# Picard-Vessiot extensions for linear functional systems 

Manuel Bronstein*<br>*INRIA - Café<br>2004 Route des Lucioles<br>06902 Sophia Antipolis, France<br>Manuel.Bronstein@inria.fr

Ziming $\mathrm{Li}^{\dagger}$<br>${ }^{\dagger}$ Key Lab of Math.-Mechan.<br>Acad. of Math. and Syst. Sci.<br>Zhong Guan Cun, Beijing<br>(100080), China<br>zmli@mmrc.iss.ac.cn

Min Wu ${ }^{*, t}$<br>Min.Wu@inria.fr<br>mwu@mmrc.iss.ac.cn


#### Abstract

Picard-Vessiot extensions for ordinary differential and difference equations are well known and are at the core of the associated Galois theories. In this paper, we construct fundamental matrices and Picard-Vessiot extensions for systems of linear partial functional equations having finite linear dimension. We then use those extensions to show that all the solutions of a factor of such a system can be completed to solutions of the original system.


## Categories and Subject Descriptors

I.1.2 [Computing Methodologies]: Symbolic and Algebraic Manipulation-Algorithms

## General Terms

Algorithms

## Keywords

Linear functional systems; Picard-Vessiot extensions; Fundamental matrices; Modules of formal solutions.

## 1. INTRODUCTION

A linear functional system is a system of form $A(Z)=0$ where $A$ is a matrix whose entries are (partial) linear operators, such as differential, shift or $q$-shift operators or any mixture thereof, and $Z$ denotes a vector of unknowns. A common special case consists of integrable systems, which are of the form $\left\{\partial_{i}(Z)=A_{i} Z\right\}_{1 \leq i \leq m}$, and correspond to the matrix $A$ given by the stacking of blocks of the form $\left(\partial_{i}-A_{i}\right)$. We show in this paper that fundamental matrices $^{1}$ and Picard-Vessiot extensions ${ }^{1}$ always exist for linear functional systems having finite linear dimension ${ }^{1}$, which include in particular all integrable systems. In addition, if the field of coefficients has characteristic 0 and has an algebraically closed constant field, then Picard-Vessiot extensions for such systems contain no new constants.

[^0]In this paper, rings are not necessarily commutative and have arbitrary characteristic, unless otherwise specified. Ideals and modules are left ideals and left modules. Fields are however always commutative. The notation $(\cdot)^{\tau}$ denotes the transpose of vectors or matrices, while $R^{p \times q}$ denotes the set of $p \times q$ matrices with entries in (the ring) $R$. The commutator of $a, b \in R$ is $[a, b]=a b-b a$. We write $\mathbf{1}_{R}$ for the identity map on $R$ and $\mathbf{0}_{R}$ for the zero map on $R$, and we omit the subscripts when the context is clear.

## 2. FULLY INTEGRABLE SYSTEMS

Let $\sigma$ be an endomorphism of a ring $R$. A $\sigma$-derivation ([4]) is an additive map $\delta: R \rightarrow R$ satisfying $\delta(a b)=\sigma(a) \delta(b)+$ $\delta(a) b$ for all $a, b \in R$. A $\Delta$-ring $(R, \Phi)$ is a ring $R$ together with a set $\Phi=\left\{\left(\sigma_{1}, \delta_{1}\right), \ldots,\left(\sigma_{m}, \delta_{m}\right)\right\}$, where each $\sigma_{i}$ is an automorphism of $R$, each $\delta_{i}$ is a $\sigma_{i}$-derivation of $R$, and $\left[\sigma_{i}, \sigma_{j}\right]=\left[\delta_{i}, \delta_{j}\right]=\left[\sigma_{i}, \delta_{j}\right]=0$ for all $i \neq j$. If $R$ is also a field, then $(R, \Phi)$ is called a $\Delta$-field. An element $c$ of $R$ is called a constant if $\sigma_{i}(c)=c$ and $\delta_{i}(c)=0$ for all $i$. The set of all the constants of $R$ is denoted $C_{R}$ and is clearly a subring of $R$, and a subfield when $R$ is a field. Remark that a $\Delta$-ring is a (partial) differential ring if $\sigma_{i}=\mathbf{1}$ for all $i$, and a (partial) difference ring if $\delta_{i}=\mathbf{0}$ for all $i$.

Definition 1. We say that the $\Delta-r i n g(R, \Phi)$ is orthogonal if $\delta_{i}=\mathbf{0}$ for each $i$ such that $\sigma_{i} \neq \mathbf{1}$. By reordering the indices, we can assume that there exists an integer $\ell \geq 0$ such that $\sigma_{i}=\mathbf{1}$ for $1 \leq i \leq \ell$ and $\delta_{i}=\mathbf{0}$ for $\ell<i \leq m$. We write ( $R, \Phi, \ell$ ) for such an orthogonal $\Delta$-ring.

All the $\delta_{i}$ are usual derivations in an orthogonal $\Delta$-ring. Mixed systems of partial linear differential, difference and $q$ difference equations can be represented by matrices with entries in Ore algebras ([4]) over orthogonal $\Delta$-rings. Let $(F, \Phi)$ be a $\Delta$-field, and suppose that for each $i$ such that $\sigma_{i} \neq \mathbf{1}$, there exists $a_{i} \in F$ such that $\sigma_{i}\left(a_{i}\right) \neq a_{i}$ and $\sigma_{j}\left(a_{i}\right)-a_{i}=$ $\delta_{j}\left(a_{i}\right)=0$ for all $j \neq i$. Replacing the $x_{i}$ by the $a_{i}$ in the proof of Theorem 1 in [6], one sees that linear functional equations over $F$ can be rewritten as equations over an orthogonal $\Delta$-field. There are however orthogonal $\Delta$ rings that do not contain such $a_{i}$ 's, for example $F=\mathbb{C}(x)$ together with $\Phi=\left\{(\mathbf{1}, d / d x),\left(\sigma_{x}, \mathbf{0}\right)\right\}$ where $\sigma_{x}$ is the automorphism of $F$ over $\mathbb{C}$ that sends $x$ to $x-1$. This field is used in modeling differential-delay equations, and does not match the definition of orthogonality given in [6].

Let $(F, \Phi, \ell)$ be an orthogonal $\Delta$-field. We say that a commutative ring $E$ containing $F$ is an orthogonal $\Delta$-extension of $(F, \Phi, \ell)$ if the $\sigma_{i}$ and $\delta_{i}$ can be extended to automorphisms and derivations of $E$ satisfying: (i) the commutators $\left[\sigma_{i}, \sigma_{j}\right]=\left[\delta_{i}, \delta_{j}\right]=\left[\sigma_{i}, \delta_{j}\right]=0$ on $E$ for $1 \leq i \neq j \leq m$; (ii) $\sigma_{i}=\mathbf{1}_{E}$ for $i \leq \ell$ and $\delta_{i}=\mathbf{0}_{E}$ for $j>\ell$.

Let $E$ and $\underset{\tilde{E}}{\tilde{E}}$ be two orthogonal $\Delta$-extensions of $F$. A map $\phi$ from $E$ to $\tilde{E}$ is called a $\Delta$-morphism if $\phi$ is a ring homomorphism leaving $F$ fixed and commuting with all the $\delta_{i}$ and $\sigma_{i}$. Two orthogonal $\Delta$-extensions of $F$ are said to be isomorphic if there exists a bijective $\Delta$-morphism between them.

## Definition 2. A system of form

$$
\begin{equation*}
\delta_{i}(Z)=A_{i} Z \text { for } i \leq \ell, \quad \sigma_{i}(Z)=A_{i} Z \text { for } i>\ell \tag{1}
\end{equation*}
$$

where $A_{i} \in F^{n \times n}$ and $Z=\left(z_{1}, \ldots, z_{n}\right)^{\tau}$ is called an integrable system if the following conditions are satisfied:

$$
\begin{equation*}
\sigma_{i}\left(A_{j}\right) A_{i}+\delta_{i}\left(A_{j}\right)=\sigma_{j}\left(A_{i}\right) A_{j}+\delta_{j}\left(A_{i}\right) \quad \text { for all } i, j \tag{2}
\end{equation*}
$$

The integrable system (1) is said to be fully integrable if the matrices $A_{\ell+1}, \ldots, A_{m}$ are invertible.

Using Ore algebra notation, we write $\left\{\partial_{i}(Z)=A_{i} Z\right\}_{1 \leq i \leq m}$ for the system (1) where the action of $\partial_{i}$ is meant to $\overline{\mathrm{be}} \delta_{i}$ for $i \leq \ell$ and $\sigma_{i}$ for $i>\ell$. Note that the conditions (2) are derived from the condition $\partial_{i}\left(\partial_{j}(Z)\right)=\partial_{j}\left(\partial_{i}(Z)\right)$ and are exactly the matrix-analogues of the compatibility conditions for first order scalar equations in [6].

Example 1. Let $F=\mathbb{C}(x, k)$ and $\delta_{x}$ and $\sigma_{k}$ denote respectively the ordinary differentiation w.r.t. $x$ and the shift operator w.r.t. $k$. Then $\left\{\delta_{x}(Z)=A_{x} Z, \sigma_{k}(Z)=A_{k} Z\right\}$ where

$$
\begin{gathered}
A_{x}=\left(\begin{array}{cc}
\frac{x^{2}-k x-k}{x(x-k)(x-1)} & \frac{x^{2}-k x+3 k-2 x}{k x(x-k)(x-1)} \\
\frac{k\left(k x+x-x^{2}-2 k\right)}{(x-k)(x-1)} & \frac{x^{3}+x^{2}-k x^{2}-2 x+2 k}{x(x-k)(x-1)}
\end{array}\right) \\
A_{k}=\left(\begin{array}{cc}
\frac{k+1+k x^{2}-x k^{2}-x}{(x-k)(x-1)} & -\frac{k+1+k x-k^{2}-x}{k(x-k)(x-1)} \\
\frac{x(k+1)\left(k+1+k x-k^{2}-x\right)}{(x-k)(x-1)} & \frac{(k+1)\left(x^{2}-2 k x-x+k^{2}\right)}{k(x-k)(x-1)}
\end{array}\right)
\end{gathered}
$$

is a fully integrable system.

## 3. FUNDAMENTAL MATRICES AND PICARD-VESSIOT EXTENSIONS

A square matrix with entries in a commutative ring is said to be invertible if its determinant is a unit in that ring. Let the orthogonal $\Delta$-ring $(F, \Phi, \ell)$ be as in the previous section and $\left\{\partial_{i}(Z)=A_{i} Z\right\}_{1 \leq i \leq m}$ be a fully integrable system of size $n$ over $F$. An $n \times n$ matrix $U$ with entries in an orthogonal $\Delta$-extension $E$ of $F$ is a fundamental matrix for $\left\{\partial_{i}(Z)=A_{i} Z\right\}_{1 \leq i \leq m}$ if $U$ is invertible and $\partial_{i}(U)=A_{i} U$ for each $i$, that is, each column of $U$ is a solution of the system.

ThEOREM 1. For every fully integrable system, there exists a fundamental matrix whose entries lie in an orthogonal $\Delta$-extension of $F$.

Proof. Let $\left\{\partial_{i}(Z)=A_{i} Z\right\}_{1 \leq i \leq m}$ be a fully integrable system of size $n$ over $F, U=\left(u_{s t}\right)$ be a matrix of $n^{2}$ distinct
indeterminates and $R=F\left[u_{11}, \ldots, u_{1 n}, \ldots, u_{n 1}, \ldots, u_{n n}\right]$. For $1 \leq i \leq \ell$, the $\delta_{i}$ are extended to derivations of $R$ via $\delta_{i}(U)=A_{i} U$ and for $\ell+1 \leq j \leq m$, the $\sigma_{j}$ are extended to automorphisms of $R$ via $\sigma_{j}(U)=A_{j} U$ ( $\sigma_{j}$ is bijective because $A_{j}$ is invertible). It follows from the conditions (2) that these extended maps turn $R$ into a welldefined orthogonal $\Delta$-extension of $F$ and that $\partial_{i}(U)=A_{i} U$ for each $i$. Let $D=\operatorname{det}(U)$ and $\bar{R}$ be the localization of $R$ with respect to $D$. Extend the $\delta_{i}$ and $\sigma_{j}$ via the formulas $\delta_{i}(1 / D)=-\delta_{i}(D) / D^{2}$ and $\sigma_{j}(1 / D)=1 / \sigma_{j}(D)$, respectively (note that $\sigma_{j}(D)=\operatorname{det}\left(A_{j}\right) D$ for $j>\ell$ ). Then $\bar{R}$ becomes an orthogonal $\Delta$-extension of $F$, and $U$ is a fundamental matrix of the system.

The following proposition reveals that any two fundamental matrices differ by a constant matrix.

Proposition 1. Let $\left\{\partial_{i}(Z)=A_{i} Z\right\}_{1 \leq i \leq m}$ be a fully integrable system of size $n$ over $F$ and $U \in E^{n \times n}$ be a fundamental matrix where $E$ is an orthogonal $\Delta$-extension of $F$. If $V \in E^{n \times d}$ with $d \geq 1$ is a matrix whose columns are solutions of the system then $V=U T$ for some $T \in C_{E}^{n \times d}$. In particular, any solution of $\left\{\partial_{i}(Z)=A_{i} Z\right\}_{1 \leq i \leq m}$ in $E^{n}$ is a linear combination of the columns of $U$ over $C_{E}$.

Proof. Let $T=U^{-1} V$. A straightforward calculation implies that $\delta_{i}(T)=0$ for $i \leq \ell$, and $\sigma_{j}(T)=T$ for $j>\ell$. Hence all the entries of $T$ belong to $C_{E}$.

In $[10,11]$, Picard-Vessiot rings for linear ordinary differential and difference systems are defined. Picard-Vessiot fields for integrable systems of partial differential equations have been studied by Kolchin who proved their existence and developed the associated Galois theory [2, §2][5]. PicardVessiot extension fields have also been defined in [1] for fields with operators, which are more general $\Delta$-fields where the operators do not necessarily commute. While the associated Galois theory was developed there, the existence of Picard-Vessiot extensions was not shown. Indeed, with automorphisms allowed, there are fully integrable systems for which no Picard-Vessiot field exists. Generalizing the definition of Picard-Vessiot rings used for difference equations [10, (Errata)], we obtain Picard-Vessiot rings together with a construction proving their existence. Our definition is compatible with the previous ones: for differential systems, Picard-Vessiot rings turn out to be integral domains, and the Picard-Vessiot fields of [5] are their fields of fractions; For $\Delta$-rings, the Picard-Vessiot rings are generated by elements satisfying linear scalar operator equations, which is the defining property of the Picard-Vessiot fields of [1].
An ideal $I$ of a commutative $\Delta$-ring $R$ is said to be invariant if $\delta_{i}(I) \subset I$ and $\sigma_{i}(I) \subset I$ for all $1 \leq i \leq m$. The ring $R$ is said to be simple if its only invariant ideals are (0) and $R$.

DEFINITION 3. Let $\left\{\partial_{i}(Z)=A_{i} Z\right\}_{1 \leq i \leq m}$ be a fully integrable system over $F$. A Picard-Vessiot ring for this system is a (commutative) ring $E$ such that:
(i) $E$ is a simple orthogonal $\Delta$-extension of $F$.
(ii) $E=F\left[U, \operatorname{det}(U)^{-1}\right]$ for some fundamental matrix $U$ for the system.

We now construct Picard-Vessiot rings by the same approach used in the ordinary differential and difference cases $[10,11]$.

Lemma 1. Let $R$ be an orthogonal $\Delta$-extension of $F$ and $I$ a maximal invariant ideal in $R$. Then, (i) $E:=R / I$ is a simple orthogonal $\Delta$-extension of $F$. (ii) $C_{E}$ is a field. (iii) If $F$ has characteristic $0, C_{F}$ is algebraically closed and $E$ is a finitely generated algebra over $F$, then $C_{E}=C_{F}$.

Proof. Let $\bar{I}=\left\{\sigma_{\ell+1}^{k_{\ell+1}} \cdots \sigma_{m}^{k_{m}}(a) \mid a \in I, k_{\ell+1}, \ldots, k_{m} \in \mathbb{Z}\right\}$. One can verify that $\bar{I}$ is an invariant ideal containing $I$ but $1 \notin \bar{I}$, and hence $I=\bar{I}$ since $I$ is maximal. The $\delta_{i}$ and $\sigma_{j}$ can be viewed as derivations and surjective endomorphisms on $E=R / I$ via the formulas $\delta_{i}(a+I)=\delta_{i}(a)+I$ and $\sigma_{j}(a+I)=\sigma_{j}(a)+I$ for all $a$ in $R$, respectively. If $\sigma_{j}(a+I)=I$ then $\sigma_{j}(a) \in I=\bar{I}$ and thus $a \in I$. So the $\sigma_{j}$ are automorphisms of $E$ and $E$ is a simple orthogonal $\Delta$-extension of $F$. To show the second statement, let $c$ be a nonzero constant of $E$. Then the ideal $(c)$ is invariant. Since $E$ is simple, (c) contains 1. To show the last statement, suppose that $b \in C_{E}$ but $b \notin C_{F}$. By the argument used in the proof of Lemma 1.8 in [10], there exists a nonzero monic polynomial $g$ over $F$ with minimal degree $d$ such that $g(b)=\left(b^{d}+\sum_{k=0}^{d-1} g_{k} b^{k}\right)=0$. Apply the $\delta_{i}$ and $\sigma_{j}$ to $g(b)$, respectively, we obtain $\left(\sum_{k=0}^{d-1} \delta_{i}\left(g_{k}\right) b^{k}\right)=0$ for $i \leq \ell$, and $\left(\sum_{k=0}^{d-1}\left(\sigma_{j}\left(g_{k}\right)-g_{k}\right) b^{k}\right)=0$ for $j>\ell$. The minimality of $d$ then implies $g_{k} \in C_{F}$ for $0 \leq k<d$. So $b \in C_{F}$ since $C_{F}$ is algebraically closed, a contradiction.

The existence of the Picard-Vessiot extensions is stated in the next theorem.

Theorem 2. Every fully integrable system over $F$ has a Picard-Vessiot ring E. If $F$ has characteristic 0 and $C_{F}$ is algebraically closed, then $C_{E}=C_{F}$. Furthermore, that extension is minimal, meaning that no proper subring of $E$ satisfies condition (ii) of Definition 3.

Proof. Let $\left\{\partial_{i}(Z)=A_{i} Z\right\}_{1 \leq i \leq m}$ be a fully integrable system over $F$. By Theorem 1, it has a fundamental matrix $U=\left(u_{s t}\right)$ with entries in the orthogonal $\Delta$-extension

$$
R=F\left[u_{11}, \ldots, u_{n n}, \operatorname{det}(U)^{-1}\right] .
$$

Let $I$ be a maximal invariant ideal of $R$ and $E=R / I$. Then $E$ is a simple orthogonal $\Delta$-extension of $F$ by Lemma 1 . Clearly, $E$ is generated over $F$ by the entries of the matrix $\bar{U}:=\left(u_{s t}+I\right)$ and by $\operatorname{det}(\bar{U})^{-1}$. Since $\bar{U}$ is a fundamental matrix for the system, $E$ is a Picard-Vessiot ring for the system. Assume further that $F$ has characteristic 0 and $C_{F}$ is algebraically closed. Then $C_{E}=C_{F}$ by the third assertion of Lemma 1. Let $S=F\left[V, \operatorname{det}(V)^{-1}\right]$ be a subring of $E$ where $V$ is some fundamental matrix of the system. By Proposition 1, there exists $T \in C_{E}^{n \times n}$ such that $V=U T$. Since $C_{E}=C_{F}$, all the entries of $U$ and the inverse of $\operatorname{det}(U)$ are contained in $S$. Hence $S=E$.

Assume that the ground field $F$ has characteristic 0 with an algebraically closed field of constants. Let $E$ be a PicardVessiot ring for a fully integrable system of size $n$ over $F$.

Then Proposition 1 together with $C_{E}=C_{F}$ implies that all the solutions of this system in $E^{n}$ form a $C_{F}$-vector space of dimension $n$. A direct generalization of Proposition 1.20 in [11] and Proposition 1.9 in [10] reveals that any two Picard-Vessiot rings for a fully integrable system over $F$ are isomorphic as orthogonal $\Delta$-extensions.

We present a few examples for Picard-Vessiot rings. Consider the fully integrable system of size one:

$$
\begin{equation*}
\partial_{i}(z)=a_{i} z \quad \text { where } a_{i} \in F \text { and } i=1, \ldots, m . \tag{3}
\end{equation*}
$$

Let $E$ be the orthogonal $\Delta$-extension $F\left[T, T^{-1}\right]$ such that $\delta_{i}(T)=a_{i} T$ for $i \leq \ell$ and $\sigma_{j}(T)=a_{j} T$ for $j>\ell$.
Case 1. There does not exist an integer $k>0$ and $r \in F^{*}$ such that $\delta_{i}(r)=k a_{i} r$ for $i \leq \ell$ and $\sigma_{j}(r)=a_{j}^{k} r$ for $j>\ell$. Then $E$ is a Picard-Vessiot ring of (3).
Case 2. Assume that the integer $k>0$ is minimal so that $\delta_{i}(r)=k a_{i} r$ and $\sigma_{j}(r)=a_{j}^{k} r$ for some $r \in F^{*}$ and for all $i \leq \ell$ and $j>\ell$. Then $E /\left(T^{k}-r\right)$ is a Picard-Vessiot ring of (3). The verification of the above two assertions is similar to that in Example 1.19 in [11].
Unlike in the differential case, the elements of Picard-Vessiot rings cannot always be interpreted as complex functions: the system $\{d y / d x=y(x), y(x+1)=y(x)\}$ is in Case 1 above and has a Picard-Vessiot ring over $\mathbb{C}(x)$, but has no nonzero complex function solution.

Next, we show that a Picard-Vessiot ring of the system in Example 1 is $F\left[e^{x}, e^{-x}, \Gamma(k), \Gamma(k)^{-1}\right]$ where $F=\mathbb{C}(x, k)$. Note that the change of variable ${ }^{1} Z=M Y$, where

$$
M=\left(\begin{array}{cc}
\frac{x-k}{x} & x^{2} \\
(x-k) k & x^{2} k
\end{array}\right),
$$

transforms the system into $\mathcal{B}:\left\{\delta_{x}(Y)=B_{x} Y, \sigma_{k}(Y)=B_{k} Y\right\}$,

$$
\text { where } \quad B_{x}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \quad \text { and } \quad B_{k}=\left(\begin{array}{ll}
1 & 0 \\
0 & k
\end{array}\right) .
$$

Thus we need only to find a Picard-Vessiot ring of $\mathcal{B}$. First, let $U$ be a $2 \times 2$ matrix with indeterminate entries $u_{11}, u_{12}$, $u_{21}$ and $u_{22}$. Define $\delta_{x}(U)=B_{x} U$ and $\sigma_{k}(U)=B_{k} U$. This turns $R=F\left[u_{11}, u_{12}, u_{21}, u_{22}, 1 / \operatorname{det}(U)\right]$ into an orthogonal $\Delta$-extension of $F$. Clearly, $I=\left(u_{12}, u_{21}\right)$ is an invariant ideal of $R$ and $\sigma_{k}^{-1}(I)$ is contained in $I$. Hence $R / I$ is an orthogonal $\Delta$-ring. As the $\Delta$-rings $E=F\left[u_{11}, u_{22}, u_{11}^{-1}, u_{22}^{-1}\right]$ and $R / I$ are isomorphic, it suffices to show that $E$ is simple. Suppose that $J$ is a nontrivial invariant ideal of $E$. Let $f$ be a nonzero polynomial in $I \cap F\left[u_{11}, u_{22}\right]$ with the smallest number of terms. It cannot be a monomial, for otherwise $J$ would be $E$ since $u_{11}^{-1}$ and $u_{22}^{-1}$ are in $E$. We write

$$
f=u_{11}^{d_{1}} u_{22}^{d_{2}}+r u_{11}^{e_{1}} u_{22}^{e_{2}}+\text { other terms },
$$

where $r \in F$ with $r \neq 0$, and $\left(d_{1}, d_{2}\right) \neq\left(e_{1}, e_{2}\right)$. It follows from $\delta_{x}\left(u_{11}\right)=u_{11}$ and $\delta_{x}\left(u_{22}\right)=0$ that

$$
\delta_{x}(f)=d_{1} u_{11}^{d_{1}} u_{22}^{d_{2}}+\left(\delta_{x}(r)+e_{1} r\right) u_{11}^{e_{1}} u_{22}^{e_{2}}+\text { other terms },
$$

in which each monomial has already appeared in $f$. Thus ( $\delta_{x}(f)-d_{1} f$ ) must be zero, because it is in $I$ but has fewer terms. It follows that $\left(\delta_{x}(r)-\left(d_{1}-e_{1}\right) r\right)$ is equal to zero. In the same way, one can show that $\left(\sigma_{k}(r)-k^{d_{2}-e_{2}} r\right)=0$, because $\sigma_{k}\left(u_{11}\right)=u_{11}$ and $\sigma_{k}\left(u_{22}\right)=k u_{22}$. But the existence

[^1]of such a rational function $r$ would imply $d_{1}=e_{1}$ and $d_{2}=e_{2}$, a contradiction. Thus $E$ is simple, and so a Picard-Vessiot ring of $\mathcal{B}$, hence also of the system in Example 1. If we understand $u_{11}$ as $e^{x}$ and $u_{22}$ as $\Gamma(k)$, then $V=\left(\begin{array}{cc}e^{x} & 0 \\ 0 & \Gamma(k)\end{array}\right)$ is a fundamental matrix for $\mathcal{B}$ in $E$, and hence $M V$ is for the system in Example 1.

Last, we describe a simple orthogonal $\Delta$-extension that contains a solution of the inhomogeneous system

$$
\begin{equation*}
\delta_{i}(z)=a_{i} \text { for } i \leq \ell \quad \text { and } \quad \sigma_{j}(z)=z+a_{j} \text { for } j>\ell, \tag{4}
\end{equation*}
$$

where the $a_{i}$ and $a_{j}$ are in a simple orthogonal $\Delta$-ring $E$ with characteristic zero. This is an extension of Example 1.18 in [11]. Note that the $a_{i}$ and $a_{j}$ have to satisfy some compatibility conditions due to the commutativity of the $\delta_{i}$ and $\sigma_{j}$. A more general form for these conditions are given in (8) in the next section.
If (4) has a solution in $E$, then there is nothing to do. Otherwise, Let $R=E[T]$ and extend the $\delta_{i}$ and $\sigma_{j}$ on $R$ by the formulas $\delta_{i}(T)=a_{i}$ and $\sigma_{j}(T)=T+a_{j}$. The compatibility conditions imply that $R$ becomes a well-defined orthogonal $\Delta$-ring. If $R$ has a nontrivial invariant ideal $I$, let $f=f_{d} T^{d}+f_{d-1} T^{d-1}+\cdots+f_{0}$ be a nonzero element in $I$ with minimal degree. Let $J$ be the set consisting of zero and leading coefficients of elements in $I$ with degree $d$. Our extensions of $\delta_{i}$ and $\sigma_{j}$ imply that $J$ is an invariant ideal of $E$. Hence $1 \in J$ and, therefore, we may also assume $d>0$ and $f_{d}=1$. Since $d$ is minimal, both $\delta_{i}(f)$ and $\left(\sigma_{j}(f)-f\right)$ are 0 . Consequently, $\frac{-f_{d-1}}{d}$ is a solution of (4), a contradiction. Thus $R$ is simple and contains a solution $T$ of (4).

## 4. COMPLETING PARTIAL SOLUTIONS

We now consider reducible systems, i.e. systems that can be put into simultaneous block-triangular form by a change of variable $Y=M Z$ for some $M \in \mathrm{GL}_{n}(F)$. Factorization algorithms for modules over Laurent-Ore algebras [12] yield such a change of variable for reducible systems, and we motivate them by showing that the solutions of a factor can always be extended to solutions of the complete system.

Theorem 3. Let $\mathcal{A}$ : $\left\{\partial_{i}(Z)=A_{i} Z\right\}_{1 \leq i \leq m}$ be a fully integrable system of size $n$ over $F$, and suppose that there exist a positive integer $d<n$ and matrices $B_{i}$ in $F^{d \times d}, C_{i}$ in $F^{(n-d) \times d}$ and $D_{i}$ in $F^{(n-d) \times(n-d)}$ such that

$$
A_{i}=\left(\begin{array}{cc}
B_{i} & 0  \tag{5}\\
C_{i} & D_{i}
\end{array}\right) \quad \text { for } 1 \leq i \leq m .
$$

Then
(i) $\mathcal{B}:\left\{\partial_{i}(X)=B_{i} X\right\}_{1 \leq i \leq m}$ and $\mathcal{D}:\left\{\partial_{i}(X)=D_{i} X\right\}_{1 \leq i \leq m}$ are both fully integrable systems.
(ii) $\left(0, \ldots, 0, \zeta_{d+1}, \ldots, \zeta_{n}\right)^{\tau}$ is a solution of $\mathcal{A}$ whenever $\left(\zeta_{d+1}, \ldots, \zeta_{n}\right)^{\tau}$ is a solution of $\mathcal{D}$.
(iii) For any solution $\left(\eta_{1}, \ldots, \eta_{d}\right)^{\tau}$ of $\mathcal{B}$ in an orthogonal $\Delta$ extension of $F$, there exists an orthogonal $\Delta$-extension of $F$ containing $\eta_{1}, \ldots, \eta_{d}$ as well as $\eta_{d+1}, \ldots, \eta_{n}$ such that $\left(\eta_{1}, \ldots, \eta_{n}\right)^{\tau}$ is a solution of $\mathcal{A}$.

Proof. Let $X=\left(z_{1}, \ldots, z_{d}\right)^{\tau}$ and $Y=\left(z_{d+1}, \ldots, z_{n}\right)^{\tau}$. The system $\mathcal{A}$ can then be rewritten into a homogeneous system and an inhomogeneous system:

$$
\left\{\begin{array}{ll}
\partial_{i}(X)=B_{i} X,  \tag{6}\\
\partial_{i}(Y) & =D_{i} Y+C_{i} X,
\end{array} \quad \text { for } 1 \leq i \leq m\right.
$$

Since $\mathcal{A}$ is fully integrable, the matrices $A_{i}$ satisfy (2) and $A_{j}$ is invertible for $j>\ell$. Hence, the $B_{j}$ and $D_{j}$ for $j>\ell$ must also be invertible since $\operatorname{det}\left(A_{j}\right)=\operatorname{det}\left(B_{j}\right) \operatorname{det}\left(D_{j}\right)$. In addition, a routine calculation shows that for all $i, j$,

$$
\begin{align*}
& \sigma_{i}\left(A_{j}\right) A_{i}+\delta_{i}\left(A_{j}\right)= \\
& \left(\begin{array}{cc}
\sigma_{i}\left(B_{j}\right) B_{i}+\delta_{i}\left(B_{j}\right) & 0 \\
\sigma_{i}\left(C_{j}\right) B_{i}+\sigma_{i}\left(D_{j}\right) C_{i}+\delta_{i}\left(C_{j}\right) & \sigma_{i}\left(D_{j}\right) D_{i}+\delta_{i}\left(D_{j}\right)
\end{array}\right), \tag{7}
\end{align*}
$$

which implies that the $B_{i}$ and $D_{i}$ also satisfy the compatibility conditions (2). Therefore $\mathcal{B}$ and $\mathcal{D}$ are both fully integrable. The first statement is proved. The second is immediate from (6).
From Theorem 1, there exist an orthogonal $\Delta$-extension $E$ of $F$ and a fundamental matrix $U$ with entries in $E$ for $\mathcal{D}$. Let $\eta=\left(\eta_{1}, \ldots, \eta_{d}\right)^{\tau}$ be a solution of $\mathcal{B}$ in some orthogonal $\Delta$-extension $R$ of $F$. Viewing $E$ and $R$ as commutative $F$-algebras, we can extend the $\delta_{i}$ and $\sigma_{j}$ to the commutative $E$-algebra $E \otimes_{F} R$ via $\delta_{i}(e \otimes r)=\delta_{i}(e) \otimes r+e \otimes \delta_{i}(r)$ and $\sigma_{j}(e \otimes r)=\sigma_{j}(e) \otimes \sigma_{j}(r)$ for $i \leq \ell$ and $j>\ell$. Then $\left(1 \otimes \eta_{1}, \ldots, 1 \otimes \eta_{d}\right)^{\tau}$ is also a solution of $\mathcal{B}$, so, replacing $R$ by $E \otimes_{F} R$, we can assume without loss of generality that $R$ contains $E$. Substitute $\eta$ into (6) to get $\partial_{i}(Y)=D_{i} Y+C_{i} \eta$ for each $i$. Let $v=\left(v_{1}, \ldots, v_{n-d}\right)^{\tau}$, where the $v_{k}$ are distinct indeterminates over $R$, and $G=R\left[v_{1}, \ldots, v_{n-d}\right]$. We extend the $\delta_{i}$ and $\sigma_{j}$ to $G$ via $\delta_{i}(v)=b_{i}$ and $\sigma_{j}(v)=v+b_{j}$ where $b_{1}, \ldots, b_{m} \in R^{n-d}$ are given by $b_{i}=U^{-1} C_{i} \eta$ for $i \leq \ell$ and $b_{j}=U^{-1} D_{j}^{-1} C_{j} \eta$ for $j>\ell$.
To turn $G$ into an orthogonal $\Delta$-extension of $R$, all the $\delta_{i}$ and $\sigma_{j}$ on $G$ should commute, which is equivalent to the following integrability conditions:

$$
\begin{cases}\delta_{i}\left(b_{j}\right)=\delta_{j}\left(b_{i}\right), & \text { for } 1 \leq i, j \leq \ell,  \tag{8}\\ \delta_{i}\left(b_{j}\right)=\sigma_{j}\left(b_{i}\right)-b_{i}, & \text { for } i \leq \ell, j>\ell \\ \sigma_{i}\left(b_{j}\right)-b_{j}=\sigma_{j}\left(b_{i}\right)-b_{i}, & \text { for } \ell+1 \leq i, j \leq m .\end{cases}
$$

Although the conditions (8) are generally not satisfied for arbitrary $b_{i}$ 's, we show that they are satisfied in our case. Since the $A_{i}$ satisfy the compatibility conditions (2), it follows from the bottom-left block in (7) that, for all $i, j$,

$$
\begin{equation*}
\sigma_{i}\left(C_{j}\right) B_{i}+\sigma_{i}\left(D_{j}\right) C_{i}+\delta_{i}\left(C_{j}\right)=\sigma_{j}\left(C_{i}\right) B_{j}+\sigma_{j}\left(D_{i}\right) C_{j}+\delta_{j}\left(C_{i}\right) \tag{9}
\end{equation*}
$$

For $1 \leq i, j \leq \ell$, we have

$$
\begin{aligned}
\delta_{i}\left(b_{j}\right) & =\delta_{i}\left(U^{-1} C_{j} \eta\right) \\
& =-U^{-1} \delta_{i}(U) U^{-1} C_{j} \eta+U^{-1} \delta_{i}\left(C_{j}\right) \eta+U^{-1} C_{j} \delta_{i}(\eta) \\
& =-U^{-1}\left(D_{i} C_{j}-\delta_{i}\left(C_{j}\right)-C_{j} B_{i}\right) \eta,
\end{aligned}
$$

which, together with $\sigma_{i}=\sigma_{j}=\mathbf{1}$ for $1 \leq i, j \leq \ell$, and (9) implies $\delta_{i}\left(b_{j}\right)=\delta_{j}\left(b_{i}\right)$. The last two integrability conditions in (8) are verified with similar calculations, using the fact that the $D_{i}$ satisfy the compatibility conditions (2). Therefore $G$ is an orthogonal $\Delta$-extension of $R$, hence of $F$. Let $\zeta=U v \in G^{n-d}$. Then, for $i \leq \ell$,
$\partial_{i}(\zeta)=\delta_{i}(\zeta)=\delta_{i}(U) v+U \delta_{i}(v)=D_{i} U v+U b_{i}=D_{i} \zeta+C_{i} \eta$,
and, for $j>\ell$,

$$
\partial_{j}(\zeta)=\sigma_{j}(\zeta)=\sigma_{j}(U) \sigma_{j}(v)=D_{j} U\left(v+b_{j}\right)=D_{j} \zeta+C_{j} \eta
$$

So $\left(\eta^{\tau}, \zeta^{\tau}\right)^{\tau}$ is a solution of the initial system $\mathcal{A}$.
We point out here (but omitting the detailed explanation) that in the differential case, the quotient systems of [7] yield an alternative approach to completing solutions of factors.

Example 2. Let $F, \delta_{x}$ and $\sigma_{k}$ be as in Example 1, and consider the fully integrable system

$$
\left\{\delta_{x}(Z)=\left(\begin{array}{cc}
B_{x} & 0  \tag{10}\\
C_{x} & D_{x}
\end{array}\right) Z, \sigma_{k}(Z)=\left(\begin{array}{cc}
B_{k} & 0 \\
C_{k} & D_{k}
\end{array}\right) Z\right\}
$$

where $Z=\left(z_{1}, z_{2}, z_{3}\right)^{\tau}, B_{x}=\frac{x+k}{x}, B_{k}=\frac{(k+1) x}{k}$,

$$
\begin{gathered}
C_{x}=\binom{\frac{2 x^{2}-k^{2}+2 x-k x}{x(x-k)}}{\frac{x^{3}-x^{2} k+2 x^{2}-k x+2 x-k^{2}}{(x-k) x}}, \\
C_{k}=\binom{\frac{(k+1)\left(x^{3}-2 x^{2} k-3 x^{2}+k^{2} x+4 k x+x-k^{2}\right)}{k(x-k-1)^{2}}}{\frac{x^{2}(k+1)}{k}-\frac{(k+1)(x-k)^{2}}{k(x-k-1)^{2}}-x k(x-1)},
\end{gathered}
$$

and

$$
D_{x}=\left(\begin{array}{cc}
\frac{-2-x+k}{x-k} & 0 \\
\frac{-2 x-x^{2}+k^{2}}{(x-k) x} & \frac{k}{x}
\end{array}\right), \quad D_{k}=\left(\begin{array}{cc}
\frac{(k+1)(x-k)^{2}}{k(x-k-1)^{2}} & 0 \\
\frac{(k+1)(x-k)^{2}}{k(x-k-1)^{2}}-k x & x k
\end{array}\right)
$$

We complete the solution $\eta_{1}=k e^{x} x^{k}$ of the system given by $B_{x}$ and $B_{k}$ to a solution of (10). Note that

$$
U=\left(\begin{array}{cc}
0 & \frac{k e^{-x}}{(x-k)^{2}} \\
\Gamma(k) x^{k} & \frac{k e-x}{(x-k)^{2}}
\end{array}\right)
$$

is a fundamental matrix for the system given by $D_{x}$ and $D_{k}$. By the proof of Theorem 3, we let

$$
\begin{gathered}
b_{1}=\binom{\frac{k x}{\Gamma(k)} e^{x}}{(x-k)\left(2 x^{2}-k^{2}+2 x-k x\right) x^{k-1} e^{2 x}} \\
b_{2}=\binom{\frac{x+k x+k^{2}-x k^{2}-k-1}{\Gamma(k+1)} e^{x}}{\left(x^{3}-2 k x^{2}-3 x^{2}+k^{2} x+4 k x+x-k^{2}\right) x^{k} e^{2 x}}
\end{gathered}
$$

We find that

$$
v=\binom{\frac{\Gamma(k)-k e^{x}+x k e^{x}}{\Gamma(k)}}{x^{k+2} e^{2 x}-2 x^{k+1} k e^{2 x}+x^{k} k^{2} e^{2 x}+1}
$$

satisfies $\delta_{x}(v)=b_{1}$ and $\sigma_{k}(v)-v=b_{2}$. Therefore,

$$
\binom{\eta_{1}}{U^{-1} v}=\left(\begin{array}{c}
k e^{x} x^{k} \\
k e^{x} x^{k}+\frac{k e^{-x}}{(x-k)^{2}} \\
x^{k+1} k e^{x}+\frac{k e^{-x}}{(x-k)^{2}}+\Gamma(k) x^{k}
\end{array}\right)
$$

is a solution of (10).

Theorem 3 also yields fundamental matrices for reducible systems. Let $\left\{\partial_{i}(Z)=A_{i} Z\right\}_{1 \leq i \leq m}$ be a fully integrable system where the $A_{i}$ are as in (5). Suppose that $U=\left(u_{i j}\right) \in$ $R^{d \times d}$ and $V \in E^{(n-d) \times(n-d)}$ are fundamental matrices for
the systems $\left\{\partial_{i}(X)=B_{i} X\right\}_{1<i<m}$ and $\left\{\partial_{i}(X)=D_{i} X\right\}_{1<i \leq m}$ respectively, where $R$ and $\bar{E}$ are orthogonal $\Delta$-extensions of $F$. As in the procedure of completing solutions, we can assume without loss of generality that $R$ contains $E$. Then a fundamental matrix for the initial system can be constructed as follows: for each $1 \leq i \leq d$, following the procedure of completing solutions, we can find an orthogonal $\Delta$-extension $G_{i}$ of $R$ and $\xi_{i} \in G_{i}^{n-d}$ such that $\left(u_{1 i}, \ldots, u_{d i}, \xi_{i}^{\tau}\right)^{\tau} \in G_{i}^{n}$ is a solution of $\left\{\partial_{i}(Z)=A_{i} Z\right\}_{1 \leq i \leq m}$. Viewing all the entries of $U, V$ and the $\xi_{i}$ as elements of $G=G_{1} \otimes_{F} \cdots \otimes_{F} G_{d}$, $W=\left(\begin{array}{cccc} & U & & 0 \\ \xi_{1} & \cdots & \xi_{d} & V\end{array}\right) \in G^{n \times n}$ is easily seen to be a fundamental matrix for $\left\{\partial_{i}(Z)=A_{i} Z\right\}_{1 \leq i \leq m}$ (it is invertible because $\operatorname{det}(W)=\operatorname{det}(U) \operatorname{det}(V))$.

## 5. MODULES AND PICARD-VESSIOT RINGS FOR GENERAL LINEAR FUNCTIONAL SYSTEMS

We now generalize the previous notions and results to systems of the form $A(Z)=0$ where $A$ is a matrix of linear operators. As in previous sections, let $(F, \Phi, \ell)$ be an orthogonal $\Delta$-field and $S=F\left[\partial_{1} ; \sigma_{1}, \delta_{1}\right] \cdots\left[\partial_{m} ; \sigma_{m}, \delta_{m}\right]$ be the corresponding Ore algebra [4]. In the differential case, an $S$-module is classically associated to such a system $[8,11]$. In the difference case, however, $S$-modules do not have appropriate dimensions, so modules over Laurent algebras are used instead $[9,10,13]$. It is therefore natural to introduce in our setting the following extension of $S$ : let $\theta_{\ell+1}, \ldots, \theta_{m}$ be indeterminates independent of the $\partial_{i}$. Since the $\sigma_{j}^{-1}$ are also automorphisms of $F, \bar{S}=S\left[\theta_{\ell+1} ; \sigma_{\ell+1}^{-1}, \mathbf{0}\right] \cdots\left[\theta_{m} ; \sigma_{m}^{-1}, \mathbf{0}\right]$ is also an Ore algebra. Since $\left(\partial_{j} \theta_{j}\right) a=\partial_{j} \sigma_{j}^{-1}(a) \theta_{j}=a \partial_{j} \theta_{j}$ for any $j>\ell$ and any $a \in F, \partial_{j} \theta_{j}$ is in the center of $\bar{S}$. Therefore the left ideal $I=\sum_{j=\ell+1}^{m} \bar{S}\left(\partial_{j} \theta_{j}-1\right)$ is a two-sided ideal of $\bar{S}$, and we call the factor ring $R=\bar{S} / I$ the Laurent-Ore algebra generated by $\Phi$ over $F$. Writing $\partial_{j}^{-1}$ for the image of $\theta_{j}$ in $R$, we can also write $R$ (by convention) as

$$
\begin{aligned}
R:=\quad & F\left[\partial_{1} ; \mathbf{1}, \delta_{1}\right] \cdots\left[\partial_{\ell} ; \mathbf{1}, \delta_{\ell}\right] \\
& {\left[\partial_{\ell+1}, \partial_{\ell+1}^{-1} ; \sigma_{\ell+1}, \mathbf{0}\right] \cdots\left[\partial_{m}, \partial_{m}^{-1} ; \sigma_{m}, \mathbf{0}\right] }
\end{aligned}
$$

and view it as an extension of $S$. For linear ordinary difference equations, $R=F\left[\sigma, \sigma^{-1}\right]$, is the algebra used in [10]. For linear partial difference equations with constant coefficients, $R$ is the Laurent polynomial ring used in $[9,13]$. Laurent-Ore algebras allow us to construct fundamental matrices and Picard-Vessiot extensions for linear functional systems of finite linear dimension, a concept that we now define precisely.

For our purposes, a linear functional system is a matrix $A=\left(a_{i j}\right) \in S^{p \times q} \subset R^{p \times q}$. For any $R$-module $N$, we can associate to $A$ a $C_{F}$-linear map $\lambda: N^{q} \rightarrow N^{p}$ given by

$$
\xi:=\left(\begin{array}{c}
\xi_{1} \\
\vdots \\
\xi_{q}
\end{array}\right) \mapsto A \xi=\left(\begin{array}{c}
\sum_{j=1}^{q} a_{1 j} \xi_{j} \\
\vdots \\
\sum_{j=1}^{q} a_{p j} \xi_{j}
\end{array}\right)
$$

We therefore say that $\xi \in N^{q}$ is a solution "in $N$ " of the system $A(Z)=0$ if $A(\xi)=0$, and write $\operatorname{sol}_{N}(A(Z)=0)$ for all its solutions in $N$. Clearly, $\operatorname{sol}_{N}(A(Z)=0)$ is a vector space over $C_{F}$.

As in the case of $\mathcal{D}$-modules [8], we can associate to $A$ an $R$-module as follows: the matrix $A \in R^{p \times q}$ induces the $R$-linear map $\rho: R^{1 \times p} \rightarrow R^{1 \times q}$ given by $\rho\left(r_{1}, \ldots, r_{p}\right)=$ $\left(r_{1}, \ldots, r_{p}\right) A$. Let $M=\operatorname{coker}(\rho)=R^{1 \times q} / R^{1 \times p} A$, which is simply the quotient of $R^{1 \times q}$ by the submodule generated by the rows of $A$. Then

$$
\begin{equation*}
R^{1 \times p} \xrightarrow{\rho} R^{1 \times q} \xrightarrow{\pi} M \longrightarrow 0 \tag{11}
\end{equation*}
$$

is an exact sequence of $R$-modules where $\pi: R^{1 \times q} \rightarrow M$ is the canonical map. For every $s \geq 1$ and $1 \leq i \leq s$, let $e_{i s}$ be the unit vector in $R^{1 \times s}$ with $\overline{1}$ in the $i$ th position and 0 elsewhere. Then $e_{1 p}, \ldots, e_{p p}$ and $e_{1 q}, \ldots, e_{q q}$ are canonical bases of $R^{1 \times p}$ and $R^{1 \times q}$, respectively. Set $e_{j}=\pi\left(e_{j q}\right)$ for $1 \leq j \leq q$. Since $\pi$ is surjective, $e_{1}, \ldots, e_{q}$ generate $M$ as an $R$-module. Since $\rho\left(e_{i p}\right)$ is the $i$-th row of $A$, we have
$0=\pi\left(\rho\left(e_{i p}\right)\right)=\pi\left(\sum_{j=1}^{q} a_{i j} e_{j q}\right)=\sum_{j=1}^{q} a_{i j} \pi\left(e_{j q}\right)=\sum_{j=1}^{q} a_{i j} e_{j}$,
for $1 \leq i \leq p$, which implies that $\left(e_{1}, \ldots, e_{q}\right)^{\tau}$ is a solution of $A(Z)=0$ in $M$.

Given two $R$-modules $N_{1}$ and $N_{2}$, let $\operatorname{Hom}_{R}\left(N_{1}, N_{2}\right)$ denote the $C_{F}$-vector space of all the $R$-linear maps from $N_{1}$ to $N_{2}$. We next show that the proof of Proposition 1.1 of [8] remains valid when $\mathcal{D}$ is replaced by $R$.

Theorem 4. Let $M=R^{1 \times q} / R^{1 \times p} A$. Then $\operatorname{sol}_{N}(A(Z)=0)$ and $\operatorname{Hom}_{R}(M, N)$ are isomorphic as $C_{F}$-vector spaces for any $R$-module $N$.

Proof. Applying the functor $\operatorname{Hom}_{R}(\cdot, N)$ to the exact sequence (11) of $C_{F}$-vector spaces and using the isomorphism $\operatorname{Hom}_{R}\left(R^{1 \times s}, N\right) \rightarrow N^{s}$ given by $f \mapsto\left(f\left(e_{1 s}\right), \ldots, f\left(e_{s s}\right)\right)^{\tau}$, we get the exact sequence:

$$
0 \longrightarrow \operatorname{Hom}_{R}(M, N) \xrightarrow{\pi^{*}} N^{q} \xrightarrow{\lambda} N^{p},
$$

in which $\pi^{*}(f)=\left(f\left(e_{1}\right), \ldots, f\left(e_{q}\right)\right)^{\tau}$ and $\lambda\left(\left(n_{1}, \ldots, n_{q}\right)^{\tau}\right)=$ $A\left(n_{1}, \ldots, n_{q}\right)^{\tau}$ for $n_{1}, \ldots, n_{q}$ in $N$. Since $\pi^{*}$ is injective, $\operatorname{Hom}_{R}(M, N) \simeq \operatorname{Im}\left(\pi^{*}\right)=\operatorname{ker}(\lambda)=\operatorname{sol}_{N}(A(Z)=0)$.

Theorem 4 reveals that $e:=\left(e_{1}, \ldots, e_{q}\right)^{\tau} \in M^{q}$ is a "generic" solution of the system $A(Z)=0$ in the sense that any solution of $A(Z)=0$ is the image of $e$ under some homomorphism. This means that $M$ describes the properties of all the solutions of $A(Z)=0$ "anywhere". So we define

Definition 4. Let $A \in S^{p \times q} \subset R^{p \times q}$. We call the $R$ module

$$
M=R^{1 \times q} / R^{1 \times p} A
$$

the module of formal solutions of the system $A(Z)=0$. The dimension of $M$ as an $F$-vector space is called the linear dimension of the system. The system is said to be of finite linear dimension if $0<\operatorname{dim}_{F} M<+\infty$.

Note that we choose to exclude systems with $\operatorname{dim}_{F} M=0$ in our definition since such systems cannot have nonzero solutions in any $R$-module (which includes all orthogonal $\Delta$ extensions of $F$ ). The next lemma is used to describe modules of formal solutions for finite-rank left ideals in $S$ ([6]).

Lemma 2. Let $J$ be a left ideal of $S$. Assume that $J$ does not contain any monomial in $\partial_{\ell+1}, \ldots, \partial_{m}$, and that $S / J$ is finite dimensional over $F$. Let I be the left ideal generated by $J$ in $R$ and $\bar{J}=I \cap S$. Then $S / \bar{J}$ and $R / I$ are isomorphic as vector spaces over $F$. In particular, $R / I$ is finite dimensional over $F$.

Proof. Let $H$ be the set of all monomials in $\partial_{\ell+1}, \ldots, \partial_{m}$. Since every element of $H$ is invertible in $R$,

$$
\begin{equation*}
\bar{J}=\{a \in S \mid h a \in J \text { for some } h \in H\} . \tag{12}
\end{equation*}
$$

Since $J \subset \bar{J}, \operatorname{dim}_{F}(S / \bar{J})$ is finite. Let $f_{j}$ be a nonzero polynomial in $F\left[\partial_{j}\right] \cap \bar{J}$ with minimal degree for $j>\ell$. Then each $f_{j}$ is of positive degree with a nonzero coefficient of $\partial_{j}^{0}=1$, for otherwise, $\bar{J}$ would contain 1, and, hence, $J$ would have a nonempty intersection with $H$ by (12), a contradiction to our assumption. Since $\partial_{j}^{-1} f_{j} \in I, \partial_{j}^{-1}$ is congruent to an element of $F\left[\partial_{j}\right]$ modulo $I$. It follows that every element of $R$ is congruent to an element of $S$ modulo $I$ (note that every element of $R$ can be written as an element of $S$ multiplied by the inverse of an element of $H$ from the righthand side).
Let $\phi$ be the map from $S / \bar{J}$ to $R / I$ that sends $a+\bar{J}$ to $a+I$ for $a \in S$. The map is well-defined, injective and linear over $F$ because $\bar{J}=S \cap I$. By the conclusion made in the previous paragraph, for every element $(b+I)$ of $R / I$ with $b \in R$, there exists $b^{\prime}$ in $S$ such that $b \equiv b^{\prime} \bmod I$. Thus $\phi\left(b^{\prime}+\bar{J}\right)=b+I$. The map $\phi$ is surjective.

Example 3. Consider a $p \times 1$ matrix $A=\left(L_{1}, \ldots, L_{p}\right)^{\tau}$, where the $L_{i}$ are in $S$. The system $A(z)=0$ corresponds to scalar equations $L_{1}(z)=\cdots=L_{p}(z)=0$, whose $R$-module of formal solutions is $M=R / \rho\left(R^{1 \times p}\right)=R / I$, where $I$ is the left ideal $\sum_{i=1}^{p} R L_{i}$ of $R$. Let $J$ be the left ideal $\sum_{i=1}^{p} S L_{i}$ of $S$. Then, by Lemma 2, $\operatorname{dim}_{F} M$ is finite if $\operatorname{dim}_{F} S / J$ is finite and $J$ contains no monomial in $\partial_{\ell+1}, \ldots, \partial_{m}$.
Consider the case $\ell=0$ and $m=2$. If $J$ is $S\left(\partial_{1}+1\right)$, then $\operatorname{dim}_{F}(M)$ is not finite. On the other hand, if $J$ is equal to $S\left(\partial_{1} \partial_{2}\left(\partial_{1}+1\right)\right)+S\left(\partial_{1} \partial_{2}\left(\partial_{2}+1\right)\right)$, then $\operatorname{dim}_{F} S / J$ is not finite, but $\operatorname{dim}_{F} M=1$, because $I=R\left(\partial_{1}+1\right)+R\left(\partial_{2}+1\right)$.

Example 4 (Integrable systems). Let $A_{1}, \ldots, A_{m}$ be in $F^{n \times n}, \mathbf{1}_{n}$ be the identity matrix in $F^{n \times n}$ and

$$
A=\left(\begin{array}{c}
\partial_{1} \cdot \mathbf{1}_{n}-A_{1} \\
\vdots \\
\partial_{m} \cdot \mathbf{1}_{n}-A_{m}
\end{array}\right) \in S^{m n \times n} .
$$

The system $A(Z)=0$ corresponds to $\left\{\partial_{i}(Z)=A_{i} Z\right\}_{1 \leq i \leq m}$, which is not necessarily fully integrable. Let $M$ be its module of formal solutions and $e=\left(e_{1}, \ldots, e_{n}\right)^{\tau} \in M^{n}$ be as above. Then $A(e)=0$ implies that $\partial_{i} e=A_{i} e$ for each $i$. Since the entries of $A_{i}$ are in $F, \partial_{i} e_{j} \in \sum_{s=1}^{n} F e_{s}$ for all $i, j$, and thus $R e_{j} \subset \sum_{s=1}^{n} F e_{s}$ for all $j$. Hence $M=\sum_{s=1}^{n} R e_{s}=$ $\sum_{s=1}^{n} F e_{s}$. In particular, $\operatorname{dim}_{F} M \leq n$.

To check in practice whether a system is of finite linear dimension, we need to compute $\operatorname{dim}_{F} M$. As seen in Example 4, when the system is given as an integrable system, we have a set of generators for $M$ over $F$, so computing $\operatorname{dim}_{F} M$ could be done by linear algebra over $F$ as
in Example 5. Note that in the purely differential case, we have $\operatorname{dim}_{F} M=n$ if the matrices $A_{i}$ satisfy (2), $\operatorname{dim}_{F} M=0$ otherwise. When the system is given by an ideal in $S$, then Lemma 2 shows that either $M=0$ (if the ideal contains a monomial in $\partial_{\ell+1}, \ldots, \partial_{m}$ ) or an $F$-basis of $M$ can be computed via Gröbner bases of $S$-modules. There are algorithms and implementations for this task [3, 4]. For more general matrices $A \in S^{p \times q}$, computing an $F$-basis of $M$ involves computing Gröbner bases of $R$-modules. In the purely differential case, this is again Gröbner bases of $S$-modules. When difference operators are involved, the algorithms developed in $[9,13]$ for pure difference equations with constant coefficients are generalized in [12] to produce Gröbner bases of $R$-modules.

Let $A \in S^{p \times q}$ and $M$ be the $R$-module of formal solutions for $A(Z)=0$. Suppose that $\operatorname{dim}_{F} M=n$ and $b_{1}, \ldots, b_{n}$ form a basis of $M$ over $F$. Then, for $b:=\left(b_{1}, \ldots, b_{n}\right)^{\tau}$ there exists $B_{i} \in F^{n \times n}$ such that $\partial_{i}(b)=B_{i} b$ for each $i$. We can regard $M$ as the module of formal solutions for the integrable system $\left\{\partial_{i}(X)=B_{i} X\right\}_{1 \leq i \leq m}$. Indeed, suppose we find, as described in Example 4, its module $M_{B}$ of formal solutions and $f:=\left(f_{1}, \ldots, f_{n}\right)^{\tau}$ such that $M_{B}=\sum_{s=1}^{n} F f_{s}$ and $\partial_{i}(f)=B_{i} f$ for each $i$. Since $b \in M^{n}$ is a solution of $\left\{\partial_{i}(X)=B_{i} X\right\}_{1 \leq i \leq m}$, there exists $\varphi \in \operatorname{Hom}_{R}\left(M_{B}, M\right)$ such that $b=\varphi(f)$ by Theorem 4. Since the $b_{i}$ are linearly independent over $F$, so are the $f_{i}$. Hence $M_{B}=\oplus_{s=1}^{n} F f_{s}$ and $\varphi$ is an isomorphism of $R$-modules.

Since $\partial_{i}$ and $\partial_{j}$ commute for any $i$ and $j$, we have $\partial_{i}\left(\partial_{j}(b)\right)=$ $\partial_{j}\left(\partial_{i}(b)\right)$. From $\partial_{i}(b)=B_{i} b$ and the linear independence of $b_{1}, \ldots, b_{n}$ over $F$, it follows that

$$
\sigma_{i}\left(B_{j}\right) B_{i}+\delta_{i}\left(B_{j}\right)=\sigma_{j}\left(B_{i}\right) B_{j}+\delta_{i}\left(B_{j}\right), \quad 1 \leq i, j \leq m
$$

i.e. $B_{1}, \ldots, B_{m}$ satisfy the compatibility conditions (2). Suppose that $B_{t}$ is singular for some $t>\ell$. Then, there exists a nonzero $v \in F^{1 \times n}$ such that $v B_{t}=0$ and thus $v \partial_{t}(b)=$ $v B_{t} b=0$. Since $M$ is an $R$-module on which $\partial_{t}^{-1}$ acts, we have $0=\partial_{t}^{-1}\left(v \partial_{t}(b)\right)=\sigma_{t}^{-1}(v) \partial_{t}^{-1}\left(\partial_{t}(b)\right)=\sigma_{t}^{-1}(v) b$, which implies that $b_{1}, \ldots, b_{n}$ are linearly dependent over $F$, a contradiction. So the $B_{j}$ are invertible for $\ell+1 \leq j \leq m$ and the system $\left\{\partial_{i}(X)=B_{i} X\right\}_{1 \leq i \leq m}$ is fully integrable. We call it ${ }^{2}$ the fully integrable system associated to $M$ w.r.t. the basis $b_{1}, \ldots, b_{n}$.

Since any orthogonal $\Delta$-extension $E$ of $F$ is turned into an $R$-module via the action $\partial_{i}(e)=\delta_{i}(e)$ for $i \leq \ell$ and $\partial_{i}(e)=\sigma_{i}(e)$ for $i>\ell, \operatorname{sol}_{E}(A(Z)=0)$ is well-defined. We now set up a correspondence between the solutions in $E$ of $A(Z)=0$ and those of its associated fully integrable system.

Proposition 2. Let $A(Z)=0$ with $A \in S^{p \times q}$ be a system of finite linear dimension, $M$ be its module of formal solutions, $e_{1}, \ldots, e_{q}$ be $R$-generators for $M$ and $b_{1}, \ldots, b_{n}$ be an $F$-basis of $M$ such that $A\left(e_{1}, \ldots, e_{q}\right)^{\tau}=0$ and

$$
\partial_{i}\left(b_{1}, \ldots, b_{n}\right)^{\tau}=B_{i}\left(b_{1}, \ldots, b_{n}\right)^{\tau} \quad \text { for each } i
$$

Let $P \in F^{q \times n}$ be given by $\left(e_{1}, \ldots, e_{q}\right)^{\tau}=P\left(b_{1}, \ldots, b_{n}\right)^{\tau}$. Then, for any orthogonal $\Delta$-extension $E$ of $F$, the correspondence $\xi \mapsto P \xi$ is an isomorphism of $C_{E}$-modules between $\operatorname{sol}_{E}\left(\left\{\partial_{i}(X)=B_{i} X\right\}_{1 \leq i \leq m}\right)$ and $\operatorname{sol}_{E}(A(Z)=0)$.

[^2]Proof. To simplify notation, we denote $\operatorname{sol}_{E}(A(Z)=0)$ and $\operatorname{sol}_{E}\left(\left\{\partial_{i}(X)=B_{i} X\right\}_{1 \leq i \leq m}\right)$ by $W_{A}$ and $W_{B}$, respectively. Write $e=\left(e_{1}, \ldots, e_{q}\right)^{\tau}$ and $b=\left(b_{1}, \ldots, b_{n}\right)^{\tau}$. According to Theorem 4, for any $\xi \in W_{B}$, there exists $\varphi \in \operatorname{Hom}_{R}(M, E)$ such that $\xi=\varphi(b)$. Hence

$$
A(P \xi)=A(P \varphi(b))=\varphi(A(P b))=\varphi(A(e))=0,
$$

so $P \xi$ belongs to $W_{A}$. Thus the correspondence $\xi \mapsto P \xi$ is a homomorphism of $C_{E}$-modules from $W_{B}$ to $W_{A}$.
For every $\eta \in W_{A}$ there exists $\psi \in \operatorname{Hom}_{R}(M, E)$ such that $\eta=\psi(e)=\psi(P b)=P \psi(b)$. The correspondence $\xi \mapsto P \xi$ is then surjective, because $\psi(b)$ belongs to $W_{B}$. If $\xi \in W_{B}$ and $P \xi=0$, then there exists $\varphi \in \operatorname{Hom}_{R}(M, E)$ such that $\xi=\varphi(b)$. Hence $0=P \xi=\varphi(P b)=\varphi(e)$. It follows that $\varphi$ maps everything to 0 as $M$ is generated by $e_{1}, \ldots, e_{q}$ over $R$. Thus $\xi=0$ and the correspondence is bijective.

Definition 5. Let $A, M, b_{1}, \ldots, b_{n}$ and $P$ be as in Proposition 2. A $q \times n$ matrix $V$ with entries in an orthogonal $\Delta$-extension $E$ of $F$ is called a fundamental matrix for $A(Z)=0$ if $V=P U$ where $U \in E^{n \times n}$ is a fundamental matrix of the fully integrable system associated to $M$ w.r.t. the basis $b_{1}, \ldots, b_{n}$.

A Picard-Vessiot ring for any fully integrable system associated to $M$ is called a Picard-Vessiot ring for $A(Z)=0$.

Although this is not stated in the definition, it follows from Proposition 2 that the columns of a fundamental matrix form a $C_{E}$-basis of the $C_{E}$-module $\operatorname{sol}_{E}(A(Z)=0)$ : denote $\operatorname{sol}_{E}(A(Z)=0)$ and $\operatorname{sol}_{E}\left(\left\{\partial_{i}(X)=B_{i} X\right\}_{1 \leq i \leq m}\right)$ by $W_{A}$ and $W_{B}$ respectively. Then the columns of $V=P U$ are in $W_{A}$ by Proposition 2. Let $c \in C_{E}^{n \times 1}$ be such that $0=V c=P U c$. Since $U c \in W_{B}$, we have $U c=0$ by Proposition 2, hence $c=0$ since $U$ is invertible. Thus the columns of $V$ are linearly independent over $C_{E}$. For any $\eta \in W_{A}$ there exists $\xi \in W_{B}$ such that $\eta=P \xi$. By Proposition 1 there exists $c \in C_{E}^{n \times 1}$ such that $\xi=U c$. Hence $\eta=P U c=V c$.

Let $b_{1}, \ldots, b_{n}$ and $d_{1}, \ldots, d_{n}$ be two bases of $M$ over $F$. Write $b=\left(b_{1}, \ldots, b_{n}\right)^{\tau}$ and $d=\left(d_{1}, \ldots, d_{n}\right)^{\tau}$, and let $T \in$ $\mathrm{GL}_{n}(F)$ be given by $d=T b$. For each $i$, let $B_{i}, D_{i} \in F^{n \times n}$ be such that $\partial_{i}(b)=B_{i} b$ and $\partial_{i}(d)=D_{i} d$. If $E$ is a PicardVessiot ring for $\left\{\partial_{i}(X)=B_{i} X\right\}_{1 \leq i \leq m}$ and $U \in E^{n \times n}$ is a corresponding fundamental matrix, then $T U$ is a fundamental matrix for $\left\{\partial_{i}(Y)=D_{i} Y\right\}_{1 \leq i \leq m}$ by Theorem 4 , so $E$ is a Picard-Vessiot ring for that system too. This justifies the second part of Definition 5.

## As a final consequence of Theorems 1 and 2, we have

Theorem 5. Every system $A(Z)=0$ of finite linear dimension has a fundamental matrix and has a Picard-Vessiot ring $E$. If $F$ has characteristic 0 and $C_{F}$ is algebraically closed, then $C_{E}=C_{F}$.

Proof. Let $A \in S^{p \times q}$ be such that $A(Z)=0$ is of finite linear dimension $n>0, M$ be its module of formal solutions, $e_{1}, \ldots, e_{q}$ be $R$-generators for $M$ and $b_{1}, \ldots, b_{n}$ be an $F$ basis of $M$ such that $A\left(e_{1}, \ldots, e_{q}\right)^{\tau}=0$ and $\partial_{i}\left(b_{1}, \ldots, b_{n}\right)^{\tau}=$ $B_{i}\left(b_{1}, \ldots, b_{n}\right)^{\tau}$ for each $i$. Let $P \in F^{q \times n}$ be given by $\left(e_{1}, \ldots, e_{q}\right)^{\tau}=P\left(b_{1}, \ldots, b_{n}\right)^{\tau}$. Since $\left\{\partial_{i}(X)=B_{i} X\right\}_{1 \leq i \leq m}$
is a fully integrable system, there exists, by Theorem 1 , a fundamental matrix $U \in E^{n \times n}$ for that system where $E$ is some orthogonal $\Delta$-extension of $F$. Then $V:=P U \in E^{q \times m}$ is a fundamental matrix for $A(Z)=0$. The existence of the Picard-Vessiot ring and the second statement follow directly from Theorem 2.

Assume that $F$ has characteristic 0 with an algebraically closed field of constants. Let $E$ be a Picard-Vessiot ring for the system $A(Z)=0$. As mentioned after Theorem 2, $\operatorname{sol}_{E}\left(\left\{\partial_{i}(X)=B_{i} X\right\}_{1 \leq i \leq m}\right)$ is of dimension $n$ over $C_{F}$. But that space is isomorphic to $\operatorname{sol}_{E}(A(Z)=0)$ by Proposition 2. Therefore the dimension of $\operatorname{sol}_{E}(A(Z)=0)$ as a $C_{F}$-vector space equals $n$, the linear dimension of $A(Z)=0$.

Example 5. Let $F, \delta_{x}$ and $\sigma_{k}$ be as in Example 1, and the system $\mathcal{A}$ is given by

$$
\begin{gathered}
A_{x}=\left(\begin{array}{ccc}
\frac{x+1}{x} & \frac{k(x+1-k)}{x^{2}(k-1)} & -\frac{k(x+1-k)}{x^{2}(k-1)} \\
x+1 & \frac{x k-k^{2}+2 x^{2}+k x^{2}+k-1}{x(k-1)} & -\frac{x k-k^{2}+2 x^{2}+k x^{2}}{x(k-1)} \\
x+1 & \frac{x k+2 x^{2}+k x^{2}-2 k^{2}+k}{x(k-1)} & -\frac{x k+2 x^{2}+k x^{2}-2 k^{2}+1}{x(k-1)}
\end{array}\right), \\
A_{k}=\left(\begin{array}{ccc}
\frac{k+1}{k} & \frac{k+1-x k-x}{x(k-1)} & \frac{x k+x-k-1}{x(k-1)} \\
\frac{x(k+1)}{k} & \frac{1-2 x+k-x k+x^{3}}{k-1} & \frac{2 x+x k-x^{3}-k-1}{k-1} \\
\frac{x(k+1)}{k} & \frac{1-2 x k-2 x+k+x^{3}}{k-1} & \frac{2 x k+2 x-k-x^{3}-1}{k-1}
\end{array}\right)
\end{gathered}
$$

Note that $A_{x}$ and $A_{k}$ satisfy the compatibility conditions (2) but $A_{k}$ is singular, so the system is not fully integrable. Let $S=\left[\partial_{x} ; \mathbf{1}, \delta_{x}\right]\left[\partial_{k} ; \sigma_{k}, \mathbf{0}\right]$ and $R$ be the corresponding Laurent-Ore algebra. Let $A \in S^{6 \times 3}$ be the matrix corresponding to the system given by $A_{x}$ and $A_{k}$ (see Example 4), $M=R^{1 \times 3} / R^{1 \times 6} A$ be the module of formal solutions for the system $A(Z)=0$, and $\left\{e_{1}, e_{2}, e_{3}\right\}$ be a set of $R$ generators of $M$ such that $\partial_{x}\left(e_{1}, e_{2}, e_{3}\right)^{\tau}=A_{x}\left(e_{1}, e_{2}, e_{3}\right)^{\tau}$ and $\partial_{k}\left(e_{1}, e_{2}, e_{3}\right)^{\tau}=A_{k}\left(e_{1}, e_{2}, e_{3}\right)^{\tau}$. Solving the linear system $\left(v_{1}, v_{2}, v_{3}\right) A_{k}=0$ over $F$, we see that $A_{k}$ has rank 2 , and $\partial_{k}\left(e_{1}\right), \partial_{k}\left(e_{2}\right)$ and $\partial_{k}\left(e_{3}\right)$ are linearly dependent over $F$ (so are $e_{1}, e_{2}$ and $e_{3}$ by an application of $\partial_{k}^{-1}$ ). A nontrivial solution of $\left(v_{1}, v_{2}, v_{3}\right) A_{k}=0$ and an application of $\partial_{k}^{-1}$ yield

$$
\left(\begin{array}{l}
e_{1} \\
e_{2} \\
e_{3}
\end{array}\right)=\underbrace{\left(\begin{array}{cc}
1 & 0 \\
0 & 1 \\
\frac{x(k-1)}{x^{2}-1} & \frac{x^{2}-k}{x^{2}-1}
\end{array}\right)}_{P}\binom{e_{1}}{e_{2}},
$$

which, together with $A_{x}$ and $A_{k}$, implies that $\partial_{x}\left(e_{1}, e_{2}\right)^{\tau}=$ $B_{x}\left(e_{1}, e_{2}\right)^{\tau}$ and $\partial_{k}\left(e_{1}, e_{2}\right)^{\tau}=B_{k}\left(e_{1}, e_{2}\right)^{\tau}$ where

$$
\begin{gathered}
B_{x}=\left(\begin{array}{cc}
\frac{-x+x^{3}-1+x^{2}-x k-k+k^{2}}{x\left(x^{2}-1\right)} & \frac{k(x+1-k)}{x^{2}\left(x^{2}-1\right)} \\
\frac{-x-x k+x^{3}-1-x^{2}+k^{2}-k x^{2}}{x^{2}-1} & \frac{-k^{2}+x k+k x^{2}+3 x^{2}-1}{x\left(x^{2}-1\right)}
\end{array}\right) \\
B_{k}=\left(\begin{array}{cc}
\frac{x k+x+k^{2}+2 k+1}{k(x+1)} & -\frac{k+1}{x(x+1)} \\
-\frac{\left(k x^{2}-x-k^{2}-2 k-1\right) x}{k(x+1)} & \frac{x^{2}+x-1-k}{x+1}
\end{array}\right) .
\end{gathered}
$$

Since $B_{k}$ is invertible, the system $\mathcal{B}$ given by $B_{x}$ and $B_{k}$ is fully integrable, and, hence, $e_{1}$ and $e_{2}$ form an $F$-basis of $M$. The same method to construct a fundamental matrix for the system in Example 1 yields a fundamental matrix for $\mathcal{B}$ :

$$
U=\left(\begin{array}{cc}
x k e^{x} & -k x^{k} \\
k x^{2} e^{x} & \left(x^{2}-k-1\right) x^{k+1}
\end{array}\right)
$$

hence $P U$ is for $\mathcal{A}$. In addition, a Picard-Vessiot ring of $\mathcal{B}$ is a Picard-Vessiot ring of $\mathcal{A}$.

Acknowledgments: We would like to thank an anonymous referee for his useful and constructive remarks. The second and third authors were supported in part by a 973 key project (no. 2004CB31830), and by a Bourse du Gouvernement Français (BGF no. 2002915), respectively.

## 6. REFERENCES

[1] Bialynicki-Birula, A. On Galois theory of fields with operators. Amer. J. Math. 84 (1962), 89-109.
[2] Cassidy, P. and Singer, M. Galois Theory of Parameterized Differential Equations and Linear Differential Algebraic Groups. Preprint, 2005.
[3] Chyzak, F., Quadrat, A., and Robertz, D. OreModules: A symbolic package for the study of multidimensional linear systems. In Proc. of MTNS'04, Leuven (Belgium) (2004), CDRom.
[4] Chyzak, F. and Salvy, B. Non-commutative elimination in Ore algebras proves multivariate identities. J. Symbolic Comput. 26, 2 (1998), 187-227.
[5] Kolchin, E. Differential algebra and algebraic groups. Academic Press, New York and London, 1973.
[6] Labahn, G. and Li, Z. Hyperexponential solutions of finite-rank ideals in orthogonal Ore rings. In Proc. ISSAC'2004 (2004), J. Gutierrez, Ed., ACM, 213-220.
[7] Li, Z., Schwarz, F., and Tsarev, S. P. Factoring systems of linear PDEs with finite-dimensional solution spaces. J. Symbolic Comput. 36, 3-4 (2003), 443-471.
[8] Malgrange, B. Motivations and introduction to the theory of $D$-modules. In Computer Algebra and Differential Equations (1994), E. Tournier, Ed., vol. 193 of LMS Lecture Note Series, Cambridge University Press, pp. 3-20.
[9] Pauer, F. and Unterkircher, A. Gröbner bases for ideals in Laurent polynomial rings and their applications to systems of difference equations. Appl. Algebra in Eng., Comm., and Comp. 9 (1999), 271-291.
[10] Singer, M. and van der Put, M. Galois Theory of Difference Equations. LNM 1666. Springer, 1997.
[11] Singer, M. and van der Put, M. Galois Theory of Linear Differential Equations, vol. 328 of Grundlehren der Mathematischen Wissenschaften. Springer, Heidelberg, 2003.
[12] WU, M. Factorization and decomposition of modules over Laurent-Ore algebras. Thèse de mathématiques, Université de Nice, expected 2005.
[13] Zampieri, S. A solution of the Cauchy problem for multidimensional discrete linear shift-invariant systems. Linear algebra and appl. 202 (1994), 143-162.


[^0]:    ${ }^{1}$ To be defined precisely in Sect. 3 and 5.

[^1]:    ${ }^{1}$ which can be found, for example, by computing the hyperexponential solutions of the system $([6,12])$

[^2]:    ${ }^{2}$ It is also called an integrable connection.

