On the variants of treewidth and minor-closedness property

O-joung Kwon

KAIST in Daejeon, Korea

GRASTA 2014 Joint work with Hans Bodlaender, Vincent Kreuzen, Stefan Kratsch and Seongmin Ok

On the variants of treewidth and minor-closedness property

O-joung Kwon

KAIST in Daejeon, Korea

GRASTA 2014 Joint work with Hans Bodlaender, Vincent Kreuzen, Stefan Kratsch and Seongmin Ok

- Motivations of our research.
- Notions.
 - (i) Intersection models of graphs.
 - (ii) Variants of treewidth.
- Basic properties.
 - (i) Algorithms.
 - (ii) Characterizing small width (k = 1, 2) in terms of cycle models and minor obstructions.

3/22

- (iii) Non-minor-closedness of these parameters for $k \ge 3$.
- Discussion

Cops and Robbers

Treewidth

Cops move by helicopters, robbers cannot move the vertices occupied by cops.

Pathwidth

Cops move by helicopters, robbers cannot move the vertices occupied by cops, + cops do not see where the robber is located.

Question

Can we describe new parameters, which we will define later, in terms of a graph searching or a cops and robbers game?

Courcelle's Theorem

Every monadic second-order logic representable graph properties can be decided in linear time on bounded treewidth.

- It needs to construct complicated automata to represent it.
- One escape for this complexity is to use a relatively new parameter "cliquewidth".
- In 2012, Courcelle asked whether we can obtain a similar result by restricting the conditions of tree-decompositions.

Theorem (Courcelle, 2012)

Bounded special treewidth has much simpler representation than bounded treewidth.

A graph G has treewidth at most k if and only if there exists a **chordal graph** H such that G is a subgraph of Hwith maximum clique size at most k + 1.

Courcelle's Theorem

Every monadic second-order logic representable graph properties can be decided in linear time on bounded treewidth.

- It needs to construct complicated automata to represent it.
- One escape for this complexity is to use a relatively new parameter "cliquewidth".
- In 2012, Courcelle asked whether we can obtain a similar result by restricting the conditions of tree-decompositions.

Theorem (Courcelle, 2012)

Bounded special treewidth has much simpler representation than bounded treewidth.

A graph G has treewidth at most k if and only if there exists a **chordal graph** H such that G is a subgraph of Hwith maximum clique size at most k + 1.

Preliminaries

A graph G has special treewidth at most k if and only if there exists a **rooted directed path graph** H such that G is a subgraph of H with maximum clique size at most k + 1.

- red \rightarrow variations of the intersection model.
- blue → one more condition on even cycles → <=> <=> > = <<

- G is called an undirected path graph
 ⇔ G has an intersection model of paths on a tree.
- G is called a directed path graph
 ⇔ G has an intersection model of directed paths on a directed tree(the underlying graph is a tree).
 - (i) Forbidden induced subgraph characterizations / fast recognition algorithms for both classes are known.
- G is called a rooted directed path graph
 ⇔ G has an intersection model of directed paths on a rooted directed tree.
 - $({\sf i})$ Forbidden induced subgraph characterization is open.
 - (ii) Dietz (1984, Ph.D. thesis) provided a recognition algorithm in time $\mathcal{O}(n+m)$. (not published)

- G is called **strongly chordal** if and only if it is chordal and every even cycle C of length at least 6 has an odd chord which divides C into two odd paths of length at least 3.
- A graph G is called a sun if V(G) has two partition $A = \{a_1, a_2, \ldots, a_k\}$ and $B = \{b_1, b_2, \ldots, b_k\}$ such that A induces an independent set and $a_i b_j \in E(G)$ iff i = j, j - 1(mod k).

Theorem (Farber, 1983)

A graph is strongly chordal if and only if it is chordal and it has no induced subgraph isomorphic to a sun.

Treewidth

A graph G has treewidth at most k if and only if there exists a **chordal graph** H such that G is a subgraph of Hwith maximum clique size at most k + 1.

- Pathwidth pw(G) : Interval graphs
- Special treewidth spctw(G) : Rooted directed path graphs (Courcelle, 2012)
- Spaghetti treewidth $\operatorname{spghtw}(G)$: Undirected path graphs
- Directed spaghetti treewidth dspghtw(G)
 Directed path graphs
- Strongly chordal treewidth sctw(G)
 - : Strongly chordal graphs

Treewidth

A graph G has treewidth at most k if and only if there exists a **chordal graph** H such that G is a subgraph of Hwith maximum clique size at most k + 1.

- Pathwidth pw(G) : Interval graphs
- Special treewidth spctw(G) : Rooted directed path graphs (Courcelle, 2012)
- Spaghetti treewidth $\operatorname{spghtw}(G)$: Undirected path graphs
- Directed spaghetti treewidth $\operatorname{dspghtw}(G)$
 - : Directed path graphs
- Strongly chordal treewidth sctw(G)
 - : Strongly chordal graphs

Algorithms to compute the parameters

Theorem (Bodlaender, Kratsch, and Kreuzen 13)

For fixed k, there exists a linear time algorithm that decides whether the **special treewidth** (or **spaghetti treewidth**) of a given graph is at most k, which runs in time $\mathcal{O}(2^{\mathcal{O}(k^3)})$.

There exists an $\mathcal{O}(3^n)$ -time algorithm to compute exact value of the **special treewidth**.

Open

- Fixed parameter tractability for strongly chordal treewidth.
- 2 Non-trivial exact algorithms for new parameters.

Algorithms to compute the parameters

Theorem (Bodlaender, Kratsch, and Kreuzen 13)

For fixed k, there exists a linear time algorithm that decides whether the **special treewidth** (or **spaghetti treewidth**) of a given graph is at most k, which runs in time $\mathcal{O}(2^{\mathcal{O}(k^3)})$.

There exists an $\mathcal{O}(3^n)$ -time algorithm to compute exact value of the **special treewidth**.

Open

- Fixed parameter tractability for strongly chordal treewidth.
- Non-trivial exact algorithms for new parameters.

Graph classes of bounded width

Are the graphs having special treewidth $\leq k$ minor-closed?

Theorem (Courcelle 12)

All trees have special treewidth at most 1.

Observation

Let G be a connected graph. Then TFAE: G is a tree $\Leftrightarrow \operatorname{tw}(G) \leq 1 \Leftrightarrow \operatorname{spghtw}(G) \leq 1 \Leftrightarrow \operatorname{sctw}(G) \leq 1$ $\Leftrightarrow \operatorname{dspghtw}(G) \leq 1 \Leftrightarrow \operatorname{spctw}(G) \leq 1$

Theorem (Courcelle 12)

For $k \ge 5$, the graphs of $\operatorname{spctw}(G) \le k$ are not minor-closed.

Graph classes of bounded width

Are the graphs having special treewidth $\leq k$ minor-closed?

Theorem (Courcelle 12)

All trees have special treewidth at most 1.

Observation

Let G be a connected graph. Then TFAE: G is a tree \Leftrightarrow tw(G) \leq 1 \Leftrightarrow spghtw(G) \leq 1 \Leftrightarrow sctw(G) \leq 1 \Leftrightarrow dspghtw(G) \leq 1 \Leftrightarrow spctw(G) \leq 1

Theorem (Courcelle 12)

For $k \ge 5$, the graphs of $\operatorname{spctw}(G) \le k$ are not minor-closed.

Main result

Theorem

For each new parameter (special, (directed) spaghetti, strongly chordal treewidth), the graphs of width at most 2 are minor-closed.

• We generate new subclasses of graphs of treewidth at most 2.

Theorem

For each integer $k \ge 3$ and for each new parameter (special, (directed) spaghetti, strongly chordal treewidth), the graphs of width at most k are not minor-closed.

Main result

Theorem

For each new parameter (special, (directed) spaghetti, strongly chordal treewidth), the graphs of width at most 2 are minor-closed.

• We generate new subclasses of graphs of treewidth at most 2.

Theorem

For each integer $k \ge 3$ and for each new parameter (special, (directed) spaghetti, strongly chordal treewidth), the graphs of width at most k are not minor-closed.

Preliminaries

Graph classes	Minor obstructions for	Minor obstructions for
	2-connected graphs	general graphs
$tw \leq 2$	K_4	K_4
spghtw ≤ 2	?	?
$sctw \leq 2$?	?
dspghtw ≤ 2	?	?
spctw ≤ 2	?	?
$pw \leq 2$	K_4, D_3, S_3	110 graphs
	[Barát et el, 12]	[Kinnersley, Langston 94]

Preliminaries

Graph classes	Minor obstructions for	Minor obstructions for
	2-connected graphs	general graphs
$tw \leq 2$	K_4	K_4
spghtw ≤ 2	K_4, D_3	K_4, D_3
sctw ≤ 2	K_4, S_3	K_4, S_3
dspghtw ≤ 2	K_4, D_3, S_3	K_4, D_3, S_3
spctw ≤ 2	K_4, D_3, S_3	6 graphs
$pw \leq 2$	K_4, D_3, S_3	110 graphs
	[Barát et el, 12]	[Kinnersley, Langston 94]

The obstructions (2-connected obstructions)

• For each class, we fully describe it as a cycle model.

The graph \widetilde{G} is the cell completion of a 2-connected graph G if \widetilde{G} is obtained from G by adding an edge vw for all pairs of nonadjacent vertices $v, w \in V(G)$ such that $G[V(G) \setminus v \setminus w]$ has at least three connected components.

Theorem (Bodlaender, Kloks 1993)

Let G be a 2-connected graph. G has treewidth at most 2 if and only if \tilde{G} is a tree of cycles. (They are recursively defined by attaching a cycle on an edge)

16 / 22

Theorem

Let G be a 2-connected graph. TFAE.

- (i) G has spaghetti treewidth at most 2
- (ii) \widetilde{G} is a tree of cycles and for every edge separator u, v in \widetilde{G} , uv is not contained in 3 non-trivial induced cycles.

(i) \Rightarrow (ii). Straightforward.

(iii) \Rightarrow (i) We prove, by induction on the number of induced cycles, that there exists a spaghetti tree-decomposition satisfying that for each edge uv which is not an edge separator, there exists a bag P_u and P_v ends in the same bag L(uv).

Theorem

Let G be a 2-connected graph. TFAE.

(i) G has strongly chordal treewidth at most 2 (ii) \widetilde{G} is a tree of cycles and for each induced cycle C, it contains no 3 edge separators.

(i) \Rightarrow (ii) We showed that if G is a strongly chordal graph of maximum clique size 3 and $e \in E(G)$, then G/e is strongly chordal. (It is not true when ≥ 4)

(ii) \Rightarrow (i) Suppose G is a tree of cycles such that for each induced cycle C, it contains at most 2 edge separators.

We can triangulate each chordless cycle so that no sun appear. By Farber's characterization, the triangulated graph is strongly chordal.

Therefore, G has strongly chordal treewidth two.

(i) \Rightarrow (ii) We showed that if G is a strongly chordal graph of maximum clique size 3 and $e \in E(G)$, then G/e is strongly chordal. (It is not true when ≥ 4)

(ii) \Rightarrow (i) Suppose G is a tree of cycles such that for each induced cycle C, it contains at most 2 edge separators.

We can triangulate each chordless cycle so that no sun appear. By Farber's characterization, the triangulated graph is strongly chordal.

Therefore, G has strongly chordal treewidth two.

Corollary

Let G be a 2-connected graph. TFAE.

- (i) G has pathwidth at most 2 (Bodlaender and Fluiter 1996)
- (ii) G has special treewidth at most 2
- (iii) G has directed path treewidth at most 2
- (iv) G has no minor isomorphic to K_4 , S_3 and D_3
- (v) \widetilde{G} is a tree of cycles and for each induced cycle C, it contains no 3 edge separators, and for every edge separator u, v in \widetilde{G} , uv is not contained in 3 non-trivial induced cycles.

Theorem

A graph is special treewidth at most 2 if and only if (2-connected graphs of pathwidth at most two, or edges) are attached in a sense of a rooted tree.

We showed that

- Can we do better than $\mathcal{O}(3^n)$ for computing special treewidth exactly?
- Want to find non-trivial exact algorithms for other parameters.
- Can we describe those parameters in terms of cops and robbers game?

We showed that

- Can we do better than $\mathcal{O}(3^n)$ for computing special treewidth exactly?
- Want to find non-trivial exact algorithms for other parameters.
- Can we describe those parameters in terms of cops and robbers game?

We showed that

- Can we do better than $\mathcal{O}(3^n)$ for computing special treewidth exactly?
- Want to find non-trivial exact algorithms for other parameters.
- Can we describe those parameters in terms of cops and robbers game?

We showed that

- Can we do better than $\mathcal{O}(3^n)$ for computing special treewidth exactly?
- Want to find non-trivial exact algorithms for other parameters.
- Can we describe those parameters in terms of cops and robbers game?