
agent, for a worst-case starting configuration?

Lock-in
The rotor-router is a deterministic process with a finite
number of states, hence it must stabilize to a periodic
traversal of some cycle in its state space after some
initialization phase
After what time does the rotor-router enter its limit cycle?
What is the length of the cycle?
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Single agent rotor-router
Theorem [Yanovski, Wagner, Bruckstein, 2001]

For any graph with diameter D and m edges, cover time and
lock-in time are bounded by O(mD).
After this lock-in period, the rotor-router stabilizes to an
Eulerian traversal of the directed version of the graph
(traversing each edge once in each direction).

Theorem [Bampas, Gasieniec, Hanusse, Ilcinkas, Klasing, Kosowski]
There exists an initial configuration of the rotor-router for
which cover time and lock-in time are Ω(mD).

Single agent rotor-router exhibits elegant structural properties.
For any graph, for the worst-case initial configuration

I Cover time is Θ(mD).
I Lock-in time is Θ(mD).
I Cycle length is Θ(D).
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Rotor-router vs. random walk

For a single agent it is hard to see any correlation between cover
time of the random walk and the rotor-router.

Graph class Cover time
Random walk Rotor-router

Cycle Θ(n2) Θ(n2)
Complete graph Θ(n log n) Θ(n2)
Star Θ(n log n) Θ(n)

Grid
√
n ×
√
n Θ(n log2 n) Θ(n3/2)

Hypercube Θ(n log n) Θ(n log2 n)

How about multiple agents?
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Multi-agent rotor-router

Multiple agents are interacting with the same rotor-router model
no independence of walks!
can we have similar results for multi-agent rotor-router as for
multiple random walks?

Goal
We want to study the speedup (as a function of k) of the cover
time of the multi-agent rotor-router with respect to the single
agent.
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Multi-agent rotor-router

Lemma [Yanovski, Wagner, Bruckstein, 2001]
Adding an agent cannot decrease the number of visits at any node
at any time.

Lemma [Klasing, Kosowski, P., Sauerwald, 2013]
Blocking some agents for some time steps cannot increase the
number of visits at any node at any time.

Delayed deployments
A process obtained from a rotor-router by defining how many
agents to delay at which times and at which nodes.
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The slow-down lemma

R[k] - k-agent rotor router system with an arbitrarily chosen
initialization.
We construct delayed deployment D such that:

deployment D explores the graph in at most T steps,
in at least τ of these steps all agents were active in D.

Theorem [Klasing, Kosowski, P., Sauerwald, 2013]
The cover time C(R[k]) of the system can be bounded by:
τ ≤ C(R[k]) ≤ T .

Dominik Pająk Exploring graphs using parallel rotor walks



Applications of the slow-down lemma

The slow-down lemma plays key part in our analysis of the multi
agent rotor-router:

We can analyze R[k] by constructing some easy to analyze,
delayed deployment D.
This allows us to think of the rotor-router as an algorithm,
rather than a process which is imposed upon us.
If the deployment D is defined so that agents in D are delayed
in at most a constant proportion of the first C(D) rounds,
then the above inequalities lead to an asymptotic bound on
the value of the undelayed rotor-router, C(R[k]) = Θ(C(D)).
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Multi-agent rotor-router on the ring

The rotor-router on the path (or ring) for k � n
Intuition: Each agent occupies a "domain", which it patrols.
A node v belongs to domain Vi (t) of the i-th agent if this
agent was the last agent visiting node v until round t,
inclusive.
A special domain V0(t) contains all nodes which have not yet
been visited.
One can show that domains either form spontaneously as
segments, or by holding back a few agents we can force them
to form (delayed deployment).[Klasing, Kosowski, P., Sauerwald, 2013]

Within a domain, all ports are aligned ”towards” the agent
which is its owner.
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Agent domains

Example on the line, k = 2 (starting from some moment...)

V2 V1 V0

V2 V1 V0V2 V1 V0V2 V1 V0V2 V1

Agents are traversing their domains and during each cycle can
capture one node from neighboring domain (or at least one
node not belonging to any domain).
Agents with smaller domains will visit borders more frequently
thus smaller domains will grow.
Intuitively the system should converge to domains of equal
sizes.
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Continuous time approximation

Roughly speaking, each agent i enlarges its own domain of
size ni (t) = |Vi (t)| once every ni (t) steps (once at the left
end, once at the right end)
At each of the ends, the size of the domain is reduced by the
adjacent agent (except from the side with V0(t), if
applicable).
We define the continuous-time approximation:

dνi (t)

dt =
1

νi (t)
− 1

2νi−1(t)
− 1

2νi+1(t)
, for 1 ≤ i ≤ k,

This approximation is accurate in the sense that one can
construct a delayed deployment which (almost) adheres to its
solution.
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Multi-agent rotor-router on the ring

Theorem [Kosowski, P., 2014][Klasing, Kosowski, P., Sauerwald, 2013]
Worst-case cover time for k agent rotor-router on the ring is
Θ(n2/ log k) when k < 2n.

So the speedup for the ring is log k.

Model Cover time Return time
worst placement best placement

k-agent
rotor-router

Θ(n2/ log k) Θ(n2/k2) Θ(n/k)

k random walks
(expectations)

Θ(n2/ log k)

in literature
Θ
(
n2
/

k2

log2 k

) Θ(n/k)

in literature
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Multi-agent rotor-router in general graphs

Even less structure – forget about domains.
Slowdown lemma still holds and proves useful.

Theorem [Dereniowski, Kosowski, P., Uznanski, 2014]
The k-agent rotor-router covers any graph in worst-case time
O(mD/ log k) and Ω(mD/k)

Both of these bounds are achieved for some graph classes.
The range of speedup for the rotor-router corresponds
precisely to the conjectured range of speedup for the random
walk.
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1 agent versus k agents: comparison of speedup

Graph class Speedup of Rotor-Router Speedup of Random Walk
for cover time for cover time for max hitting time

General case: Ω(log k), O(k) O(k2), O(k log n) O(k)
Cycle: Θ(log k) Θ(log k) Θ(log k)
Star: Θ(k) Θ(k) Θ(k)

(all results hold up to k polynomially large with respect to n)



Multi-agent rotor-router in different graph classes

To analyse the cover time of the multi agent rotor-router for other
graph classes we tried a different approach.

Lemma
For any time t, the total number of visits until time t in the
rotor-router and the cumulative load (=sum of loads) until time t
in the continuous diffusion differ by at most
Ψt = maxv∈V

∑t
τ=0

∑
(u1,u2)∈

−→
E |Pτ (u1, v)− Pτ (u2, v)|.

where Pt(u, v) is probability that the random walk starting at u
after t steps is located at v .
Ψ(G) = Ψ∞(G) is called local divergence and was defined in
[Rabani, Sinclair, Wanka 1998].
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Multi-agent rotor-router in different graph classes

Ck
rr (G) – cover time of k agent rotor-router on graph G .

Lemma
Let t∗ be the smallest time such that the cumulative load in the
continuous diffusion until time t∗ is more than Ψt∗ , then

Ck
rr (G) ≤ t∗
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Multi-agent rotor-router in different graph classes

Let us define the following time

t1/4 = max
u∈V

min
{
t : ∀u∈VPt(u, v) ≥ deg(v)

4m

}
,

If time is at least t1/4 then the load at any node in the continuous
diffusion starting with k units of load is at least k deg(v)

4m .

Theorem

The cover time Ck
rr (G) of a k-agent rotor-router with arbitrary

initialization on any non-bipartite graph G satisfies

Ck
rr (G) ≤ t1/4 +

4∆

δ

n
k Ψ(G).

Where ∆ – maximum degree, δ – minimum degree.
If we can bound Ψ(G), we can bound the cover time!
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Complete graph

Theorem
If G is a clique then

Ck
rr (G) =

Θ
(

n2

k

)
for k ≤ n2

Θ(1) for k > n2
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Expander

Theorem
If G is a degree-restricted expander then

Ck
rr (G) =

Θ
(

mD
k

)
for k ≤ m

Θ(D) for k > m

In expanders, the rotor-router parallelizes very well and achieves
the cover time of O(D) already for k = m.
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Hypercube

For hypercubes we have an interval of linear speedup followed by
an interval of slower speedup.

Theorem
If G is a hypercube with n vertices then

Ck
rr (G) =


Θ
(

n log2 n
k

)
for k < n log n

log log n

Θ(log n log log n) for k ∈
[
n log n

log log n , n2
log1−ε n

]
O(log n log log n) for k > n2log1−ε n

Θ(log n) = Θ(D) for k > (log n)log n
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Torus

We observed a very interesting phenomenon for constant
dimensional tori.

We have linear speedup up to n1−1/d .
Adding more agents above n1−1/d gives only logarithmic
speedup.

Theorem
If G is a torus of constant dimension then

Ck
rr (G) =


Θ
(

n1+1/d

k

)
for k ≤ n1−1/d

Θ
(

n2/d

log(k/n1−1/d )

)
for 2n1/dn1−1/d ≥ k > n1−1/d

Θ(n1/d ) = Θ(D) for k ≥ 2n1/dn1−1/d
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Multi-agent rotor-router vs. multiple random walks

In terms of the speedup, the multi-agent rotor-router resembles
very much multiple random walks.

Graph class Speedup (for small k)
Random walk Rotor-router

Cycle log k log k
Complete graph k k
Star k k
Grid

√
n ×
√
n ≥ k k

Hypercube k k

General graph Conjecture:Ω(log k) Ω(log k)
Conjecture:O(k) O(k)
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Graph k Cover time

General graph ≤ poly(n)
O
(

mD
log k

)
Ω
(

mD
k

)
Cycle < 2n Θ

(
n2

log k

)
≥ 2n Θ(n)

d-dim. torus
< n1−1/d Θ

(
n1+1/d

k

)
∈ [n1−1/d , n1−1/d2n1/d

] Θ
(

n2/d

log(k/n1−1/d )

)
> n1−1/d2n1/d

Θ(n1/d )

Hypercube

< n log n
log log n Θ

(
n log2 n

k

)
∈
[
n log n

log log n , n2
log1−ε n

]
Θ(log n log log n)

(for any ε > 0)
> n2log1−ε n O(log n log log n)
> 2log2 n log2 log2 n Θ(log n)
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Table: Cover time of the k-agent rotor-router system for different values
of k in a n-node graph with m edges and diameter D. The result for
expanders concerns the case when the ratio of the maximum degree and
the minimum degree of the graph is O(1). The result for random graphs
holds in the Erdős-Renyi model with edge probability p > (1 + ε) log n

n ,
ε > 0, a.s.

Graph k Cover time

Complete < n2 Θ
(

n2

k

)
≥ n2 Θ(1)

Expander < n log n Θ
(

n log2 n
k

)
≥ n log n Θ(log n)

Random graph < n log n Θ
(

n log2 n
k

)
≥ n log n Θ(log n)
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Open problems

1 Finish the hypercube.
2 What if we have agents with no memory and nodes with

whiteboards. Agents can perform rotor-router, but can we do
better? What if agents can have constant number of bits of
internal memory?

3 What is the frequency of visits at vertices in the limit cycle?
4 Can one show that the k agent rotor-router enters a short

period (say, a divisor of 2m) a.s. on a random graph with
random pointer initialization?

5 Are there simple examples of graphs for which the speedup is
different than log k and k?
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Thank You!
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