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On the variants of treewidth

Preliminaries

Motivations of our research.

Notions.

(i) Intersection models of graphs.
(ii) Variants of treewidth.

Basic properties.

(i) Algorithms.
(ii) Characterizing small width (k “ 1, 2) in terms of cycle models

and minor obstructions.
(iii) Non-minor-closedness of these parameters for k ě 3.

Discussion
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On the variants of treewidth

Preliminaries

Cops and Robbers

Treewidth

Cops move by helicopters, robbers cannot move the vertices
occupied by cops.

Pathwidth

Cops move by helicopters, robbers cannot move the vertices
occupied by cops, + cops do not see where the robber is located.

Question

Can we describe new parameters, which we will define later,
in terms of a graph searching or a cops and robbers game?
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On the variants of treewidth

Preliminaries

Courcelle’s Theorem

Every monadic second-order logic representable graph properties
can be decided in linear time on bounded treewidth.

It needs to construct complicated automata to represent it.
One escape for this complexity is to use a relatively new
parameter ”cliquewidth”.
In 2012, Courcelle asked whether we can obtain a similar
result by restricting the conditions of tree-decompositions.

Theorem (Courcelle, 2012)

Bounded special treewidth has much simpler representation than
bounded treewidth.

A graph G has treewidth at most k if and only if
there exists a chordal graph H such that G is a subgraph of H
with maximum clique size at most k ` 1.
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Preliminaries

pathwidth

special treewidth

treewidth

directed spaghetti
treewidth

spaghetti treewidth
strongly chordal

treewidth

A graph G has special treewidth at most k if and only if
there exists a rooted directed path graph H such that G is a
subgraph of H with maximum clique size at most k ` 1.

red Ñ variations of the intersection model.
blue Ñ one more condition on even cycles
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On the variants of treewidth

Preliminaries

G is called an undirected path graph
ô G has an intersection model of paths on a tree.

G is called a directed path graph
ô G has an intersection model of directed paths on a
directed tree(the underlying graph is a tree).

(i) Forbidden induced subgraph characterizations /
fast recognition algorithms for both classes are known.

G is called a rooted directed path graph
ô G has an intersection model of directed paths on a rooted
directed tree.

(i) Forbidden induced subgraph characterization is open.
(ii) Dietz (1984, Ph.D. thesis) provided a recognition algorithm in

time Opn`mq. (not published)
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Preliminaries

G is called strongly chordal if and only if it is chordal and
every even cycle C of length at least 6 has an odd chord
which divides C into two odd paths of length at least 3.

A graph G is called a sun if V pGq has two partition
A “ ta1, a2, . . . , aku and B “ tb1, b2, . . . , bku such that A
induces an independent set and aibj P EpGq iff i “ j, j ´ 1
(mod k).

Theorem (Farber, 1983)

A graph is strongly chordal if and only if it is chordal and it has no
induced subgraph isomorphic to a sun.
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Preliminaries

Treewidth

A graph G has treewidth at most k if and only if
there exists a chordal graph H such that G is a subgraph of H
with maximum clique size at most k ` 1.

Pathwidth pwpGq : Interval graphs

Special treewidth spctwpGq : Rooted directed path graphs
(Courcelle, 2012)

Spaghetti treewidth spghtwpGq : Undirected path graphs

Directed spaghetti treewidth dspghtwpGq
: Directed path graphs

Strongly chordal treewidth sctwpGq
: Strongly chordal graphs
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On the variants of treewidth

Preliminaries

Algorithms to compute the parameters

Theorem (Bodlaender, Kratsch, and Kreuzen 13)

For fixed k, there exists a linear time algorithm that decides
whether the special treewidth (or spaghetti treewidth) of a
given graph is at most k, which runs in time Op2Opk3qq.

There exists an Op3nq-time algorithm to compute exact value of
the special treewidth.

Open

1 Fixed parameter tractability for strongly chordal treewidth.

2 Non-trivial exact algorithms for new parameters.
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On the variants of treewidth

Preliminaries

Graph classes of bounded width

Are the graphs having special treewidth ď k minor-closed?

Theorem (Courcelle 12)

All trees have special treewidth at most 1.

Observation

Let G be a connected graph. Then TFAE:
G is a tree ô twpGq ď 1 ô spghtwpGq ď 1 ô sctwpGq ď 1
ô dspghtwpGq ď 1 ô spctwpGq ď 1

Theorem (Courcelle 12)

For k ě 5, the graphs of spctwpGq ď k are not minor-closed.
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Preliminaries

Main result

Theorem

For each new parameter
(special, (directed) spaghetti, strongly chordal treewidth),
the graphs of width at most 2 are minor-closed.

We generate new subclasses of graphs of treewidth at most 2.

Theorem

For each integer k ě 3 and for each new parameter
(special, (directed) spaghetti, strongly chordal treewidth),
the graphs of width at most k are not minor-closed.
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Preliminaries

Graph classes Minor obstructions for Minor obstructions for
2-connected graphs general graphs

tw ď 2 K4 K4

spghtw ď 2 ? ?

sctw ď 2 ? ?

dspghtw ď 2 ? ?

spctw ď 2 ? ?

pw ď 2 K4, D3, S3 110 graphs
[Barát et el, 12] [Kinnersley, Langston 94]
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Graph classes Minor obstructions for Minor obstructions for
2-connected graphs general graphs

tw ď 2 K4 K4

spghtw ď 2 K4, D3 K4, D3

sctw ď 2 K4, S3 K4, S3

dspghtw ď 2 K4, D3, S3 K4, D3, S3

spctw ď 2 K4, D3, S3 6 graphs

pw ď 2 K4, D3, S3 110 graphs
[Barát et el, 12] [Kinnersley, Langston 94]
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On the variants of treewidth

Preliminaries

The obstructions (2-connected obstructions)

110 graphs
(K4, D3, S3)

6 graphs
(K4, D3, S3)

K4
(K4)

K4, D3, S3
(K4, D3, S3)

K4, D3
(K4, D3)

K4, S3
(K4, S3)

For each class, we fully describe it as a cycle model.
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Preliminaries

The graph rG is the cell completion of a 2-connected graph G
if rG is obtained from G by adding an edge vw
for all pairs of nonadjacent vertices v, w P V pGq such that
GrV pGqzvzws has at least three connected components.

Theorem (Bodlaender, Kloks 1993)

Let G be a 2-connected graph.
G has treewidth at most 2 if and only if rG is a tree of cycles.
(They are recursively defined by attaching a cycle on an edge)
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Theorem

Let G be a 2-connected graph. TFAE.

(i) G has spaghetti treewidth at most 2

(ii) rG is a tree of cycles and for every edge separator u, v in rG,
uv is not contained in 3 non-trivial induced cycles.

(i) ñ (ii). Straightforward.

17 / 22
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Preliminaries

(iii) ñ (i) We prove, by induction on the number of induced cycles,
that there exists a spaghetti tree-decomposition satisfying that
for each edge uv which is not an edge separator, there exists a bag
Pu and Pv ends in the same bag Lpuvq.
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Preliminaries

Theorem

Let G be a 2-connected graph. TFAE.

(i) G has strongly chordal treewidth at most 2

(ii) rG is a tree of cycles and for each induced cycle C,
it contains no 3 edge separators.
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Preliminaries

(i) ñ (ii) We showed that if G is a strongly chordal graph of
maximum clique size 3 and e P EpGq, then G{e is strongly chordal.
(It is not true when ě 4)

(ii) ñ (i) Suppose G is a tree of cycles such that for each induced
cycle C, it contains at most 2 edge separators.

We can triangulate each chordless cycle so that no sun appear.
By Farber’s characterization, the triangulated graph is strongly
chordal.
Therefore, G has strongly chordal treewidth two.
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Preliminaries

Corollary

Let G be a 2-connected graph. TFAE.

(i) G has pathwidth at most 2 (Bodlaender and Fluiter 1996)

(ii) G has special treewidth at most 2

(iii) G has directed path treewidth at most 2

(iv) G has no minor isomorphic to K4, S3 and D3

(v) rG is a tree of cycles and for each induced cycle C,
it contains no 3 edge separators, and for every edge separator
u, v in rG, uv is not contained in 3 non-trivial induced cycles.

Theorem

A graph is special treewidth at most 2 if and only if
(2-connected graphs of pathwidth at most two, or edges) are
attached in a sense of a rooted tree.

21 / 22
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Conclusion

We showed that

Let k be an integer.
The graphs of spghtwpGq ď k are minor-closed iff k ď 2.
The graphs of sctwpGq ď k are minor-closed iff k ď 2.
The graphs of dspghtwpGq ď k are minor-closed iff k ď 2.

Can we do better than Op3nq for computing special treewidth
exactly?

Want to find non-trivial exact algorithms for other parameters.

Can we describe those parameters in terms of cops and
robbers game?
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