On the Acquaintance Time of Random Graphs

Dieter Mitsche

joint work with Bill W. Kinnersley and Paweł Prałat

Example

Acquainted pairs at Round 0: 1-2, 2-3, 3-4, 4-5, 1-5, 2-4

Example

• Choose matching and switch agents

Example

• Acquainted pairs after Round 1: 1-2, 2-3, 3-4, 4-5, 1-5, 2-4, 1-3, 3-5

Example

• Choose matching and switch agents

Example

Acquainted pairs after Round 2: 1-2, 2-3, 3-4, 4-5, 1-5, 2-4, 1-3, 3-5, 1-4, 2-5

Let G = (V, E) connected. AC(G) = min number of rounds to get all pairs of agents acquainted

Introduced by Benjamini, Shinkar, Tsur (2012)

• If $G_1 \subseteq G_2$, then $AC(G_2) \leq AC(G_1)$

AC(G) = min number of rounds to get all pairs of agents acquainted

Simple lower and upper bounds

•
$$AC(G) \geq \frac{\binom{|V|}{2}}{|E|} -$$

AC(G) = min number of rounds to get all pairs of agents acquainted

Introduced by Benjamini, Shinkar, Tsur

Simple lower and upper bounds

•
$$AC(G) \geq \frac{\binom{|V|}{2}}{|E|} - 1$$

•
$$AC(G) = \Omega(Diam(G))$$

AC(G) = min number of rounds to get all pairs of agents acquainted

Introduced by Benjamini, Shinkar, Tsur

Simple lower and upper bounds

•
$$AC(G) \geq \frac{\binom{|V|}{2}}{|E|} - 1$$

• $AC(G) = \Omega(Diam(G))$

•
$$AC(G) = O(n^2)$$

- Better upper bound was known (Benjamini, Shinkar, Tsur 2012)
- Gave slight improvement
- But new upper bound: $AC(G) = O(n^{3/2})$ (Angel, Shinkar 2014)
- Upper bound tight (explicit constructions for graphs with AC(G) = f(n) with any $f(n) \in O(n^{3/2})$ in Benjamini, Shinkar, Tsur 2012)

Proposition

- suppose that the path is v_1, \ldots, v_n , with $e_i = v_i v_{i+1}$
- Idea: On odd-numbered rounds, swap agents on odd edges, on even-numbered rounds, swap agents on even edges

Proposition

- suppose that the path is v_1, \ldots, v_n , with $e_i = v_i v_{i+1}$
- Idea: On odd-numbered rounds, swap agents on odd edges, on even-numbered rounds, swap agents on even edges

Proposition

- suppose that the path is v_1, \ldots, v_n , with $e_i = v_i v_{i+1}$
- Idea: On odd-numbered rounds, swap agents on odd edges, on even-numbered rounds, swap agents on even edges

Proposition

- suppose that the path is v_1, \ldots, v_n , with $e_i = v_i v_{i+1}$
- Idea: On odd-numbered rounds, swap agents on odd edges, on even-numbered rounds, swap agents on even edges

Proposition

- suppose that the path is v_1, \ldots, v_n , with $e_i = v_i v_{i+1}$
- Idea: On odd-numbered rounds, swap agents on odd edges, on even-numbered rounds, swap agents on even edges

Proposition

- suppose that the path is v_1, \ldots, v_n , with $e_i = v_i v_{i+1}$
- Idea: On odd-numbered rounds, swap agents on odd edges, on even-numbered rounds, swap agents on even edges

Proposition

- suppose that the path is v_1, \ldots, v_n , with $e_i = v_i v_{i+1}$
- Idea: On odd-numbered rounds, swap agents on odd edges, on even-numbered rounds, swap agents on even edges

- Erdős-Rényi model $\mathcal{G}(n, p)$: sequence of probability spaces
- For each *n* and any *G* with $V(G) = \{1, ..., n\}$, $Pr(G \in \mathcal{G}(n, p)) = p^{|E|}(1 - p)^{\binom{|V|}{2} - |E|}$
- For graph property P, we say that P holds a.a.s. if $Pr(G \ni P) \to 1$

Facts about random graphs

- $p = \log n/n$ threshold for connectivity
- $p = (\log n + \log \log n)/n$ threshold for Hamiltonicity

Conjecture (Benjamini, Shinkar, Tsur 2012)

• For $G \in \mathcal{G}(n, p)$, $p \gg \log n/n$, $AC(G) = O(\log n/p)$

Theorem (Kinnersley, M., Prałat 2013)

• For $G \in \mathcal{G}(n,p)$, $p \gg \log n/n$, $AC(G) = O(\log n/p)$

Our results

Definition

- Variant of the game: agents may use helicopter to go to any other vertex
- Formally, one round: for a permutation π , agent at ν goes to $\pi(\nu)$
- Let AC(G) = min number of rounds until all agents get acquainted in this variant

Observation

 $\overline{AC}(G) \leq AC(G)$

Theorem (Kinnersley, M., Prałat 2013)

• For
$$G \in \mathcal{G}(n,p)$$
, $n^{-1/2} \ll p \le 1 - \varepsilon$, $\overline{AC}(G) = \Omega(\log n/p)$

Corollary

For
$$G \in \mathcal{G}(n, p)$$
, $n^{-1/2} \ll p \le 1 - \varepsilon$, $AC(G) = \Theta(\log n/p)$,
 $\overline{AC}(G) = \Theta(\log n/p)$

- Use two-round exposure: $\mathcal{G}(n, p) = \mathcal{G}(n, p_1) + \mathcal{G}(n, p_2)$ with $p = p_1 + p_2 p_1 p_2$
- Choose $p_1 = (1 + \varepsilon) \log n/n$, small but enough to have Hamiltonian path
- Break path into subpaths of length Θ(log n/p)
- For each subpath, agents perform O(log n/p) rounds as in proof before (pairs of the same subpath are acquainted)
- For the remaining pairs, a.a.s. in $\mathcal{G}(n, p_2)$ at least once an edge is found

- Consider a random permutation π
- Show that after k = ε log n/p rounds the probability that all pairs are acquainted is o((¹/_{n!})^k)
- idea: expose edges one after the other, and consider pairs of vertices visited by one pair of agents
- If edge discovered, discard all at most *k* pairs of agents that correspond to this edge
- In this way investigate at least $\frac{\binom{|V|}{k}}{k}$ pairs of agents
- Show that Pr(one pair acquainted) is small (if pair of vertices was exposed but the pair of agents was not discarded, even harder to be acquainted)
- Then Pr(all pairs acquainted) really small

If you like random graphs, then ...

• Workshop on Random graphs in Nice, May 14 and May 15, 2014

