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  Objective :  As quickly as possible -> performance guarantees

  Variant :     Turning direction incurs a fixed cost

  Main result :       ★ Tight bounds on the performance measures 

★ Explore the role of infinite LPs + duality
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More recent related work

[Kirkpatrick 2009] and [Mc Gregor et al. 2009] : New measures for 
analysis: OPT does not have the complete picture of the instance 

and interruptible algorithms

[A. et al., 2006 & 2009]

[A. et al. 2011]                      Multi-target search
[Tseng and Kirkpatrick 2011]      Input-thrifty algorithms

[Bose et al., 2013]                  Linear search with distance bounds

[Bernrstein et al. 2003]           Ray search       Interruptible algorithms

In preparation :                    More connections between searching   
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Online searching with turn cost

+d+d +d

  Total cost = Distance traversed + overall turn cost

 Competitive ratio =    sup  
total search cost

λ

 Objective : Find the smallest B such that 

Total cost of searching  ( Comp. ratio )   λ  +  Β·

competitive ratio = 9
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LP formulations of the problem (Demaine et al.)

x1 x2

x3 x4

2x1 + 2x2 + 2x3 + 2x4 + x3 + 4d  9x3 +B

Infinite LP  : Min B subject to an infinite number of constraints
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Ray searching with turn cost 

x1

x2

x3x4

comp. ratio = 1 + 2M

Using the strategy xi =
d
2 (b

i � 1) yields B = (M �m)d

where M = bm

b�1 and b = m
m�1
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min B (P1)

s.t. 2
Xm�1

j=1
xj �B 6 �d(m� 1)

2
Xm+i

j=1
xj � 2Mxi+1 �B 6 �d(m+ i) 8i = 0 . . . k

B, x1, . . . , xm+k > 0,

We can obtain an infinite family of LP formulations
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min B (P1)

s.t. 2
Xm�1

j=1
xj �B 6 �d(m� 1)

2
Xm+i

j=1
xj � 2Mxi+1 �B 6 �d(m+ i) 8i = 0 . . . k

B, x1, . . . , xm+k > 0,

with corresponding dual LPs

We can obtain an infinite family of LP formulations

max

✓
(m� 1)z +

Xk

i=0

yi(m+ i)

◆
d (D

1

)

s.t. z +
Xk

i=0

yi 6 1

⇢
z , j  m� 1

0 , otherwise

�
+

Xk

i=max(0,j�m)

yi �Myj�1

> 0 8j = 1 . . .m+ k

z, y
0

, . . . , yk > 0

Extension to ray searching (Demaine et al.)
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Demaine et al. focus on the infinite dual LP

Dealing with the infinite LP

max

⇣
(m� 1)z +

X1

i=0

yi(m+ i)
⌘
d (D1

1

)

s.t. z +
X1

i=0

yi 6 1

⇢
z , j  m� 1
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�
+

X1
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0
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yi �Myi > 0 8j = 1, 2, . . .

z, y
0

, y
1

, . . . > 0

and argue that the following is a feasible solution to the infinite dual LP

z = m
M y0 = y1 = ym�2 = . . . = 1

M , ym�1 = 1
M (1� z)

and yi = yi�1 � 1
M yi�m, for all i � m,

which yields an objective value of  (M-m)d    (which is optimal)
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One can show that a different feasible solution to the infinite dual LP  
yields an objective of 

This means we cannot trust the infinite dual LP

Instead we should work on finite LPs (and obtain the best bound at 
the limit)

Md > (M �m)d = upper bound
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but there is a problem.....

One can show that a different feasible solution to the infinite dual LP  
yields an objective of 

This means we cannot trust the infinite dual LP

Instead we should work on finite LPs (and obtain the best bound at 
the limit)

Md > (M �m)d = upper bound

Finding the best dual solution :  establishing some properties of the 
linear recurrence y

More precisely: for which initial data does y become eventually 
negative?
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Quality of output improves as a function of time 
[Dean and Boddy 1987], [Russell and Zilberstein 1991]

Interruptible algorithms: Can be interrupted at any time, must be 
able to produce a solution

Contract algorithms: Prespecified amount of execution time given as 
part of the algorithm’s input
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A related problem in AI : Anytime algorithms

Quality of output improves as a function of time 
[Dean and Boddy 1987], [Russell and Zilberstein 1991]

Interruptible algorithms: Can be interrupted at any time, must be 
able to produce a solution

Contract algorithms: Prespecified amount of execution time given as 
part of the algorithm’s input

(+) flexible!
(-) complicated, no performance guarantees

(-) less flexible
(+) easier to program, analyze
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From contract to interruptible algorithms

Main goal: “Black-box” techniques for turning every contract algorithm 
to its interruptible version

Establish measures of how good this simulation is

Find efficient simulations in this measure

Survey: “Using anytime algorithms in intelligent systems” (Zilberstein)

“Plan synthesis must  have anytime, incremental 
characteristics. It should be possible to stop a plan 
synthesis algorithm at any time during its execution 
and expect useful results. One should expect the 
“quality” of the results to improve continuously as a 
function of time.”

John Bressina and Mark Drummond
NASA  Ames Research Center
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A quick example

Suppose we are given a contract algorithm 

Run the algorithm for 1 step, then for 2 steps, then for 4 steps and 
so forth

1 2 4 8

interruption at t=10

In hindsight we could have run the algorithm for 10 units, but the 
best we achieved is a running time of 4

Inefficiency = max
t

t

longest contract finished by t
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Conclusion and outlook

We study online search problems with turn cost using infinite LP 
formulations

Caveats of duality in infinite LPs 

Further applications : Search problems in unbounded domains

Resource allocation problems with infinite horizon

Many other variants of ray searching remain open 
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Conclusion and outlook

We study online search problems with turn cost using infinite LP 
formulations

Caveats of duality in infinite LPs 

Further applications : Search problems in unbounded domains

Resource allocation problems with infinite horizon

Many other variants of ray searching remain open 

Thank you!
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