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degree d of a potential factor.
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1. Introduction

The problem of factoring linear ordinary differential equations or operators has
been studied for a long time since Beke [1] and Schlesinger [9] introduced the
idea of associated equations and developed a factorization algorithm for linear
ordinary differential equations (operators). This idea together with some improve-
ments [2, 10] on the Beke-Schlesinger algorithm inspired the study of reducing the
factorization problem to that of finding hyperexponential solutions of associated
systems. Making use of the main algorithm in [5] for computing hyperexponential
solutions of systems of linear partial differential equations (PDE’s), Li et al [6, 7]
generalize the Beke-Schlesinger factorization algorithm to systems of linear PDE’s
(in one or several unknowns) with finite-dimensional solution spaces. However, in
their algorithm, there is a combinatorial explosion caused by trying out all the pos-
sible sets of leading derivatives for a potential factor. To avoid this combinatorial
explosion, we formulate the factorization problem in terms of differential modules
and then reduce the factorization problem to that of finding one-dimensional dif-
ferential submodules, and further to that of computing hyperexponential solutions
of associated systems.

Throughout this paper, fields are always assumed to be commutative, mod-
ules and vector spaces are left modules and left vector spaces. The notation (·)τ
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denotes the transpose of vectors or matrices. We write Mn(k) (resp. GLn(k)) for
the set of all n× n (resp. invertible) matrices with entries in a field k.

The paper is organized as follows. Section 2 introduces the notion of differen-
tial modules and gives some straightforward generalizations of results in Chapter 1
and 2 of [8]. Section 3 outlines the idea of the generalized Beke-Schlesinger factor-
ization method, by reducing the problem of finding d-dimensional submodules of
a differential module to that of finding 1-dimensional submodules of its exterior
power and by linking 1-dimensional submodules and hyperexponential solutions
of the associated integrable systems. Section 4 describes a factorization algorithm
for differential modules.

2. Preliminaries

2.1. Differential Modules

Let k be a field (of characteristic zero).

Definition 2.1. A derivation on the field k is a map δ : k 7→ k satisfying

δ(a + b) = δ(a) + δ(b), δ(ab) = δ(a)b + aδ(b),

for all a, b ∈ k.

The field k equipped with a set of commuting derivations δ1, . . . , δm is called a
(partial) differential field . An element c of k is called a constant w.r.t. δi if δi(c) = 0.
An element c of k is called a constant if c is a constant w.r.t. all δi’s. All constants
of k form a subfield of k, which we denote by C.

Let k be a differential field equipped with the derivations δ1, . . . , δm. The ring
of linear differential operators over k is the ring k[∂1, . . . , ∂m] of noncommutative
polynomials in ∂1, . . . , ∂m with the following multiplicative rules:

∂i∂j = ∂j∂i and ∂ia = a∂i + δi(a),

for all a ∈ k and any i, j ∈ {1, . . . ,m}. Denote D = k[∂1, . . . , ∂m]. Definition
D.3 in [8] states that M is a differential module if M is a D-module that is also
a finite-dimensional vector space over k. Hence, the dimension of the differential
module M is understood as the dimension of M as a vector space over k.

2.2. Constructions on Differential Modules

We observe that the notion of ordinary differential modules discussed in Chapter
1 and 2 of [8] is a special case of differential modules where m = 1. As a straight-
forward generalization, the constructions on differential modules can be carried on
as follows.

A (differential) submodule N of M is a k-vector subspace N ⊆ M such
that ∂i(N) ⊆ N for i = 1, . . . ,m.

Let N be a submodule of M . Then, M/N endowed with the map ∂i given by

∂i(w + N) = ∂i(w) + N,
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for w ∈ M and i = 1, . . . ,m, is the quotient differential module.
The direct sum of two differential modules M1 and M2 is M1 ⊕M2 endowed

with the map ∂i given by

∂i(w1 + w2) = ∂i(w1) + ∂i(w2),

for w1 ∈ M1, w2 ∈ M2 and each i.
The tensor product M1⊗M2 of two differential modules is M1⊗kM2 endowed

with the map ∂i given by

∂i(w1 ⊗ w2) = ∂i(w1)⊗ w2 + w1 ⊗ ∂i(w2),

for w1 ∈ M1, w2 ∈ M2 and each i.
The d-th exterior power ∧dM of a differential module M is the k-vector

space ∧d
kM endowed with the map ∂i given by

∂i(w1 ∧ · · · ∧ wd) =
d∑

j=1

w1 ∧ · · · ∧ ∂i(wj) ∧ · · · ∧ wd,

for w1, . . . , wd ∈ M and each i.
A morphism φ : M1 → M2 is a k-linear map φ such that φ ◦ ∂i = ∂i ◦ φ

for i = 1, . . . ,m, that is, φ is a D-linear map.
Two differential modules are said to be isomorphic if there exists a bijective

morphism between them.
The internal Hom, Hom(M1,M2) of two differential modules is the k-vector

space Homk(M1,M2) of all k-linear maps from M1 to M2 endowed with the map ∂i

on Homk(M1,M2) given by

∂i(`)(w1) = −`(∂i(w1)) + ∂i(`(w1)),

for all ` ∈ Homk(M1,M2) and w1 ∈ M1. A special case of the internal Hom is
the dual module of a differential module M defined to be M∗ = Homk(M,1k)
where 1k denotes the differential module kw with ∂i(w) = 0 for i = 1, . . . ,m.

3. Reduction of the Factorization Problem

By factoring a differential module, we mean finding its proper submodules. In the
sequel, we will outline the idea of the generalized Beke-Schlesinger algorithm for
factoring differential modules.

3.1. From M to ∧dM

We have the following generalization of Lemma 10 in [3] or the corresponding
statements in Section 4.2.1 of [8]:

Proposition 3.1. Let M be a differential module. Then, M has a d-dimensional
submodule if and only if ∧dM has a 1-dimensional submodule generated by a de-
composable element u, i.e., u = w1 ∧ · · · ∧ wd with wi ∈ M .
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Proof. Let N be a d-dimensional submodule of M with a basis w1, . . . , wd over k.
Suppose that

∂i(w1, . . . , wd)τ = Ai(w1, . . . , wd)τ for i = 1, . . . ,m,

where Ai = (aist)1≤s, t≤d ∈ Md(k). Then, ∧d
kN is a k-vector subspace of ∧d

kM
generated by w1 ∧ · · · ∧ wd. Moreover,

∂i(w1 ∧ · · · ∧ wd) =
∑d

s=1 w1 ∧ · · · ∧ ∂i(ws) ∧ · · · ∧ wd

=
∑d

s=1 w1 ∧ · · · ∧
(∑d

t=1 aist wt

)
∧ · · · ∧ wd = tr(Ai) (w1 ∧ · · · ∧ wd) ∈ ∧dN,

where tr(Ai) denotes the trace of the matrix Ai, for i = 1, . . . ,m. So, ∧dN is
a 1-dimensional submodule of ∧dM .

Conversely, let u ∈ ∧dM be a decomposable element which generates a 1-
dimensional submodule of ∧dM . Suppose that u = w1 ∧ · · · ∧ wd with wi ∈ M .
Since u 6= 0, w1, . . . , wd are linearly independent over k and there exists a basis B
of M containing w1, . . . , wd. Pick arbitrarily a finite number of distinct b1, . . . , bs

in B \{w1, . . . , wd}. Since w1, . . . , wd, b1, . . . , bs are linearly independent over k, so
are b1 ∧ u, . . . , bs ∧ u. In particular, b ∧ u 6= 0 for any b ∈ B \ {w1, . . . , wd}.

Consider a map φu : M → ∧d+1M defined by v 7→ v ∧ u. One can verify
that ker(φu) is a k-vector space. Let v ∈ ker(φu). Then, v ∧ u = 0 and

0 = ∂i(v ∧ u) = ∂i(v) ∧ u + v ∧ ∂i(u) = ∂i(v) ∧ u + v ∧ (au) for some a ∈ k,

which implies that ∂i(v) ∧ u = 0 and ∂i(v) ∈ ker(φu) for each i. So, ker(φu) is
a D-module.

Clearly, ⊕d
i=1kwi ⊆ ker(φu). Suppose that w ∈ ker(φu) ⊂ M . Then, there

exist b1, . . . , bs ∈ B \ {w1, . . . , wd} such that

w =
d∑

i=1

λiwi +
s∑

j=1

ξjbj with λi, ξj ∈ k.

Then, 0 = w ∧ u =
∑s

j=1 ξj (bj ∧ u) . The linear independence of b1 ∧ u, . . . , bs ∧ u

therefore implies that ξj = 0 for j = 1, . . . , s. So, ker(φu) = ⊕d
i=1kwi is a d-

dimensional submodule of M . �

Proposition 3.1 converts the problem of finding d-dimensional submodules
of a differential module M into that of finding all those 1-dimensional submod-
ules of ∧dM whose generator is decomposable, and then reduces the factorization
problem to its “subproblem”of finding 1-dimensional submodules.

Remark 3.2. Proposition 3.1 and the proof remain valid if M is infinite-dimensional
over k.
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3.2. One-Dimensional Submodules of Differential Modules

In this section, we will study how to find 1-dimensional submodules of differential
modules.

First, we recall the definition of integrable systems given in Appendix D.1
of [8]: let A1, . . . , Am be n × n matrices with entries in a differential field k, the
system

{δ1(Z) = A1Z, . . . , δm(Z) = AmZ}
is called an integrable system over k of dimension n if A1, . . . , Am satisfy the
integrability conditions:

[Ai, Aj ] = δi(Aj)− δj(Ai), for any i, j,

where [Ai, Aj ] := AiAj −AjAi is the commutator of the matrices Ai and Aj .
Let M be a differential module of dimension n. A choice of a basis e1, . . . , en

of M satisfying

∂i(e1, . . . , en)τ = Bi(e1, . . . , en)τ with Bi ∈ Mn(k), for i = 1, . . . ,m,

induces an integrable system of dimension n of form

{ δ1(Z) = A1Z, . . . , δm(Z) = AmZ } (3.1)

where Ai = −Bτ
i for each i. The system (3.1) is called the integrable system

associated with M w.r.t. a basis e1, . . . , en. If we choose another basis f1, . . . , fn

of M over k with

(f1, . . . , fn) = (e1, . . . , en)T for some T ∈ GLn(k),

then by replacing Z with TZ∗ in (3.1) we obtain the integrable system for the new
basis:

{δ1(Z∗) = A∗
1Z

∗, . . . , δm(Z∗) = A∗
mZ∗},

where A∗
i = T−1AiT − T−1δi(T ) for each i. Conversely, it is clear that any inte-

grable system of form (3.1) comes from a differential module M := kn with the
canonical basis {e1, . . . , en} and the ∂i given by the formulas

∂i(e1, . . . , en)τ = −Aτ
i (e1, . . . , en)τ for i = 1, . . . ,m.

To investigate “solutions” of integrable systems, we introduce

Definition 3.3. A field K ⊇ k is called a differential extension field over k if all
derivations δ1, . . . , δm on k can be extended to K and the extended maps pairwise
commute.

Let K be a differential extension field over k. A vector Z∗ ∈ Kn is called a
solution of the integrable system (3.1) if δi(Z∗) = AiZ

∗ for each i.
A nonzero element h of K is said to be hyperexponential over k w.r.t. δi

if δi(h)
h belongs to k. The element h is said to be hyperexponential over k if h is

hyperexponential over k w.r.t. all δi. Two hyperexponential elements h1 and h2

of K are said to be equivalent over k if h1
h2

∈ k; otherwise, h1 and h2 are said to
be inequivalent over k. A vector H ∈ Kn is said to be hyperexponential over k
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w.r.t. δi if H can be written as hV where V ∈ kn and h ∈ K is hyperexponential
over k w.r.t. δi. A vector H ∈ Kn is said to be hyperexponential over k if H is
hyperexponential over k w.r.t. all δi.

Observe that a vector H ∈ Kn is hyperexponential over k if and only if H
can be written in form hV where V ∈ kn and h ∈ K is hyperexponential over k.
Indeed, if H is hyperexponential over k then H = hiVi with Vi ∈ kn and δi(hi)

hi
∈ k

for i = 1, . . . ,m. From hiVi = hjVj , it follows that hi

hj
∈ k for any i, j. Hence,

k 3 δi

(
hi

hj

)
=

δi(hi)hj − hiδi(hj)
h2

j

=
δi(hi)

hi

hi

hj
− hi

hj

δi(hj)
hj

,

which implies that δi(hj)
hj

∈ k for each i. So, hj is hyperexponential over k and
H = hjVj is of desired form.

The following proposition reveals a relation between 1-dimensional submod-
ules of a differential module and hyperexponential solutions of the associated inte-
grable systems. Although this proposition is obvious in the ordinary case, we give
a detailed proof here because integrability conditions should be taken into account
in the partial case.

Proposition 3.4. Let M be a differential module of dimension n and

{δ1(Z) = A1Z, . . . , δm(Z) = AmZ} (3.2)

be the integrable system associated with M w.r.t. a basis e1, . . . , en. Then, M has
a 1-dimensional submodule if and only if (3.2) has a hyperexponential solution.

Proof. Let H = hV be a hyperexponential solution of (3.2) where h is a hyperex-
ponential element of some differential field extension K and V ∈ kn. Set

u = (e1, . . . , en)H and w =
u

h
= (e1, . . . , en)V ∈ M.

Since H is a solution of (3.2), we have ∂i(u) = 0 and

∂i(w) = ∂i

(u

h

)
=

∂i(u)h− δi(h)u
h2

= −δi(h)
h

u

h
= −δi(h)

h
w ∈ kw,

for i = 1, . . . ,m. So, kw is a 1-dimensional submodule of M . Suppose that H
can also be written as h2V2 with V2 ∈ kn and h2 ∈ K hyperexponential over k.
Set w2 = (e1, . . . , en)V2. As before, we have

∂i(w2) = −δi(h2)
h2

w2, i = 1, . . . ,m.

From hV = h2V2, we have h = ah2 for some nonzero a ∈ k and therefore
V = a−1V2. So, kw = ka−1w2 = kw2 and H induces uniquely a 1-dimensional sub-
module kw of M , which is called the 1-dimensional submodule associated with H.

Conversely, let N be a 1-dimensional submodule of M generated by w and
suppose that ∂i(w) = aiw with ai ∈ k for i = 1, . . . ,m. Then,

∂j(∂i(w))− aiajw = δj(ai)w,
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which has a left hand-side invariant under the permutation of (i, j). This implies
that δj(−ai) = δi(−aj) for any i, j. By [7], there is a well-defined hyperexponential
element h over k such that δi(h) = −aih for i = 1, . . . ,m. Therefore,

∂i(hw) = 0 for i = 1, . . . ,m,

which implies that h(f1, . . . , fn)τ is a solution of the system (3.2) where f1, . . . , fn

are coordinates of w under the basis e1, . . . , en. Moreover, h(f1, . . . , fn)τ is a hy-
perexponential vector over k by definition. �

Proposition 3.4 reveals that 1-dimensional submodules of a differential mod-
ule can be constructed via hyperexponential solutions of the associated integrable
systems. Note that this construction is independent from the choice of the associ-
ated integrable systems. Indeed, let

S : {δ1(Z) = A1Z, . . . , δm(Z) = AmZ}

and
S∗ : {δ1(Z∗) = A∗

1Z
∗, . . . , δm(Z∗) = A∗

mZ∗}
be the respective integrable systems associated with M w.r.t. the bases e1, . . . , en

and f1, . . . , fn. There exists T ∈ GLn(k) such that

(f1, . . . , fn) = (e1, . . . , en)T. (3.3)

In addition, A∗
i = T−1AiT −T−1δi(T ) for each i. One can verify that T−1 viewed

as a linear transformation from the set of solutions of S to the set of solutions
of S∗ is a bijection. If H1 := hV is a hyperexponential solution of S with V ∈ kn

and h hyperexponential over k, then H2 := T−1H1 is a hyperexponential solution
of S∗. Therefore, the 1-dimensional submodules of M associated with H1 and H2

are generated by (e1, . . . , en)V and by (f1, . . . , fn)T−1V , respectively. From (3.3),
these two generators are equal, so are the 1-dimensional submodules they generate.

We now study the structure of all 1-dimensional submodules of differential
modules. Let M be a differential module of dimension n. Suppose that

S : {δ1(Z) = A1Z, . . . , δm(Z) = AmZ},

with Ai = (aist) ∈ Mn(k), is the associated integrable system with M w.r.t. a
basis e1, . . . , en, and M∗ is the dual module of M with the dual basis {e∗1, . . . , e∗n}
such that

e∗i (ej) =
{

1 when i = j,
0 otherwise.

Since ∂i(e1, . . . , en)τ = −Aτ
i (e1, . . . , en)τ for i = 1, . . . ,m, we have

∂i

(
e∗j
)
(e`) = −e∗j (∂i(e`)) + ∂i

(
e∗j (e`)

)
= −e∗j

(
−

n∑
s=1

ais`es

)
= aij`,

for ` = 1, . . . , n, hence ∂i

(
e∗j
)

=
∑n

s=1 aijse
∗
s for all i, j, that is,

∂i(e∗1, . . . , e
∗
n)τ = Ai(e∗1, . . . , e

∗
n)τ , i = 1, . . . ,m.



8 M. Wu

Thus, (e∗1, . . . , e
∗
n)τ is also a solution of the system S. Now assume that k con-

tains a nonconstant a, i.e., ∂`(a) 6= 0 for some `. By Proposition 2.9 in [8],
the differential module M∗ has a cyclic vector w such that M∗ is generated
by w, ∂`(w), ∂2

` (w), . . . over k. So, M∗ = k[∂`]w and further M∗ = Dw be-
cause k[∂`] ⊆ D. Since dimk M∗ = n, w, ∂`(w), . . . , ∂n−1

` (w) form a basis of M∗

and therefore

(e∗1, . . . , e
∗
n)τ = P (w, ∂`(w), . . . , ∂n−1

` (w))τ for some P ∈ GLn(k). (3.4)

In addition, for i = 1, . . . ,m, the vectors w, ∂i(w), ∂2
i (w), . . . , ∂n

i (w) are linearly
dependent over k and, therefore, by linear algebra there exists Li ∈ k[∂i] of minimal
order such that Li(w) = 0. This yields the following system of linear PDE’s:

L : {L1(y) = 0, . . . , Lm(y) = 0}.

From (3.4), any hyperexponential solution of S has form

H = P
(
h, δ`(h), . . . , δn−1

` (h)
)τ

for any hyperexponential solution h of L. Apply Algorithm HyperexponentialSo-
lutions in [7] to the system L, we obtain a finite number of

h1, {r11, . . . , r1,t1} ,
...

...
hs, {rs1, . . . , rs,ts

} ,

where h1, . . . , hs are mutually inequivalent hyperexponential elements over k and
ri1,. . . , ri,ti are elements of k which are linearly independent over C. According
to Proposition 3.4 in [7], any hyperexponential solution h of L has form

h = hi(c1ri1 + · · ·+ ctiri,ti) for some i ∈ {1, . . . , s},

with the cj arbitrary constants of k, not all zero. For i = 1, . . . , s and j = 1, . . . , ti,

P
(
hirij , δ`(hirij), . . . , δn−1

` (hirij)
)τ

= hiVij for some Vij ∈ kn.

Therefore, any hyperexponential solution H of S has form

H = hi(c1Vi1 + · · ·+ cti
Vi,ti

) for some i ∈ {1, . . . , s},

where the cj are arbitrary constants of k, not all zero. Since ri1, . . . , ri,ti
are linearly

independent over C, so are the vectors Vi1, . . . , Vi,ti
. Set

Ni = k(e1, . . . , en)(c1Vi1 + · · ·+ cti
Vi,ti

), i = 1, . . . , s,

for arbitrarily chosen constants c1, . . . , cti
of k, not all zero. From the proof of

Proposition 3.4, N1, . . . , Ns are 1-dimensional submodules of M . Furthermore, we
will show in the sequel that

Ii = {Ni | c1, . . . , cti
arbitrary constants of k, not all zero} , i = 1, . . . , s,

constitute a partition of the set of all 1-dimensional submodules of M by the
equivalence relation “'”, the isomorphism between differential modules.
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Indeed, we first show that each Ii is a well-defined equivalence class w.r.t. “'”.
Suppose that Ni and N ′

i are two 1-dimensional submodules of M belonging to Ii.
Then, there are two set of constants c1, . . . , cti and c′1, . . . , c

′
ti

of k, not all zero,
such that

Ni = k (e1, . . . , en)(c1Vi1 + · · ·+ cti
Vi,ti

)︸ ︷︷ ︸
wi

,

and
N ′

i = k (e1, . . . , en)(c′1Vi1 + · · ·+ c′ti
Vi,ti

)︸ ︷︷ ︸
w′

i

.

From the previous discussion, we have

∂j(wi) = −δj(hi)
hi

wi and ∂j(w′
i) = −δj(hi)

hi
w′

i, j = 1, . . . ,m.

Clearly, Ni = kwi ' N ′
i = kw′

i where the isomorphism is given by wi 7→ w′
i. So, Ii

is a well-defined equivalence class. Let kw be a 1-dimensional submodule of M .
Suppose that w = (e1, . . . , en)V with V ∈ kn. From the proof of Proposition 3.4,
there exists a hyperexponential element h such that hV is a hyperexponential
solution of S. Therefore,

hV = hi(c1Vi1 + · · ·+ ctiVi,ti), (3.5)

for some i ∈ {1, . . . , s} and some constants c1, . . . , cti
of k, not all zero. From (3.5),

we know that h and hi are equivalent over k and h = ahi for some a ∈ k. Thus,
V = a−1 (c1Vi1 + · · ·+ ctiVi,ti) and

kw = k(e1, . . . , en)V = k(e1, . . . , en) (c1Vi1 + · · ·+ cti
Vi,ti

)

for some constants c1, . . . , cti
of k. So, kw belongs to the equivalence class Ii.

Let Ni and Nj be two 1-dimensional submodules in the equivalence classes Ii

and Ij , respectively. Then, there are two sets of constants c1, . . . , cti
and c′1, . . . , c

′
tj

of k, both not all zero, such that

Ni = k (e1, . . . , en)(c1Vi1 + · · ·+ ctiVi,ti)︸ ︷︷ ︸
wi

,

and
Nj = k (e1, . . . , en)(c′1Vj1 + · · ·+ c′tj

Vj,tj
)︸ ︷︷ ︸

wj

.

Suppose that Ni ' Nj given by the map φ : wi 7→ awj with a ∈ k. Then,
∂l ◦ φ(wi) = φ ◦ ∂l(wi) together with the relation that ∂l(wi) = − δl(hi)

hi
wi and

∂l(wj) = − δl(hj)
hj

wj for l = 1, . . . ,m, implies that hi

hj
∈ k, a contradiction with

the fact that hi and hj are inequivalent over k. So, {I1, . . . , Is} is a partition of
all 1-dimensional submodules of M given by the equivalence relation “'”.

We now describe an algorithm for finding 1-dimensional submodules of dif-
ferential modules.
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Algorithm OneDimSubMods (Find 1-dimensional submodules of a differential
module)

Input: A differential module M with a basis e1, . . . , en and the action of ∂i on this
basis:

∂i(e1, . . . , en)τ = Bi(e1, . . . , en)τ , i = 1, . . . ,m,

where B1, . . . , Bm are n× n matrices with entries in k.
Output: All 1-dimensional submodules of M .

1. [find the cyclic vector] Construct the integrable system associated with M

S : {δ1(Z) = A1Z, . . . , δm(Z) = AmZ}
where Ai = −Bτ

i . Let M∗ be the dual module of M with the dual basis {e∗1, . . . , e∗n}
over k such that

∂i(e∗1, . . . , e
∗
n)τ = Ai(e∗1, . . . , e

∗
n)τ , i = 1, . . . ,m.

Find a cyclic vector w of M∗ such that M∗ is generated by w, ∂`(w), . . . , ∂n−1
` (w)

over k for some ` ∈ {1, . . . ,m}. Then, there exists P ∈ GLn(k) such that

(e∗1, . . . , e
∗
n)τ = P (w, ∂`(w), . . . , ∂n−1

` (w))τ .

By linear algebra, find linear ordinary operators Li ∈ k[∂i] of minimal order such
that Li(w) = 0 for i = 1, . . . ,m. We then obtain a system of linear PDE’s:

L : {L1(y) = 0, . . . , Lm(y) = 0}.

2. [compute hyperexponential solutions] Apply Algorithm HyperexponentialSolu-
tions in [7] to compute all hyperexponential solutions of L. If the output returns
NULL then exit [M has no 1-dimensional submodules]. Otherwise, we obtain

h1, {r11, . . . , r1,t1} ,
...

...
hs, {rs1, . . . , rs,ts

} ,

where h1, . . . , hs are mutually inequivalent hyperexponential elements over k and
ri1, . . . , ri,ti

∈ k are linearly independent over C. Set

Vij = h−1
i P

(
hirij , δ`(hirij), . . . , δn−1

` (hirij)
)τ ∈ kn,

for i = 1, . . . , s and j = 1, . . . , ti. Then, Vi1, . . . , Vi,ti
are linearly independent

over C and
h1, {V11, . . . , V1,t1} ,
...

...
hs, {Vs1, . . . , Vs,ts

} ,

describes the structure of hyperexponential solutions of S: any hyperexponential
solution of S has form:

H = hi(c1Vi1 + · · ·+ cti
Vi,ti

),

with i ∈ {1, . . . , s} and the cj constants of k, not all zero.
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3. [retrieve 1-dimensional submodules] Set

Ii = {k(e1, . . . , en)(c1Vi1 + · · ·+ cti
Vi,ti

) | c1, . . . , cti
arbitrary constants

of k, not all zero} , i = 1, . . . ,m.

Then, {I1, . . . , Is} is a partition of all 1-dimensional submodules of M by the
equivalence relation “'”.

3.3. Decomposability of Elements of ∧dM

Let M be a differential module. In order to find all d-dimensional submodules
of M , by Proposition 3.1 it suffices to find all those 1-dimensional submodules
of ∧dM whose generators are decomposable.

Applying the algorithm OneDimSubMods to ∧dM yields all its 1-dimensional
submodules kw where w ∈ ∧dM may contain some unspecified constants c1, . . . , ct.
To test the decomposability of w, consider the map

φw : M → ∧d+1M, v 7→ v ∧ w.

From the proof of Proposition 3.1, w is decomposable if and only if ker(φw) is
of dimension d, while the latter is equivalent to the condition that the matrix P
of the φw has rank n − d. Hence, identifying the decomposability of w amounts
to a rank computation, i.e., identifying the constants c1, . . . , ct in w such that
all (n − d + 1) × (n − d + 1) minors of P are zero and there exists at least a
nonzero (n − d) × (n − d) minor. We observe that this is exactly the Plücker
relations described in [12]. Solving the Plücker relations amounts to solving a
nonlinear system in c1, . . . , ct. If such a system has no solutions in C, the algebraic
closure of C, then M has no d-dimensional submodules. Otherwise, ker(φw) is
a d-dimensional submodule of M .

Remark 3.5. There are alternative ways to compute ranks of parameterized ma-
trices, for example, the Gauss method with branching, a Gröbner basis method
using the linear structure [4] or the algorithm described in [11] for computing the
rank of parameterized linear systems. These methods may be more efficient than
computing minors.

4. Factorization Algorithm

Based on the results in previous sections, we now describe an algorithm for fac-
toring differential modules.

Algorithm FactorDiffMod (Factor differential modules)
Input: A differential module M with a basis {e1, . . . , en} and the action of ∂i on
this basis:

∂i(e1, . . . , en)τ = Bi(e1, . . . , en)τ , for i = 1, . . . ,m, (4.1)
where B1, . . . , Bm are n× n matrices with entries in k.
Output: For d < n, all d-dimensional submodules of M given by their bases and
the action of ∂i on the bases.
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1. [construct the exterior power] From (4.1), construct a basis {f1, . . . , fÑ} of ∧dM

with Ñ =
(

n
d

)
and the matrices B̃i ∈ MÑ (k) such that

∂i(f1, . . . , fÑ )τ = B̃i(f1, . . . , fÑ )τ , i = 1, . . . ,m.

2. [compute 1-dimensional submodules] Apply the algorithm OneDimSubMods
to compute all 1-dimensional submodules of ∧dM . If ∧dM has no 1-dimensional
submodules, then exit [M has no d-dimensional submodules]. Otherwise, suppose
that kw is a 1-dimensional submodule of ∧dM where w may contain some unspec-
ified constants c1, . . . , ct of k.

3. [test the decomposability] For each w obtained in Step 2, consider the map

φw : M → ∧d+1M, v 7→ v ∧ w.

Construct the matrix P of φw, which is an
(

n
d + 1

)
× n matrix with entries

in k(c1, . . . , ct). Compute all (n− d + 1)× (n− d + 1) minors of P . Equating these
minors to zero yields a nonlinear system in c1, . . . , ct. If this nonlinear system
has no solutions in C then exit [M has no d-dimensional submodules]. Otherwise,
substitute the values of c1, . . . , ct into P and compute a basis {α1, . . . , αd} of the
rational kernel of P with αj ∈ kn.

4. [retrieve d-dimensional submodules] Set vj = (e1, . . . , en)αj for j = 1, . . . , d.
Then, ⊕d

j=1kvj is a d-dimensional submodule of M .

We now apply the algorithm FactorDiffMod to redo Example 1 in [6].

Example. Let D = Q(x, y)[∂x, ∂y] where ∂x = ∂
∂x and ∂y = ∂

∂y are the usual
differential operators w.r.t. x and y, respectively. Let M be a differential module
with a basis {e1, e2, e3} such that

∂x(e1, e2, e3)τ = Bx(e1, e2, e3)τ , ∂y(e1, e2, e3)τ = By(e1, e2, e3)τ

where

Bx =

 0 − y
4x − 1

4

−1 2−xy
4x − 2+xy

4y

0 y2

4x
y
4

 , By =

 0 − 1
4 − x

4y

0 − 2+xy
4y

2x−x2y
4y2

−1 y
4

x
4

 .

To compute two-dimensional submodules of M , construct the second exterior
power ∧2M of M with a basis {f1 := e1 ∧ e2, f2 := e1 ∧ e3, f3 := e2 ∧ e3}
and compute the integrable system associated with ∧2M :

S : {∂x(Z) = AxxZ, ∂y(Z) = AyyZ}
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where Z = (z1, z2, z3)τ is a vector of unknowns and

Axx =


xy−2
4x − y2

4x 0

2+xy
4y −y

4 1

− 1
4

y
4x − 1

2x

 , Ayy =


2+xy
4y −y

4 −1

x2y−2x
4y2 −x

4 0

− x
4y

1
4

1
2y

 .

Let M∗
2 be the dual module of ∧2M with the dual basis {f∗1 , f∗2 , f∗3 }. Then,

∂x(f∗1 , f∗2 , f∗3 )τ = Axx(f∗1 , f∗2 , f∗3 )τ and ∂y(f∗1 , f∗2 , f∗3 )τ = Ayy(f∗1 , f∗2 , f∗3 )τ .

We find that f∗1 is a cyclic vector of M∗
2 and moreover,

(f∗1 , f∗2 , f∗3 )τ = P
(
f∗1 , ∂x(f∗1 ), ∂2

x(f∗1 )
)τ

with

P =

 1 0 0
xy−2
4x − y2

4x 0

− 3(xy−2)
8x2

3y2

8x2 − y2

4x

 .

By linear algebra, we find two linear ordinary differential operators, both of mini-
mal order,

Lx = ∂3
x +

3
x

∂2
x +

3− xy

4x2
∂x −

y

8x2
∈ Q(x, y)[∂x]

and

Ly = ∂3
y +

6− 2xy

y(xy − 6)
∂2

y +
23xy − x2y2 − 42

4y2(xy − 6)
∂y +

x2y2 − 30xy + 72
8y3(xy − 6)

∈ Q(x, y)[∂y]

such that Lx and Ly annihilate f∗1 .
Apply Algorithm HyperexponentialSolutions in [7] to the system

L : {Lx(z1) = 0, Ly(z1) = 0},
we find that any hyperexponential solution h of the system L has form

h = ce
∫

(− 1
2x dx+ 1

2y dy) = c

√
y

x
, for any c ∈ Q,

where e
∫

(− 1
2x dx+ 1

2y dy) denotes a hyperexponential function h0 in x, y such that

∂x(h0) = − 1
2x

h0 and ∂y(h0) =
1
2y

h0.

Hence, any hyperexponential solution of S has form

Z = P (h, ∂x(h), ∂2
x(h))τ =

√
y

x

(
c, c · x

y
, 0
)τ

, for any c ∈ Q̄,

and all 1-dimensional submodules of ∧2M are of form Q̄(x, y)w where

w = (f1, f2, f3)
(

1,
x

y
, 0
)τ

= e1 ∧ e2 +
x

y
e1 ∧ e3 ∈ ∧2M. (4.2)
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To test the decomposability of w, consider the map

φw : M → ∧3M, v 7→ v ∧ w.

The matrix of φw is P =
(
0,−x

y , 1
)

and then has rank one. So, w is decomposable.

(In fact, from (4.2) one can see directly that w = e1∧
(
e2 + x

y e3

)
is a decomposable

element of ∧2M .) A basis for the rational kernel of P is:{
(1, 0, 0)τ ,

(
0, 1,

x

y

)τ}
.

Set v1 = (e1, e2, e3)(1, 0, 0)τ = e1 and v2 = (e1, e2, e3)
(
0, 1, x

y

)τ

= e2 + x
y e3.

Then, ker(φu) = kv1 ⊕ kv2 is a two-dimensional submodule of M and the actions
of ∂x and ∂y on the basis {v1, v2} are given by

∂x(v1, v2)τ = Fx(v1, v2)τ , ∂y(v1, v2)τ = Fy(v1, v2)τ

where

Fx =

 0 − y
4x

−1 1
2x

 , Fy =

 0 − 1
4

−x
y − 1

2y

 .

5. Conclusion and Future Work

In this paper, we present an algorithm for factoring differential modules. By fac-
toring the differential modules associated with systems of linear PDE’s with finite-
dimensional solution spaces, the algorithm FactorDiffMod improves the factoriza-
tion algorithm in [6]. Further work will include the refinement of the step in the al-
gorithm OneDimSubMods which deals with computing hyperexponential solutions
of integrable systems and the improvement for computing ranks of parameterized
matrices. The generalization of the factorization algorithm to difference modules
and differential-difference modules will also be studied.
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