The (all guards move) Eternal Domination number for $3 \times n$ Grids

Margaret-Ellen Messinger

Mount Allison University New Brunswick, CANADA

with A.Z. Delaney (Mt.A.), S. Finbow (St.F.X.), M. van Bommel (St.F.X.)

• Deployed 4 powerful field armies (each comprised of 6 legions) over 8 regions

• An FA was considered capable of deploying to protect an adjacent region only if it moved from a region where there was at least one other FA to help launch it.

(a)

• Consider a region to be <u>secure</u> if it has an FA stationed at it and <u>securable</u> if an FA can reach it in one step.

• Constantine's strategy is known in domination theory as Roman domination.

- guards initially form a dominating set on G
- at each step, a vertex is attacked
- in a "move" for the guards, each guard may remain where it is or move to a neighbouring vertex

- guards initially form a dominating set on G
- at each step, a vertex is attacked
- in a "move" for the guards, each guard may remain where it is or move to a neighbouring vertex

イロト イヨト イヨト イヨト

if the guards "move" so that a guard is located at the attacked vertex and the set of guards again forms a dominating set, then the guards have *defended against the attack*

We wish to find the minimum number of guards to defend against *any possible* sequence of attacks on G.

- special case of the (cops-first) GUARDING PROBLEM
 - given a board [G; R, C], compute the minimum number of cops that can guard the cop-region C.

 $C \subsetneq V(G)$ and $R = V(G) \setminus C$; the cops move first and are only allowed to move within the cop-region C.

If the cop-region of H is V(G) then G has an eternal dominating set of size k if and only if k cops can guard V(G).

イロト 不得下 イヨト イヨト

⇒ PSPACE-hard [Fomin, Golovach, Lokshtanov 2009]

- + $\gamma_{\textit{all}}^\infty$ known for some small classes of graphs and trees
- $\gamma(G) \leq \gamma_{all}^{\infty}(G) \leq \alpha(G)$

Open Problem

Determine the classes of graphs G with $\gamma_{all}^{\infty}(G) = \gamma(G)$.

- If G has n vertices, $\gamma^{\infty}_{all}(G) + \gamma^{\infty}_{all}(\overline{G}) \leq n+1$
- If G connected, $\gamma_{all}^{\infty}(G) \leq \left\lceil \frac{|V(G)|}{2} \right\rceil$ $\gamma_{all}^{\infty}(G) \leq 2\gamma(G)$ [sharp for all values of γ] $\gamma_{all}^{\infty}(G) \leq 2\tau(G)$ [vertex cover number] $\delta(G) \geq 2, \ \gamma_{all}^{\infty}(G) \leq \tau(G)$ $\delta(G) \geq 2, \ G \text{ girth 7 or } \geq 9, \ \gamma_{all}^{\infty}(G) \leq \tau(G) - 1$

[survey by Mynhardt, Klostermeyer]

イロン 不良 とうほう 不良 とうほ

$$\gamma(P_3 \Box P_3) = 3 = \gamma_{all}^{\infty}(P_3 \Box P_3)$$

イロン イロン イヨン イヨン

$$\gamma(P_3 \Box P_3) = 3 = \gamma_{all}^{\infty}(P_3 \Box P_3)$$

イロン イロン イヨン イヨン

$$\gamma(P_3 \Box P_3) = 3 = \gamma_{all}^{\infty}(P_3 \Box P_3)$$

$$\gamma(P_3 \square P_5) = 4 < 5 = \gamma_{all}^{\infty}(P_3 \square P_5)$$

GRASTA 2014 9 / 27

★ロト ★問 と ★ 注 と ★ 注 と 二 注

$$\gamma(P_3 \Box P_3) = 3 = \gamma^{\infty}_{all}(P_3 \Box P_3)$$

$$\gamma(P_3 \square P_5) = 4 < 5 = \gamma^{\infty}_{\textit{all}}(P_3 \square P_5)$$

GRASTA 2014 10 / 27

★ロト ★問 と ★ 注 と ★ 注 と 二 注

After determining that $\gamma_{all}^{\infty}(P_3 \Box P_n) = n$ for $2 \le n \le 8$,

Goldwasser, Klostermeyer, Mynhardt [GKM 2012] found the surprising result that

$$\gamma_{all}^{\infty}(P_3 \Box P_9) = 8$$

which yields the upper bound

Theorem 8 [GKM 2012] For $n \ge 9$, $\gamma_{all}^{\infty}(P_3 \Box P_n) \le \left\lceil \frac{8n}{9} \right\rceil$. Conjecture 2 [GKM 2012] For n > 9, $\gamma_{all}^{\infty}(P_3 \Box P_n) = 1 + \left\lceil \frac{4n}{5} \right\rceil$.

ヘロト 人間ト 人団ト 人団ト

For n > 5, $P_3 \Box P_n$ cannot be defended if at any step, there are only four guards in the first six columns.

For n > 5, $P_3 \square P_n$ cannot be defended if at any step, there are only four guards in the first six columns.

For n > 5, $P_3 \square P_n$ cannot be defended if at any step, there are only four guards in the first six columns.

For n > 5, $P_3 \Box P_n$ cannot be defended if at any step, there are only four guards in the first six columns.

For n > 5, $P_3 \square P_n$ cannot be defended if at any step, there are only four guards in the first six columns.

For n > 5, $P_3 \square P_n$ cannot be defended if at any step, there are only four guards in the first six columns.

For n > 5, $P_3 \square P_n$ cannot be defended if at any step, there are only four guards in the first six columns.

Theorem 6 [FMvB]
For
$$n \ge 15$$
, $\gamma_{all}^{\infty}(P_3 \Box P_n) \ge 1 + \left\lceil \frac{4n}{5} \right\rceil$.

Corollary 4 [FMvB]

In any eternal dominating set of $P_3 \square P_n$, for any $\ell \ge 2$, the first ℓ columns contain at least $\lceil \frac{4\ell-3}{5} \rceil$ guards.

イロン イロン イヨン イヨン

Claim: Let \mathcal{E} be an eternal dominating family of $P_3 \Box P_n$ with fewer than $1 + \lceil \frac{4n}{5} \rceil$ guards. In every set of \mathcal{E} , there are at least $\ell - 1$ guards in the first ℓ columns, for any $\ell \ge 6$.

Proof: Let $\ell \ge 6$ be the smallest counterexample: in every set in \mathcal{E} , there are at least $\ell - 2$ guards in the first $\ell - 1$ columns, but there is a set $D \in \mathcal{E}$ in which there are $\ell - 2$ guards in the first ℓ columns.

イロト 不得下 イヨト イヨト

Claim: Let \mathcal{E} be an eternal dominating family of $P_3 \Box P_n$ with fewer than $1 + \lceil \frac{4n}{5} \rceil$ guards. In every set of \mathcal{E} , there are at least $\ell - 1$ guards in the first ℓ columns, for any $\ell \ge 6$.

Proof: Let $\ell \ge 6$ be the smallest counterexample: in every set in \mathcal{E} , there are at least $\ell - 2$ guards in the first $\ell - 1$ columns, but there is a set $D \in \mathcal{E}$ in which there are $\ell - 2$ guards in the first ℓ columns.

• D has $\ell + 1$ guards in the first $\ell + 1$ columns.

Using Corollary 4,
$$|D| \geq \ell + 1 + \Big\lceil rac{4(n-(\ell+1))-3}{5} \Big
ceil$$

By Lemma 2 [GKM], $\ell \ge 7 \Rightarrow |D| \ge 1 + \left\lceil \frac{4n}{5} \right\rceil$.

イロト 不得下 イヨト イヨト

Theorem 6 [FMvB]
For
$$n \ge 15$$
, $\gamma_{all}^{\infty}(P_3 \Box P_n) \ge 1 + \left\lceil \frac{4n}{5} \right\rceil$.

Proof: Let \mathcal{E} be an eternal dominating family of $P_3 \square P_n$ using fewer than $1 + \lceil \frac{4n}{5} \rceil$ guards.

By the Claim, for any $\ell \ge 6$, there are at least $\ell - 1$ guards in the first ℓ columns of every dominating set of \mathcal{E} .

This contradicts the assumption that the dominating sets of \mathcal{E} use fewer than $1 + \left\lceil \frac{4n}{5} \right\rceil$ guards and the result follows.

< ロ > < 同 > < 三 > < 三

We actually do a little better:

Theorems 14 and 16 [FMvB] For $n \ge 11$, $1 + \left\lceil \frac{4n+1}{5} \right\rceil \le \gamma_{all}^{\infty}(P_3 \Box P_n) \le \left\lceil \frac{6n+2}{7} \right\rceil$.

And better still:

 $\begin{bmatrix} \mathsf{DM} \ 2014 + \end{bmatrix}$ For $n \ge 11$, $1 + \left\lceil \frac{4n+1}{5} \right\rceil \le \gamma_{all}^{\infty}(P_3 \Box P_n) \le 2 + \left\lceil \frac{4n}{5} \right\rceil$.

Margaret-Ellen Messinger (MtA)

GRASTA 2014 25 / 27

Questions:

- What about $\gamma_{all}^{\infty}(P_n \Box P_n)$ for $n \geq 5$?
- Or $\gamma_{all}^{\infty}(P_m \Box P_n)$ for $m, n \ge 5$?

Thanks!

