Cop and Robber Game and Hyperbolicity

J. Chalopin¹ V. Chepoi¹ P. Papasoglu² T. Pecatte³

¹LIF, CNRS & Aix-Marseille Université

²Mathematical Institute, University of Oxford

³ÉNS de Lyon

GRASTA, 31/03/2014

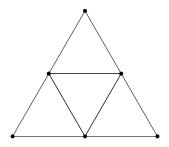
A game between one cop C and one robber R on a graph GInitialization:

- C chooses a vertex
- R chooses a vertex

Step-by-step:

- C traverses at most 1 edge;
- R traverses at most 1 edge.

- C wins if it is on the same vertex as
 R
- R wins if it can avoid C forever



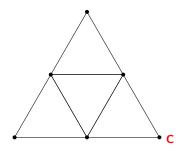
A game between one cop C and one robber R on a graph GInitialization:

- C chooses a vertex
- R chooses a vertex

Step-by-step:

- C traverses at most 1 edge;
- R traverses at most 1 edge.

- C wins if it is on the same vertex as
 R
- R wins if it can avoid C forever



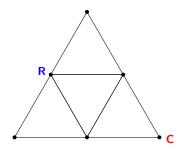
A game between one cop C and one robber R on a graph GInitialization:

- C chooses a vertex
- R chooses a vertex

Step-by-step:

- C traverses at most 1 edge;
- R traverses at most 1 edge.

- C wins if it is on the same vertex as
 R
- R wins if it can avoid C forever



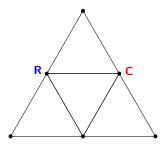
A game between one cop C and one robber R on a graph GInitialization:

- C chooses a vertex
- R chooses a vertex

Step-by-step:

- C traverses at most 1 edge;
- R traverses at most 1 edge.

- C wins if it is on the same vertex as
 R
- R wins if it can avoid C forever



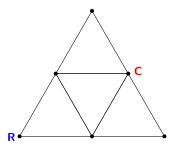
A game between one cop C and one robber R on a graph GInitialization:

- C chooses a vertex
- R chooses a vertex

Step-by-step:

- C traverses at most 1 edge;
- R traverses at most 1 edge.

- C wins if it is on the same vertex as
 R
- R wins if it can avoid C forever



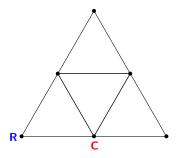
A game between one cop C and one robber R on a graph GInitialization:

- C chooses a vertex
- R chooses a vertex

Step-by-step:

- C traverses at most 1 edge;
- R traverses at most 1 edge.

- C wins if it is on the same vertex as
 R
- R wins if it can avoid C forever



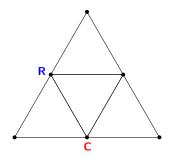
A game between one cop C and one robber R on a graph GInitialization:

- C chooses a vertex
- R chooses a vertex

Step-by-step:

- C traverses at most 1 edge;
- R traverses at most 1 edge.

- C wins if it is on the same vertex as
 R
- R wins if it can avoid C forever



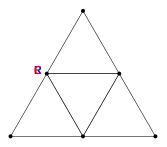
A game between one cop C and one robber R on a graph GInitialization:

- C chooses a vertex
- R chooses a vertex

Step-by-step:

- C traverses at most 1 edge;
- R traverses at most 1 edge.

- C wins if it is on the same vertex as
 R
- R wins if it can avoid C forever



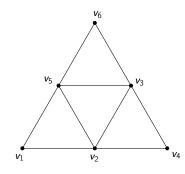
A graph G is cop-win if C can win whatever R does

Theorem (Nowakowski and Winkler; Quilliot '83)

A graph G is cop-win iff there exists a dismantling order v_1, v_2, \ldots, v_n such that

$$\forall i > 1, \exists j < i, N[v_i, G_i] \subseteq N[v_j]$$

G_i: graph induced by $X_i = \{v_1, v_2, ..., v_i\}$



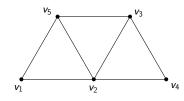
A graph G is cop-win if C can win whatever R does

Theorem (Nowakowski and Winkler; Quilliot '83)

A graph G is cop-win iff there exists a dismantling order v_1, v_2, \ldots, v_n such that

$$\forall i > 1, \exists j < i, N[v_i, G_i] \subseteq N[v_j]$$

 G_i : graph induced by $X_i = \{v_1, v_2, ..., v_i\}$



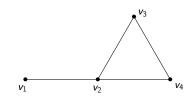
A graph G is cop-win if C can win whatever R does

Theorem (Nowakowski and Winkler; Quilliot '83)

A graph G is cop-win iff there exists a dismantling order v_1, v_2, \ldots, v_n such that

$$\forall i > 1, \exists j < i, N[v_i, G_i] \subseteq N[v_j]$$

G_i: graph induced by $X_i = \{v_1, v_2, ..., v_i\}$



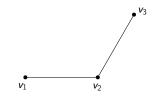
A graph G is cop-win if C can win whatever R does

Theorem (Nowakowski and Winkler; Quilliot '83)

A graph G is cop-win iff there exists a dismantling order v_1, v_2, \ldots, v_n such that

$$\forall i > 1, \exists j < i, N[v_i, G_i] \subseteq N[v_j]$$

G_i: graph induced by $X_i = \{v_1, v_2, ..., v_i\}$



A graph G is cop-win if C can win whatever R does

Theorem (Nowakowski and Winkler; Quilliot '83)

A graph G is cop-win iff there exists a dismantling order v_1, v_2, \ldots, v_n such that

 $\forall i > 1, \exists j < i, N[v_i, G_i] \subseteq N[v_j]$

G_i: graph induced by $X_i = \{v_1, v_2, ..., v_i\}$

A graph G is cop-win if C can win whatever R does

Theorem (Nowakowski and Winkler; Quilliot '83)

A graph G is cop-win iff there exists a dismantling order v_1, v_2, \ldots, v_n such that

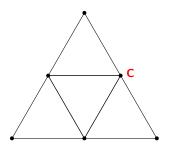
$$\forall i > 1, \exists j < i, N[v_i, G_i] \subseteq N[v_j]$$

 v_1

 G_i : graph induced by $X_i = \{v_1, v_2, \dots, v_i\}$

A game between one cop C moving at speed s' and one robber R moving at speed s

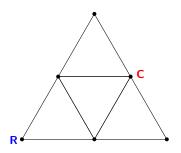
- C traverses at most s' edge;
- R traverses at most s edge.



- C has speed s' = 1
- ▶ R has speed s = 2

A game between one cop C moving at speed s' and one robber R moving at speed s

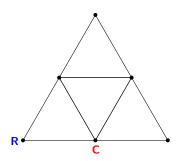
- C traverses at most s' edge;
- R traverses at most s edge.



- C has speed s' = 1
- R has speed s = 2

A game between one cop C moving at speed s' and one robber R moving at speed s

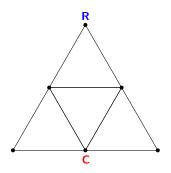
- C traverses at most s' edge;
- R traverses at most s edge.



- C has speed s' = 1
- R has speed s = 2

A game between one cop C moving at speed s' and one robber R moving at speed s

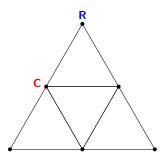
- C traverses at most s' edge;
- R traverses at most s edge.



- C has speed s' = 1
- R has speed s = 2

A game between one cop C moving at speed s' and one robber R moving at speed s

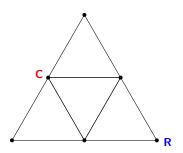
- C traverses at most s' edge;
- R traverses at most s edge.



- C has speed s' = 1
- R has speed s = 2

A game between one cop C moving at speed s' and one robber R moving at speed s

- C traverses at most s' edge;
- R traverses at most s edge.



- C has speed s' = 1
- R has speed s = 2

(s, s')-Cop-win Graphs and (s, s')-dismantlability

A graph *G* is (s,s')-cop-win if **C** (moving at speed s') can win whatever **R** (moving at speed s) does

Remark

If s < s', every graph is (s,s')-cop-win

Theorem (C., Chepoi, Nisse, Vaxès '11)

A graph G is $(\mathbf{s}, \mathbf{s}')$ -cop-win if and only if there exists a $(\mathbf{s}, \mathbf{s}')$ -dismantling order v_1, v_2, \ldots, v_n such that

$$\forall i > 1, \exists j < i, B_s(v_i, G \setminus v_j) \cap X_i \subseteq B_{s'}(v_j)$$

 $X_i = \{v_1, v_2, \ldots, v_i\}$

Two kinds of (s, s')-dismantlability

An ordering v_1, v_2, \ldots, v_n of the vertices of V(G) is

► (s, s')-dismantling if

$$\forall i > 1, \exists j < i, B_s(v_i, G \setminus v_j) \cap X_i \subseteq B_{s'}(v_j)$$

► (s, s')*-dismantling if

$$\forall i > 1, \exists j < i, B_{\mathcal{S}}(v_i, G) \cap X_i \subseteq B_{\mathcal{S}'}(v_j)$$

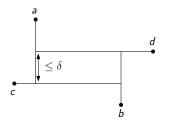
Remarks

- (s, s')-dismantling \implies (s, s 1)-dismantling if s' < s
- $(s, s')^*$ -dismantling $\implies (s, s')$ -dismantling
- (s, s-1)-dismantling $\implies (s, s-1)^*$ -dismantling
- G is $(s, s)^*$ -dismantlable iff G^s is dismantlable

A graph (or a metric space) is δ -hyperbolic if for every four points a, b, c, d,

 $d(a,b) + d(c,d) \le \max\{d(a,c) + d(b,d), d(a,d) + d(b,c)\} + 2\delta$

The hyperbolicity δ^* of a graph *G* is the minimal value of δ such that *G* is δ -hyperbolic



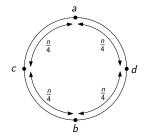
A graph (or a metric space) is δ -hyperbolic if for every four points a, b, c, d,

 $d(a,b) + d(c,d) \le \max\{d(a,c) + d(b,d), d(a,d) + d(b,c)\} + 2\delta$

The hyperbolicity δ^* of a graph *G* is the minimal value of δ such that *G* is δ -hyperbolic

Examples:

- Trees and cliques are 0-hyperbolic
- Cycles are $\frac{n}{4}$ -hyperbolic
- Square grids are \sqrt{n} -hyperbolic
- Chordal graphs are 1-hyperbolic [Brinkmann, Koolen, Moulton '01]



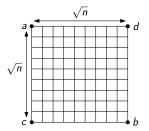
A graph (or a metric space) is δ -hyperbolic if for every four points a, b, c, d,

 $d(a,b) + d(c,d) \le \max\{d(a,c) + d(b,d), d(a,d) + d(b,c)\} + 2\delta$

The hyperbolicity δ^* of a graph *G* is the minimal value of δ such that *G* is δ -hyperbolic

Examples:

- Trees and cliques are 0-hyperbolic
- Cycles are $\frac{n}{4}$ -hyperbolic
- Square grids are \sqrt{n} -hyperbolic
- Chordal graphs are 1-hyperbolic [Brinkmann, Koolen, Moulton '01]



A graph (or a metric space) is δ -hyperbolic if for every four points a, b, c, d,

 $d(a,b) + d(c,d) \le \max\{d(a,c) + d(b,d), d(a,d) + d(b,c)\} + 2\delta$

The hyperbolicity δ^* of a graph *G* is the minimal value of δ such that *G* is δ -hyperbolic

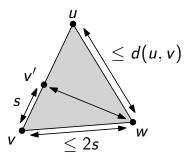
Remark

- The hyperbolicity of G measures how G is metrically close from a tree
- There exist many definitions of δ-hyperbolicity; they are equivalent up to a multiplicative factor

Proposition (from Chepoi, Estellon '07)

Any δ -hyperbolic graph is $(2s,s+2\delta)^*$ -dismantlable, and thus $(2s,s+2\delta)$ -cop-win

- Consider any BFS ordering of V(G) from a vertex u
- For all v, let v' be a vertex on a shortest path from v to u s.t. d(v, v') = s

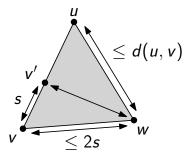


Proposition (from Chepoi, Estellon '07)

Any δ -hyperbolic graph is $(2s, s + 2\delta)^*$ -dismantlable, and thus $(2s, s + 2\delta)$ -cop-win

Let $w \in B_{2s}(v) \cap X_v$

$$egin{array}{rcl} d(u,v')+d(v,w)&\leq& d(u,v')+2s\ &\leq& d(u,v)+s\ d(v,v')+d(u,w)&\leq& s+d(u,v) \end{array}$$



Proposition (from Chepoi, Estellon '07)

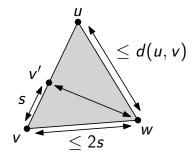
Any δ -hyperbolic graph is $(2s,s+2\delta)^*$ -dismantlable, and thus $(2s,s+2\delta)$ -cop-win

Let $w \in B_{2s}(v) \cap X_v$

$$egin{array}{rcl} d(u,v')+d(v,w)&\leq& d(u,v')+2s\ &\leq& d(u,v)+s\ d(v,v')+d(u,w)&\leq& s+d(u,v) \end{array}$$

Consequently,

$$\begin{aligned} d(v',w) + d(u,v) &\leq s + d(u,v) + 2\delta \\ d(v',w) &\leq s + 2\delta \end{aligned}$$



Proposition (from Chepoi, Estellon '07)

Any δ -hyperbolic graph is $(2s, s + 2\delta)^*$ -dismantlable, and thus $(2s, s + 2\delta)$ -cop-win

Question

Is any (s, s')-cop-win graph f(s)-hyperbolic ?

Proposition (from Chepoi, Estellon '07)

Any δ -hyperbolic graph is $(2s, s + 2\delta)^*$ -dismantlable, and thus $(2s, s + 2\delta)$ -cop-win

Question

Is any (s, s')-cop-win graph f(s)-hyperbolic ?

Theorem

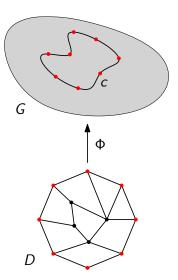
G is (s, s')-cop-win \implies G is $64s^2$ -hyperbolic

Another characterization of hyperbolicity

For a cycle c, (D, Φ) is an *N*-filling of c if

- D is a 2-connected planar graph
- every internal face of D has at most 2N edges
- $\Phi: D \to G$ is a simplicial map

•
$$\Phi(\partial D) = c$$



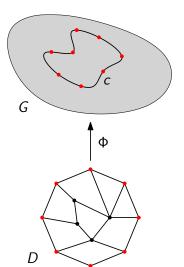
Another characterization of hyperbolicity

For a cycle c, (D, Φ) is an *N*-filling of c if

- D is a 2-connected planar graph
- every internal face of D has at most 2N edges
- $\Phi: D \rightarrow G$ is a simplicial map

• $\Phi(\partial D) = c$

- The area of (D, Φ) is the number of faces of D
- Area_N(c) is the minimum area of an N-filling of c
- $\ell(c)$ is the length of c



Linear Isoperimetric Inequality

A graph *G* satisfies the linear isoperimetric inequality, if there exists $K \in \mathbb{N}$ and *N* such that

 $\forall c, \text{ Area}_N(c) \leq K\ell(c)$

Theorem (Gromov)

- G is δ -hyperbolic $\implies \forall c, Area_{16\delta}(c) \leq \ell(c)$
- ► $\forall c, Area_N(c) \leq K\ell(c) \implies G \text{ is } O(K^2N^3)$ -hyperbolic

For a proof, see [Bridson and Haefliger]

Linear Isoperimetric Inequality

A graph *G* satisfies the linear isoperimetric inequality, if there exists $K \in \mathbb{N}$ and *N* such that

 $\forall c, \text{ Area}_N(c) \leq K\ell(c)$

Theorem (Gromov)

- G is δ -hyperbolic $\implies \forall c, Area_{16\delta}(c) \leq \ell(c)$
- $\forall c, Area_N(c) \leq K\ell(c) \implies G \text{ is } O(K^2N^3)$ -hyperbolic

For a proof, see [Bridson and Haefliger]

Proposition

When $K \in \mathbb{Q}$, $\forall c, \operatorname{Area}_{N}(c) \leq \lceil K\ell(c) \rceil \implies G \text{ is } (32KN^{2} + \frac{1}{2}) \text{-hyperbolic}$

Theorem

If G is $(s, s')^*$ -dismantlable with s' < s,

$$\forall c, Area_{s+s'}(c) \leq \left\lceil \frac{\ell(c)}{2(s-s')}
ight
ceil$$

Theorem

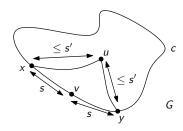
If G is $(s, s')^*$ -dismantlable with s' < s,

$$orall c, Area_{s+s'}(c) \leq \left\lceil rac{\ell(c)}{2(s-s')}
ight
ceil$$

Proof by induction on $\ell(c)$:

 v: the last vertex of c in the dismantling order

$$\blacktriangleright B_{s}(v) \cap c \subseteq B_{s}(v) \cap X_{v} \subseteq B_{s'}(u)$$



Theorem

If G is $(s, s')^*$ -dismantlable with s' < s,

$$orall c, Area_{s+s'}(c) \leq \left\lceil rac{\ell(c)}{2(s-s')}
ight
ceil$$

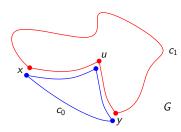
Proof by induction on $\ell(c)$:

 v: the last vertex of c in the dismantling order

$$\blacktriangleright B_{s}(v) \cap c \subseteq B_{s}(v) \cap X_{v} \subseteq B_{s'}(u)$$

▶
$$\ell(c_0) \leq 2(s+s')$$

▶
$$\ell(c_1) \le \ell(c) - 2(s - s')$$



Theorem

If G is $(s, s')^*$ -dismantlable with s' < s,

$$orall c, Area_{s+s'}(c) \leq \left\lceil rac{\ell(c)}{2(s-s')}
ight
ceil$$

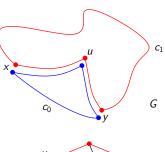
Proof by induction on $\ell(c)$:

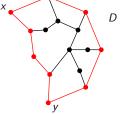
 v: the last vertex of c in the dismantling order

$$\blacktriangleright B_{s}(v) \cap c \subseteq B_{s}(v) \cap X_{v} \subseteq B_{s'}(u)$$

▶
$$\ell(c_0) \leq 2(s+s')$$

▶
$$\ell(c_1) \le \ell(c) - 2(s - s')$$





Theorem

If G is $(s, s')^*$ -dismantlable with s' < s,

$$orall c, \textit{Area}_{s+s'}(c) \leq \left\lceil rac{\ell(c)}{2(s-s')}
ight
ceil$$

Proof by induction on $\ell(c)$:

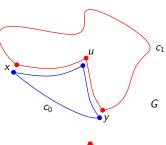
v: the last vertex of c in the dismantling order

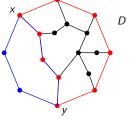
$$\blacktriangleright B_{s}(v) \cap c \subseteq B_{s}(v) \cap X_{v} \subseteq B_{s'}(u)$$

► $\ell(c_0) \leq 2(s+s')$

$$\blacktriangleright \ \ell(c_1) \leq \ell(c) - 2(s-s')$$

• Area_{s+s'}(c) $\leq 1 + \left\lceil \frac{\ell(c_1)}{2(s-s')} \right\rceil \leq \left\lceil \frac{\ell(c)}{2(s-s')} \right\rceil$





(s, s')-cop-win graphs are hyperbolic

Theorem

G is
$$(s, s')^*$$
-dismantlable with $s' < s \implies \delta^*(G) \le 16 \frac{(s+s')^2}{s-s'} + \frac{1}{2}$

Corollary

$$G$$
 is $(s, s-1)$ -cop-win \implies G is $64s^2$ -hyperbolic

Computing the hyperbolicity

Assume the distance-matrix of G has been computed

Computing the hyperbolicity $\delta^*(G)$

• 4 points condition: $O(n^4)$

Computing an approximation of $\delta^*(G)$

Fixing one point: a 2-approx. in $O(n^3)$

Computing the hyperbolicity

Assume the distance-matrix of G has been computed

Computing the hyperbolicity $\delta^*(G)$

- 4 points condition: $O(n^4)$
- ▶ Using (max, min)-matrix product: *O*(*n*^{3.69})

[Fournier, Ismail, Vigneron '12]

Computing an approximation of $\delta^*(G)$

- fixing one point: a 2-approx. in $O(n^3)$
- Using (max, min)-matrix product: a 2-approx. in O(n^{2.69}) [Fournier, Ismail, Vigneron '12]

Computing the hyperbolicity

Assume the distance-matrix of G has been computed

Computing the hyperbolicity $\delta^*(G)$

- 4 points condition: $O(n^4)$
- ▶ Using (max, min)-matrix product: *O*(*n*^{3.69})

Computing an approximation of $\delta^*(G)$

- fixing one point: a 2-approx. in $O(n^3)$
- Using (max, min)-matrix product: a 2-approx. in O(n^{2.69}) [Fournier, Ismail, Vigneron '12]

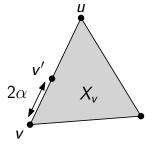
Theorem

From the distance-matrix of G, one can compute a constant approximation of $\delta^*(G)$ in $O(n^2 \log \delta^*)$

[[]Fournier, Ismail, Vigneron '12]

Approximation Algorithm for δ^*

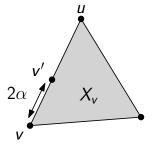
Approx- $\delta^*(G,\alpha)$ Consider a BFS ordering \prec of V(G) fromany vertex u;For all v, let v' be on a shortest pathfrom v to u such that $d(v, v') = 2\alpha$;for all $v \in V$ doif $B_{4\alpha}(v,G) \cap X_v \not\subseteq B_{3\alpha}(v',G)$ then $oxedsymbol{L}$ return NO



return YES;

Approximation Algorithm for δ^*

Approx- $\delta^*(G,\alpha)$ Consider a BFS ordering \prec of V(G) fromany vertex u;For all v, let v' be on a shortest pathfrom v to u such that $d(v, v') = 2\alpha$;for $all v \in V$ doif $B_{4\alpha}(v, G) \cap X_v \not\subseteq B_{3\alpha}(v', G)$ then $oxedsymbol{L}$ return NO

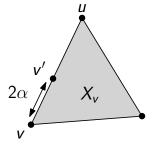


return YES;

NO \prec is not $(2(2\alpha), 2\alpha + \alpha)^*$ -dismantling $\implies \delta^* > \frac{\alpha}{2}$ YES *G* is $(4\alpha, 3\alpha)^*$ -dismantlable

$$\implies \delta^* \le 16 \frac{(7\alpha)^2}{\alpha} + \frac{1}{2} = 784\alpha + \frac{1}{2}$$

Approx- $\delta^*(G,\alpha)$ Consider a BFS ordering \prec of V(G) fromany vertex u;For all v, let v' be on a shortest pathfrom v to u such that $d(v, v') = 2\alpha$;for all $v \in V$ do $| if B_{4\alpha}(v, G) \cap X_v \not\subseteq B_{3\alpha}(v', G)$ then $oxedsymbol{}$ return NO

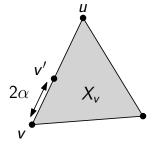


return YES;

NO \prec is not (2(2 α), 2 α + α)*-dismantlingBy dichotomy, we find α $\implies \delta^* > \frac{\alpha}{2}$ $\alpha/2 \le \delta^* \le 784\alpha + \frac{1}{2}$ YESG is (4 α , 3 α)*-dismantlable $\alpha/2 \le \delta^* \le 784\alpha + \frac{1}{2}$ $\implies \delta^* \le 16\frac{(7\alpha)^2}{\alpha} + \frac{1}{2} = 784\alpha + \frac{1}{2}$ 1570-approx. of $\delta^*(G)$

Approximation Algorithm for δ^*

Approx- $\delta^*(G,\alpha)$ Consider a BFS ordering \prec of V(G) fromany vertex u;For all v, let v' be on a shortest pathfrom v to u such that $d(v, v') = 2\alpha$;for all $v \in V$ doif $B_{4\alpha}(v, G) \cap X_v \not\subseteq B_{3\alpha}(v', G)$ then $oxedsymbol{L}$ return NO



return YES;

Complexity: **Approx-** $\delta^*(G,\alpha)$ runs in time $O(n^2)$

Theorem

One can compute a 1570-approximation of δ^* in time $O(n^2 \log \delta^*)$

Conclusion

- Characterization of hyperbolicity via a cop and robber game Different notions that are qualitatively equivalent
 - ► (*s*, *s*′)-copwin graphs
 - (s, s')-dismantlability
 - ► (s, s')*-dismantlability
 - bounded hyperbolicity
- Links between (s, s')*-dismantlability and hyperbolicity hold for infinite graphs
- A constant-factor approximation of the hyperbolicity in O(n² log n) (starting from the distance-matrix)