Fractional Combinatorial Games

F. Giroire ${ }^{1} \quad$ N. Nisse ${ }^{1} \quad$ S. Pérennes ${ }^{1} \quad$ R. P. Soares ${ }^{1,2}$

${ }^{1}$ COATI, Inria, I3S, CNRS, UNS, Sophia Antipolis, France
${ }^{2}$ ParGO Research Group, UFC, Fortaleza, Brazil

GRASTA 2014

Cargèse, Corsica, France, March 31th, 2014

Cops \& robber games [Nowakowski and Winkler; Quilliot, 83]

Initialization:

(1) \mathcal{C} places the cops;
(2) \mathcal{R} places the robber.

Step-by-step:

- each cop traverses at most 1 edge;
- the robber traverses at most 1 edge.

Robber captured:

A cop at same node as robber.

Goal:

Cop-number=minimum number of cops

Cops \& robber games [Nowakowski and Winkler; Quilliot, 83]

Initialization:

(1) \mathcal{C} places the cops;
(2) \mathcal{R} places the robber.

Step-by-step:

- each cop traverses at most 1 edge;
- the robber traverses at most 1 edge.

Robber captured:

A cop at same node as robber.

Goal:

Cop-number=minimum number of cops

Cops \& robber games [Nowakowski and Winkler; Quilliot, 83]

Initialization:

(1) \mathcal{C} places the cops;
(2) \mathcal{R} places the robber.

Step-by-step:

- each cop traverses at most 1 edge;
- the robber traverses at most 1 edge.

Robber captured:

A cop at same node as robber.

Goal:

Cop-number=minimum number of cops

Cops \& robber games [Nowakowski and Winkler; Quilliot, 83]

Initialization:

(1) \mathcal{C} places the cops;
(2) \mathcal{R} places the robber.

Step-by-step:

- each cop traverses at most 1 edge;
- the robber traverses at most 1 edge.

Robber captured:

A cop at same node as robber.

Goal:

Cop-number=minimum number of cops

Cops \& robber games [Nowakowski and Winkler; Quilliot, 83]

Initialization:

(1) \mathcal{C} places the cops;
(2) \mathcal{R} places the robber.

Step-by-step:

- each cop traverses at most 1 edge;
- the robber traverses at most 1 edge.

Robber captured:

A cop at same node as robber.

Goal:

Cop-number=minimum number of cops

Cops \& robber games [Nowakowski and Winkler; Quilliot, 83]

Initialization:

(1) \mathcal{C} places the cops;
(2) \mathcal{R} places the robber.

Step-by-step:

- each cop traverses at most 1 edge;
- the robber traverses at most 1 edge.

Robber captured:

A cop at same node as robber.

Goal:

Cop-number=minimum number of cops

Cops \& robber games [Nowakowski and Winkler; Quilliot, 83]

Initialization:

(1) \mathcal{C} places the cops;
(2) \mathcal{R} places the robber.

Step-by-step:

- each cop traverses at most 1 edge;
- the robber traverses at most 1 edge.

Robber captured:

A cop at same node as robber.

Goal:

Cop-number=minimum number of cops

Cops \& robber games [Nowakowski and Winkler; Quilliot, 83]

Initialization:

(1) \mathcal{C} places the cops;
(2) \mathcal{R} places the robber.

Step-by-step:

- each cop traverses at most 1 edge;
- the robber traverses at most 1 edge.

Robber captured:

A cop at same node as robber.

Goal:

Cop-number=minimum number of cops

Surveillance game [Fomin,Giroire,Mazauric, Jean-Marie,Nisse 12]

An Observer must ensure that a Surfer never reaches a dangerous node

Surveillance game [Fomin,Giroire,Mazauric, Jean-Marie,Nisse 12]

An Observer must ensure that a Surfer never reaches a dangerous node

Surveillance game [Fomin,Giroire,Mazauric, Jean-Marie,Nisse 12]

Turn by turn: Observer marks $k=2$ nodes

Surveillance game [Fomin,Giroire,Mazauric, Jean-Marie,Nisse 12]

Turn by turn: Observer marks $k=2$ nodes
then Surfer may move on a adjacent node

Surveillance game [Fomin,Giroire,Mazauric, Jean-Marie,Nisse 12]

Turn by turn: Observer marks $k=2$ nodes
then Surfer may move on a adjacent node

Surveillance game [Fomin,Giroire,Mazauric, Jean-Marie,Nisse 12]

Turn by turn: Observer marks $k=2$ nodes
then Surfer may move on a adjacent node

Surveillance game [Fomin,Giroire,Mazauric, Jean-Marie,Nisse 12]

Turn by turn: Observer marks $k=2$ nodes
then Surfer may move on a adjacent node

Surveillance game [Fomin,Giroire,Mazauric, Jean-Marie,Nisse 12]

Turn by turn: Observer marks $k=2$ nodes
then Surfer may move on a adjacent node

Surveillance game [Fomin,Giroire,Mazauric, Jean-Marie,Nisse 12]

Turn by turn: Observer marks $k=2$ nodes
then Surfer may move on a adjacent node

Surveillance game [Fomin,Giroire,Mazauric, Jean-Marie,Nisse 12]

Turn by turn: Observer marks $k=2$ nodes
then Surfer may move on a adjacent node

Surveillance game [Fomin,Giroire,Mazauric, Jean-Marie,Nisse 12]

Turn by turn: Observer marks $k=2$ nodes
then Surfer may move on a adjacent node

Surveillance game [Fomin,Giroire,Mazauric, Jean-Marie,Nisse 12]

Turn by turn: Observer marks $k=2$ nodes
then Surfer may move on a adjacent node

Surveillance game [Fomin,Giroire,Mazauric, Jean-Marie,Nisse 12]

Turn by turn: Observer marks $k=2$ nodes
then Surfer may move on a adjacent node

Surveillance game [Fomin,Giroire,Mazauric, Jean-Marie,Nisse 12]

In this example, all nodes are marked
Victory of the Observer using 2 marks per turn

Model: another Two players game

- a Surfer in G, a dangerous graph starts from safe homebase v_{0}

- a Guard with some amount k of bullets

Turn by turn:
(1) the guard secures $\leq k$ nodes;
(2) then, the Surfer may move to an adjacent node.

Defeat: Surfer in unsafe node

Minimize amount of bullets to win for any Surfer's trajectory
Surveillance number of G (connected) from $v_{0}: \operatorname{sn}\left(G, v_{0}\right)$

Two Players Combinatorial Games

- Two players play a game on a graph.
- Game is played turn-by-turn.
- Players play by moving and/or adding tokens on vertices of the graph.
- Optimization problem:
minimizing number of tokens to achieve some goal

All these games are hard

- Cops and Robber: k cops are enough?
- PSPACE-complete in general graphs [Mamino, 2012].
- Surveillance Game: k marks per turn are enough?
- $k=2$ NP-complete for Chordal/Bipartite Graphs [Fomin et al, 2012].
- $k=4$ PSPACE-complete for DAGS [Fomin et al, 2012].
- Angels and Devils: Does an Angel of power k wins?
- 1-Angel loses in (infinite) grids [Conway, 1982].
- 2-Angel wins in (infinite) grids [Máthé, 2007].
- Eternal Dominating set.
- Eternal Vertex Cover.
- NP-hard [Fomin et al, 2010].

New tools/approaches are required

Several questions remain open

- Meyniel conjecture: $c n(G)=O(\sqrt{n})$ in any n-node graphs?
- Polynomial-time Approximation algorithms?
less difficult but still intriguing
- number of cops to capture fast robber in grids?
- cost of connectivity in surveillance game?
- etc.

Here, we present preliminary results of our new approach

Fractional Combinatorial Game

－Fractional games：
both players can use＂fractions＂of tokens．代姚爵息娄：界界思思各
－Semi－Fractional games：
only one player（Player C）can use fractions of tokens．©既鄫葸：
－Integral games：classical games，token are unsplittable

Example: Fractional Cops and Robber

integral game:
cop-number $=2$

Example: Fractional Cops and Robber

integral game:
cop-number $=2$
semi fractional:
cop-number $\leq 3 / 2$

Example: Fractional Cops and Robber

integral game:
cop-number $=2$
semi fractional:
cop-number $\leq 3 / 2$

Example: Fractional Cops and Robber

integral game:
cop-number $=2$
semi fractional:
cop-number $\leq 3 / 2$

Example: Fractional Cops and Robber

integral game:
cop-number $=2$
semi fractional:
cop-number $\leq 3 / 2$

Example: Fractional Cops and Robber

integral game:
cop-number $=2$
semi fractional: cop-number $\leq 3 / 2$

Example: Fractional Cops and Robber

integral game:
cop-number $=2$
semi fractional: cop-number $\leq 3 / 2$

Example: Fractional Cops and Robber

integral game:
cop-number $=2$
semi fractional:
cop-number $\leq 3 / 2$

Example: Fractional Cops and Robber

integral game:
cop-number $=2$
semi fractional:
cop-number $\leq 3 / 2$

Remark:

by definition:
semi-fractional \leq integral
gap?
relationship with fractional?

Preliminary results

Fractional games

general framework: fractional relaxation of turn-by-turn games important property: "convexity" of winning states

Semi-fractional = fractional
 (properties of robber's moves)

solutions of fractional games provides lower bounds for integral games
Algorithm \mathcal{A} to decide which player wins tools: linear programming techniques.

Bad news: one step of \mathcal{A} is exponential (exponent: length of the game) Hope: use specifities of games to reduce time-complexity

Integrality gap

Bad news: fractional cop-number $\leq 1+\epsilon$ for any graph and any $\epsilon>0$ Hope: surveillance game: fractional game gives a probabilistic $\log n$-approximation

States of the Game

In n-node graph

- $c \in \mathbb{R}_{+}^{n}$ represents the tokens of Player C.
- $r \in \mathbb{R}_{+}^{n}$ represents the tokens of Player \mathbb{R}.
- $(c, r) \in \mathbb{R}_{+}^{2 n}$ represents the state of the game.

$$
c=(0.7,0.2,0.1) \text { and } r=(0,0.5,0.5)
$$

set of states $=$ polytope
Examples:
cops and robber: $\sum_{i \leq n} r_{i}=1$ and $\sum_{i \leq n} c_{i}=k$ (\# of cops)
surveillance game: $\sum_{i \leq n} r_{i}=1$

Winning states and moves

winning states $=$ convex subset of states

cops and robber: $\left\{(c, r) \mid c_{i} \geq r_{i}, i=1 \cdots, n\right\}$
surveillance game: $\left\{(c, r) \mid c_{i} \geq 1, i=1 \cdots, n\right\}$

moves

slide tokens along edges $=$ multiplication by stochastic matrix in

$$
\left\{\begin{array}{l|l}
{\left[\alpha_{i, j}\right]_{1 \leq i, j \leq n}} & \begin{array}{r}
\forall 1 \leq i, j \leq n, \alpha_{i, j} \geq 0, \text { and } \\
\forall j \leq n, \sum_{1 \leq i \leq n} \alpha_{i, j}=1, \text { and } \\
\text { if }\{i, j\} \notin E(G) \text { then } \alpha_{i, j}=0
\end{array}
\end{array}\right\}
$$

if $i j \in E$, an amount $\alpha_{i, j}$ of the token in v_{j} goes to v_{i}
mark nodes $=$ add to c a vector in

$$
\left\{\left(m_{1}, \cdots, m_{n}\right) \mid \sum_{i \leq n} m_{i} \leq k\right\}
$$

Main Idea of Algorithm 1/2

\mathcal{R}_{i-1} : states from which Player C always wins in at most $i-1$ rounds, when Player R is the first to play.
$\mathcal{C}_{i}=\{(c, r) \mid$
\exists move, $($ move $(c), r) \in$ \mathcal{R}_{i-1} \}

Main Idea of Algorithm 1/2

\mathcal{R}_{i-1} : states from which Player C always wins in at most $i-1$ rounds, when Player R is the first to play.
$\mathcal{C}_{i}=\{(c, r) \mid$
\exists move, $($ move $(c), r) \in$ $\left.\mathcal{R}_{i-1}\right\}$
\mathcal{C}_{i} : states from which Player C always wins in at most i rounds when playing first
$\mathcal{C}_{i}=$ polytope, computable from \mathcal{R}_{i-1}, polynomial-size but in higher dimension
Problem: projection

Main Idea of Algorithm 2/2

\mathcal{C}_{i} : states from which Player
C always wins in at most i rounds when playing first

$$
\begin{aligned}
& \mathcal{R}_{i}=\{(c, r) \mid \\
& \left.\forall \text { move },(c, \operatorname{move}(r)) \in \mathcal{C}_{i}\right\}
\end{aligned}
$$

Main Idea of Algorithm 2/2

\mathcal{C}_{i} : states from which Player
C always wins in at most i rounds when playing first
$\mathcal{R}_{i}=\{(c, r) \mid$
\forall move,$\left.(c, \operatorname{move}(r)) \in \mathcal{C}_{i}\right\}$
\mathcal{R}_{i} : states from which Player
C always wins in at most i rounds, when Player R is the first to play.
$\mathcal{R}_{i}=$ polytope, computable from \mathcal{C}_{i}, polynomial-size.
Trick: "just" have to reenforce each constraint

Bad news and Good news

Fractional cop-number is one
Strategy: place $f_{1}=1 / n$ cop per node At step i,
(1) $h_{i}=\sum_{j \leq i} f_{j}$ cop "follows" the robber.
$1-h_{i}$ cop remains
(2) place $f_{i+1}=\frac{1-h_{i}}{n}$ cop per node. $h_{i}{ }_{i \rightarrow \infty} 1$

Meyniel conjecture seems safe...
approximation for surveillance number?
Surveillance game: inequality defining the polytopes are similar to set cover
Proof based on approximation of set cover for the moment: only probabilistic strategy

Conclusion and Future Work

Promising framework (we hope)
Lot of work remains:

- polynomial algorithm? (it is if length of game is bounded)
- approximation?
- fast robber?
- careful analysis of polytopes in each game
- etc.

Thank you

