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ABSTRACT

Picard-Vessiot extensions for ordinary differential and differ-
ence equations are well known and are at the core of the as-
sociated Galois theories. In this paper, we construct funda-
mental matrices and Picard-Vessiot extensions for systems
of linear partial functional equations having finite linear di-
mension. We then use those extensions to show that all the
solutions of a factor of such a system can be completed to
solutions of the original system.

Categories and Subject Descriptors
1.1.2 [Computing Methodologies]: Symbolic and Alge-
braic Manipulation—Algorithms

General Terms
Algorithms
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1. INTRODUCTION

A linear functional system is a system of form A(Z) = 0
where A is a matrix whose entries are (partial) linear oper-
ators, such as differential, shift or g-shift operators or any
mixture thereof, and Z denotes a vector of unknowns. A
common special case consists of integrable systems, which
are of the form {0;(Z) = AiZ}1<i<m, and correspond to
the matrix A given by the stacking of blocks of the form
(0; — A;). We show in this paper that fundamental matri-
ces! and Picard-Vessiot extensions' always exist for linear
functional systems having finite linear dimension', which
include in particular all integrable systems. In addition, if
the field of coefficients has characteristic 0 and has an al-
gebraically closed constant field, then Picard-Vessiot exten-
sions for such systems contain no new constants.

1To be defined precisely in Sect. 3 and 5.
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In this paper, rings are not necessarily commutative and
have arbitrary characteristic, unless otherwise specified. Ide-
als and modules are left ideals and left modules. Fields are
however always commutative. The notation (-)” denotes the
transpose of vectors or matrices, while R?*? denotes the set
of p X ¢ matrices with entries in (the ring) R. The commu-
tator of a,b € R is [a,b] = ab — ba. We write 1g for the
identity map on R and Og for the zero map on R, and we
omit the subscripts when the context is clear.

2. FULLY INTEGRABLE SYSTEMS

Let o be an endomorphism of a ring R. A o-derivation ([4])
is an additive map 6 : R — R satisfying 6(ab) = o(a)d(b) +
0(a)b for all a,b € R. A A-ring (R, ®) is a ring R together
with a set ® = {(01,61),...,(0m,0m)}, where each o; is
an automorphism of R, each §; is a o;-derivation of R, and
[os,0;5] = [6i,0;] = [04,0;] = 0 for all i # j. If R is also a
field, then (R, ®) is called a A-field. An element c of R is
called a constant if o;(c) = ¢ and d;(c) = 0 for all i. The
set of all the constants of R is denoted C'r and is clearly a
subring of R, and a subfield when R is a field. Remark that
a A-ring is a (partial) differential ring if o; = 1 for all 7, and
a (partial) difference ring if §; = 0 for all 4.

DEFINITION 1. We say that the A-ring (R, ®) is orthog-
onal if §; = O for each i such that o; # 1. By reordering
the indices, we can assume that there exists an integer £ > 0
such that 0, =1 for 1 < i < { and §; =0 for £ < i < m.
We write (R, ®,£) for such an orthogonal A-ring.

All the §; are usual derivations in an orthogonal A-ring.
Mixed systems of partial linear differential, difference and g-
difference equations can be represented by matrices with en-
tries in Ore algebras ([4]) over orthogonal A-rings. Let (F, ®)
be a A-field, and suppose that for each ¢ such that o; # 1,
there exists a; € F such that o;(a;) # a; and oj(a;) —a; =
0j(a;) = 0 for all j # i. Replacing the z; by the a; in
the proof of Theorem 1 in [6], one sees that linear func-
tional equations over F' can be rewritten as equations over
an orthogonal A-field. There are however orthogonal A-
rings that do not contain such a;’s, for example F = C(x)
together with ® = {(1,d/dx), (05, 0)} where o is the auto-
morphism of F' over C that sends x to x — 1. This field is
used in modeling differential-delay equations, and does not
match the definition of orthogonality given in [6].



Let (F,®,¢) be an orthogonal A-field. We say that a com-
mutative ring F containing F' is an orthogonal A-extension
of (F,®,¢) if the o; and d; can be extended to automor-
phisms and derivations of E satisfying: (i) the commutators
[O’i,o']'} = [61757] = [0'2',(;]'] =0 on FE for 1 < ) 75 ] < m;
(ii) 03 = 1g for i < £ and 0; = O for j > ¢.

Let E and E be two orthogonal A-extensions of F'. A map ¢
from E to E is called a A-morphism if ¢ is a ring homomor-
phism leaving F' fixed and commuting with all the d; and o;.
Two orthogonal A-extensions of F' are said to be isomorphic
if there exists a bijective A-morphism between them.

DEFINITION 2. A system of form
52(Z)ZAZZ fOT”LSé7 Ui(Z):AZZ fOT’L'>£, (1)

where A; € F**" and Z = (21,...,2n)" 18 called an inte-
grable system if the following conditions are satisfied:

Jl(AJ)Al + 51(14]) =0j (AZ)AJ + 6](,42) fOT all 1, 3. (2)

The integrable system (1) is said to be fully integrable if the
matrices A¢t1, ..., Am are invertible.

Using Ore algebra notation, we write {0;(Z) = AiZ}1<i<m
for the system (1) where the action of 9; is meant to be J;
for ¢ < £ and o; for ¢ > £. Note that the conditions (2) are
derived from the condition 0;(0;(Z)) = 0;(0:;(Z)) and are
exactly the matrix-analogues of the compatibility conditions
for first order scalar equations in [6].

EXAMPLE 1. Let F = C(xz,k) and §, and o) denote re-

spectively the ordinary differentiation w.r.t. x and the shift
operator w.r.t. k. Then {04(Z2)=AzZ,01(Z)=ArZ} where

z2—kz—k z2 —kz43k—2z
A = z(z—k)(z—1) kz(z—k)(z—1)
r k(kzt+z—22-2k) 23422 —ka?—2x+2k
(z—k)(z—1) z(z—k)(xz—1)
k+1+ka’—zk’—x _ kt+l4kaz—k*—a
A, — (z—k)(z—1) k(z—k)(x—1)
k= z(k+1)(k+14+ka—k?—z)  (k+1)(z®—2kz—z+k?)
(z—k)(z—1) k(z—k)(z—1)

is a fully integrable system.

3. FUNDAMENTAL MATRICES AND
PICARD-VESSIOT EXTENSIONS

A square matrix with entries in a commutative ring is said
to be invertible if its determinant is a unit in that ring. Let
the orthogonal A-ring (F,®,¢) be as in the previous sec-
tion and {0;(Z) = AiZ}1<i<m be a fully integrable system
of size n over F. An n X n matrix U with entries in an
orthogonal A-extension E of F' is a fundamental matriz for
{81(Z) = AiZ}lgigm if U is invertible and 81(U) = AlU for
each 4, that is, each column of U is a solution of the system.

THEOREM 1. For every fully integrable system, there ex-
ists a fundamental matriz whose entries lie in an orthogonal
A-extension of F.

Proof. Let {0;(Z) = AiZ}1<i<m be a fully integrable sys-
tem of size n over F, U = (us:) be a matrix of n? distinct

indeterminates and R = Flui1,...,Uln, -, Unls-- ., Unn]-
For 1 < i < /, the §; are extended to derivations of R
via §;(U) = AU and for £ +1 < j < m, the o; are ex-
tended to automorphisms of R via o;(U) = A;U (o; is bi-
jective because A; is invertible). It follows from the con-
ditions (2) that these extended maps turn R into a well-
defined orthogonal A-extension of F' and that 9;(U) = A;U
for each i. Let D = det(U) and R be the localization of R
with respect to D. Extend the §; and o; via the formulas
6; (1/D) = —6;(D)/D? and o, (1/D) = 1/0;(D), respec-
tively (note that o;(D) = det(A4;)D for j > ¢). Then R
becomes an orthogonal A-extension of F', and U is a funda-
mental matrix of the system. a

The following proposition reveals that any two fundamental
matrices differ by a constant matrix.

PROPOSITION 1. Let {0;(Z) = AiZ}1<i<m be a fully in-
tegrable system of size n over F' and U € E™*" be a funda-
mental matrix where E is an orthogonal A-extension of F.
If Ve E™ with d > 1 is a matriz whose columns are so-
lutions of the system then V = UT for some T € C’EXd. In
particular, any solution of {0;(Z) = AiZ}1<i<m tn E™ is a
linear combination of the columns of U over Cg.

Proof. Let T = U~ 'V. A straightforward calculation im-
plies that 6;(7") = 0 for ¢ < ¢, and 0;(T) = T for j > £.
Hence all the entries of T" belong to CEg. a

In [10, 11], Picard-Vessiot rings for linear ordinary differen-
tial and difference systems are defined. Picard-Vessiot fields
for integrable systems of partial differential equations have
been studied by Kolchin who proved their existence and
developed the associated Galois theory [2, §2][5]. Picard-
Vessiot extension fields have also been defined in [1] for
fields with operators, which are more general A-fields where
the operators do not necessarily commute. While the as-
sociated Galois theory was developed there, the existence
of Picard-Vessiot extensions was not shown. Indeed, with
automorphisms allowed, there are fully integrable systems
for which no Picard-Vessiot field exists. Generalizing the
definition of Picard-Vessiot rings used for difference equa-
tions [10, (Errata)], we obtain Picard-Vessiot rings together
with a construction proving their existence. Our definition is
compatible with the previous ones: for differential systems,
Picard-Vessiot rings turn out to be integral domains, and
the Picard-Vessiot fields of [5] are their fields of fractions;
For A-rings, the Picard-Vessiot rings are generated by ele-
ments satisfying linear scalar operator equations, which is
the defining property of the Picard-Vessiot fields of [1].

An ideal I of a commutative A-ring R is said to be invariant
if 6;(I) C I and o;(I) C I for all 1 < ¢ < m. The ring R is
said to be simple if its only invariant ideals are (0) and R.

DEFINITION 3. Let {0;(Z) = AiZ}1<i<m be a fully inte-
grable system over F'. A Picard-Vessiot ring for this system
is a (commutative) ring E such that:

(i) E is a simple orthogonal A-extension of F.

(ii) E = F[U,det(U)™"] for some fundamental matriz U for
the system.



We now construct Picard-Vessiot rings by the same approach
used in the ordinary differential and difference cases [10, 11].

LEMMA 1. Let R be an orthogonal A-extension of F' and I
a mazimal invariant ideal in R. Then, (i) E := R/I is a
simple orthogonal A-extension of F. (ii) Cg is a field. (iii)
If F' has characteristic 0, Cr is algebraically closed and E
is a finitely generated algebra over F', then Cg = Cp.

Proof. Let I = {Uf_ﬁl cakm(a)a € 1, kesty ... km € Z}.
One can verify that I is an invariant ideal containing I
but 1 ¢ 7, and hence I = T since I is maximal. The §;
and o; can be viewed as derivations and surjective endomor-
phisms on E = R/I via the formulas §;(a + I) = d;(a) + I
and oj(a + I) = oj(a) + I for all a in R, respectively.
If 0j(a+I) = I then oj(a) € I = I and thus a € I. So
the o; are automorphisms of E and E is a simple orthogo-
nal A-extension of F. To show the second statement, let ¢
be a nonzero constant of E. Then the ideal (¢) is invariant.
Since E is simple, (c) contains 1. To show the last state-
ment, suppose that b € Cg but b ¢ Cr. By the argument
used in the proof of Lemma 1.8 in [10], there exists a nonzero
monic polynomial g over F' with minimal degree d such that

g(b) = (bd + Zk o gib ) = 0. Apply the ¢; and o; to g(b),
respectively, we obtain (Zz;é 5i(gk)bk> =0 fori</{,and

( Zfo(aj (gr) — gk)bk) = 0 for j > £. The minimality of d
then implies g, € Cr for 0 < k < d. So b € Cp since CF is
algebraically closed, a contradiction. a

The existence of the Picard-Vessiot extensions is stated in
the next theorem.

THEOREM 2. Every fully integrable system over F has a
Picard-Vessiot ring E. If F has characteristic 0 and Cr
is algebraically closed, then Cr = Cp. Furthermore, that
extension is minimal, meaning that no proper subring of E
satisfies condition (ii) of Definition 3.

Proof. Let {9;(Z) = AiZ}1<i<m be a fully integrable sys-
tem over F'. By Theorem 1, it has a fundamental matrix
U = (ust) with entries in the orthogonal A-extension

R = Flui, ..., tnn,det(U)"].

Let I be a maximal invariant ideal of R and E = R/I.
Then F is a simple orthogonal A-extension of F' by Lemma 1.
Clearly, E is generated over F' by the entries of the matrix
U := (ust + I) and by det(U)™!. Since U is a fundamental
matrix for the system, F is a Picard-Vessiot ring for the sys-
tem. Assume further that F' has characteristic 0 and Cr is
algebraically closed. Then C'r = Cr by the third assertion
of Lemma 1. Let S = F[V,det(V)™'] be a subring of E
where V is some fundamental matrix of the system. By
Proposition 1, there exists T € Cp*" such that V = UT.
Since Cg = CF, all the entries of U and the inverse of det(U)
are contained in S. Hence S = E. a

Assume that the ground field F' has characteristic 0 with an
algebraically closed field of constants. Let E be a Picard-
Vessiot ring for a fully integrable system of size n over F.

Then Proposition 1 together with Cr = Cr implies that
all the solutions of this system in E"™ form a Cpg-vector
space of dimension n. A direct generalization of Proposi-
tion 1.20 in [11] and Proposition 1.9 in [10] reveals that any
two Picard-Vessiot rings for a fully integrable system over F’
are isomorphic as orthogonal A-extensions.

We present a few examples for Picard-Vessiot rings. Con-
sider the fully integrable system of size one:

0i(z) = a;z wherea; € Fandi=1,...,m. (3)

Let E be the orthogonal A-extension F[T,T7'] such that
0;(T) = a;T for i < ¥ and 0,;(T) = a;T for j > ¢.

Case 1. There does not exist an integer k > 0 and r € F*
such that &;(r) = ka;r for i < £ and o;(r) = a¥r for j>£.
Then FE is a Picard-Vessiot ring of (3).

Case 2. Assume that the integer £ > 0 is minimal so
that 6;(r) = ka;r and o;(r) = afr for some r € F* and
for all 4 < ¢ and j>¢. Then E/ (T* —r) is a Picard-Vessiot
ring of (3). The verification of the above two assertions is
similar to that in Example 1.19 in [11].

Unlike in the differential case, the elements of Picard-Vessiot
rings cannot always be interpreted as complex functions: the
system {dy/dz = y(z),y(z + 1) = y(z)} is in Case 1 above
and has a Picard-Vessiot ring over C(z), but has no nonzero
complex function solution.

Next, we show that a Picard-Vessiot ring of the system in
Example 1 is Fle*,e *,T'(k),T'(k) '] where F = C(z,k).
Note that the change of variable! Z = MY, where

z—k 2
M= ( (z - k)k 2%k )
transforms the system into B : {3, (Y)=B,Y, 01 (Y)=BrY},

10 10
where Bx_(oo) and Bk_(Ok)'

Thus we need only to find a Picard-Vessiot ring of . First,
let U be a 2 x 2 matrix with indeterminate entries w11, u12,
u21 and u22. Define 6,(U) = B,U and o, (U) = BiU. This
turns R = Fui1, u12, u21, u22, 1/ det(U)] into an orthogonal
A-extension of F. Clearly, I = (ui2,u21) is an invariant
ideal of R and o}, '(I) is contained in I. Hence R/I is an
orthogonal A-ring. As the A-rings E = Flu11, u22, u; , tyy |
and R/I are isomorphic, it suffices to show that E is simple.
Suppose that J is a nontrivial invariant ideal of F. Let f
be a nonzero polynomial in I N Fu11, u22] with the smallest
number of terms. It cannot be a monomial, for otherwise .J
would be E since uj}' and uy, are in F. We write

f=ufu®2 + ruftuS? + other terms,

where r € F with 7 # 0, and (d1,d2) # (e1,e2). It follows
from dz(u11) = w11 and dz(u22) = 0 that

6. (f) = diuP uB2 + (6. (r) 4+ exr)ustud + other terms,

in which each monomial has already appeared in f. Thus
(62 (f) — d1f) must be zero, because it is in I but has fewer
terms. It follows that (6, (r) — (d1 —e1)r) is equal to zero. In
the same way, one can show that (ox(r) — k%27°2r) = 0, be-
cause o, (u11) = w11 and o (u22) = kuge. But the existence

Iwhich can be found, for example, by computing the hyper-
exponential solutions of the system ([6, 12])



of such a rational function r would imply di=e; and de=ea2,
a contradiction. Thus FE is simple, and so a Picard-Vessiot
ring of B, hence also of the system in Example 1. If we un-

e’ 0
(5 o)
is a fundamental matrix for B in E, and hence MV is for
the system in Example 1.

derstand w11 as e® and ug2 as I'(k), then V =

Last, we describe a simple orthogonal A-extension that con-
tains a solution of the inhomogeneous system

di(z) =a; for i <L and oj(z) =z+a; forj >4£, (4)

where the a; and a; are in a simple orthogonal A-ring E
with characteristic zero. This is an extension of Exam-
ple 1.18 in [11]. Note that the a; and a; have to satisfy
some compatibility conditions due to the commutativity of
the 6; and o;. A more general form for these conditions are
given in (8) in the next section.

If (4) has a solution in E, then there is nothing to do. Oth-
erwise, Let R = E[T] and extend the §; and o; on R by
the formulas §;(T) = a; and 0;(T) = T + a;. The com-
patibility conditions imply that R becomes a well-defined
orthogonal A-ring. If R has a nontrivial invariant ideal I,
let f = ded—&—fd_le*l +- -+ fo be a nonzero element in [
with minimal degree. Let J be the set consisting of zero and
leading coefficients of elements in I with degree d. Our ex-
tensions of §; and o; imply that J is an invariant ideal of E.
Hence 1 € J and, therefore, we may also assume d > 0 and
fa = 1. Since d is minimal, both §;(f) and (o;(f)— f) are 0.

Consequently, _fs_l is a solution of (4), a contradiction.

Thus R is simple and contains a solution T of (4).

4. COMPLETING PARTIAL SOLUTIONS

We now consider reducible systems, i.e. systems that can be
put into simultaneous block-triangular form by a change of
variable Y = MZ for some M € GL,(F). Factorization
algorithms for modules over Laurent—Ore algebras [12] yield
such a change of variable for reducible systems, and we mo-
tivate them by showing that the solutions of a factor can
always be extended to solutions of the complete system.

THEOREM 3. Let A: {0:;(Z) = AiZ}1<i<m be a fully in-
tegrable system of size n over F, and suppose that there ex-
ist a positive integer d < n and matrices B; in F"ZX"Z7 C;
in F(=dxd qnd D, in FM=DX(=d) o ch that

Ai:<gi Dﬂi) for1<i<m. (5)

.

Then

(l) B : {ai(X):BiX}lgigm and D : {ai(X):DiX}lgiSm
are both fully integrable systems.

(ii) (0,...,0,Ca+41,.-.,Cn)" is a solution of A whenever
(Cat1,---5Cn)7 is a solution of D.

(iii) For any solution (n1,...,na)” of B in an orthogonal A-
extension of F, there exists an orthogonal A-extension
of F' containing mi,...,Na as well as Na+1,...,Nn Such
that (n1,...,Mn)" is a solution of A.

Proof. Let X = (z1,...,24)" and Y = (2441,...,%n)". The
system A can then be rewritten into a homogeneous system
and an inhomogeneous system:

0i(X) = BiX, .
{ a(Y) = DY +CX, for1<i<m. (6)
Since A is fully integrable, the matrices A; satisfy (2) and A;
is invertible for 5 > ¢. Hence, the B; and D; for j > ¢
must also be invertible since det(A;) = det(B;) det(D;). In
addition, a routine calculation shows that for all ¢, j,

oi(Aj)Ai + 6:(As) =

0i(B;)Bi + 0:(Bj) 0
0i(C))Bi + 0i(D;)Ci + 6:(C5)  0i(D;)Di 4 6:(D;) )’
(7)
which implies that the B; and D; also satisfy the compat-
ibility conditions (2). Therefore B and D are both fully
integrable. The first statement is proved. The second is im-
mediate from (6).
From Theorem 1, there exist an orthogonal A-extension E
of F' and a fundamental matrix U with entries in E for D.
Let n = (n1,...,m4)” be a solution of B in some orthogo-
nal A-extension R of F. Viewing F and R as commutative
F-algebras, we can extend the §; and o; to the commuta-
tive E-algebra E ®F R via d;(e @ 1) = d;(e) @1 + e ® §;(r)
and (e @ 1) = 0j(e) ® o5(r) for ¢ < £ and j > £. Then
(1®m,...,1®mn4)7 is also a solution of B, so, replacing R
by E®r R, we can assume without loss of generality that R
contains E. Substitute 5 into (6) to get 9;(Y) = D;Y + Cin
for each i. Let v = (v1,...,Un—q)7, where the vy are dis-
tinct indeterminates over R, and G = R[v1,...,vn—q]. We
extend the d; and o; to G via 6;(v)=b; and oj(v)=v + b;
where by, ...,bm € R* ¢ are given by b; = Uflcm fori <4¢
and b; = U~'D;~'Cyn for j > ¢.
To turn G into an orthogonal A-extension of R, all the d;
and o; on G should commute, which is equivalent to the
following integrability conditions:

8i(bj) = 6;(bs),
3i(bj) = aj(bi) — bs,
oi(bj) —b; = 0 (bi) — by,

for 1<i,j </,
for i <€, 5>, (8)
for £4+1<i,j <m.

Although the conditions (8) are generally not satisfied for
arbitrary b;’s, we show that they are satisfied in our case.
Since the A; satisfy the compatibility conditions (2), it fol-
lows from the bottom-left block in (7) that, for all ¢, 7,

0i(C;)Bi+0i(D;)Ci+6i(Cj)=0;(Ci) Bi+0;(Di)Cj+0;(Ci).
9
For 1 <14, j < ¢, we have
Si(b;) = 6 (U 'Cim)
= U 'S(U)UT CmtU " 6i(Cim+U ™ Cyi(n)
= U 1 (DiC; = 6:i(Cy) = C;Bi) 1,
which, together with o; = 0; =1 for 1 <4, 5 </, and (9)
implies 6;(b;) = d;(b;). The last two integrability condi-
tions in (8) are verified with similar calculations, using the
fact that the D; satisfy the compatibility conditions (2).

Therefore G is an orthogonal A-extension of R, hence of F'.
Let ¢ = Uv € G™ 2. Then, for i < ¢,

az(C) - 51(C) == 52(U)’U+U57,(U) = DiUU+Ub¢ = D¢C+Cﬂ77



and, for j > ¢,
9;(Q) = 0;(¢) = 0;(U)o;(v) = D;U(v +b;) = D;( + Cjn.

So (n7,¢7)7 is a solution of the initial system .A. O

We point out here (but omitting the detailed explanation)
that in the differential case, the quotient systems of [7] yield
an alternative approach to completing solutions of factors.

EXAMPLE 2. Let F, 6, and or be as in Example 1, and
consider the fully integrable system

f=(& & )emin=(2 )7}
10

where Z = (z1,22,23)7, By = &2

222 —k? 20—k
z(xz—k)
Ce = 3__2 2 2 )
x° —x?k4+2x° —kx+2x—k
(z—k)x

(k+1) (2 —22%k—32> + k2 z+4ka+z—k2)

k(z—k—1)2
Cr = 22(k+1) (k1) (z—k)2 I 1
k" ka—k-12 ¥ (z—1)
and

—2—atk (k+1)(z—k)?

D.— z—k 0 Dy — k(z—k—1)2 0
7 z2ea?4k? k0 TR er)@—k)?

@-Re = Ma—k—nz —hkz zk

We complete the solution m = ke®z* of the system given
by Bz and By to a solution of (10). Note that

ke *
U= ( 0 . <i1’€f )
is a fundamental matriz for the system given by Dy and Dy,.
By the proof of Theorem 3, we let

_kz_ T
by = (k)
(x—k)(22% — k? + 2z — ka) aF1e?®

etkatk® ek’ k-1
by = I'(k+1)
(23 — 2ka? — 32 + K%z + dkx + = — k*)zFe®®
We find that

v =
( xk+2e2x _

satisfies 0,(v) = by and or(v) — v = ba. Therefore,
ke®z®

z k ke T

( Ut ) B ket

xk+lkeac + g

(l;i;)z + F(k)xk

T(k)—ke®+ake® )

T'(k)
207 ke?® 4+ 2Fk2e?® +1

s a solution of (10).

Theorem 3 also yields fundamental matrices for reducible
systems. Let {9;(Z) = AiZ}1<i<m be a fully integrable sys-
tem where the A; are as in (5). Suppose that U = (uy;) €
R™% and V € EM~9x("=d) gre fundamental matrices for

the systems {ai(X):BiX}lgiSm and {ai(X):DiX}lgiSm
respectively, where R and FE are orthogonal A-extensions
of F. As in the procedure of completing solutions, we can
assume without loss of generality that R contains F. Then a
fundamental matrix for the initial system can be constructed
as follows: for each 1 < i < d, following the procedure of
completing solutions, we can find an orthogonal A-extension
G; of R and & € G such that (uis,...,ua, &) € GF is
a solution of {9;(Z) = AiZ}1<i<m. Viewing all the entries
of U, V and the &; as elements of G = G1 ®F - Qr Gaq,
U 0
W_(fl T V)
fundamental matrix for {9;(Z) = AiZ}1<i<m (it is invert-
ible because det(W) = det(U) det(V)).

€ G™*" is easily seen to be a

5. MODULES AND PICARD-VESSIOT
RINGS FOR GENERAL LINEAR
FUNCTIONAL SYSTEMS

We now generalize the previous notions and results to sys-
tems of the form A(Z) = 0 where A is a matrix of linear
operators. As in previous sections, let (F,®,¢) be an or-
thogonal A-field and S = F[01;01,01] - - - [Om; Om, 0m| be the
corresponding Ore algebra [4]. In the differential case, an
S-module is classically associated to such a system [8, 11].
In the difference case, however, S-modules do not have ap-
propriate dimensions, so modules over Laurent algebras are
used instead [9, 10, 13]. It is therefore natural to introduce in
our setting the following extension of S: let 0,41, ...,0, be
indeterminates independent of the 9;. Since the 0;1 are also
[Om;omt, 0] is

also an Ore algebra. Since (9;0;)a = 8ja;1(a)9j = a0;0; for

automorphisms of F, § = S[0r41;0,,',,0] -

any j > { and any a € F', 0;0; is in the center of S. There-
fore the left ideal I = > , | S(9;6;—1) is a two-sided ideal
of S, and we call the factor ring R=S/I the Laurent-Ore al-
gebra generated by ® over F. Writing 8;1 for the image

of §; in R, we can also write R (by convention) as

R := FI[01;1,01] - [0e;1,0,]
[64+1a 8[__4_11; 0041, 0} e [a’mvaa:ll; Om, 0}

and view it as an extension of S. For linear ordinary differ-
ence equations, R = F[o,07'], is the algebra used in [10].
For linear partial difference equations with constant coef-
ficients, R is the Laurent polynomial ring used in [9, 13].
Laurent-Ore algebras allow us to construct fundamental ma-
trices and Picard-Vessiot extensions for linear functional sys-
tems of finite linear dimension, a concept that we now define
precisely.

For our purposes, a linear functional system is a matrix
A = (aij) € SP*?9 C RP*?. For any R-module N, we can
associate to A a Cp-linear map A : N? — NP given by

& 25— a15&;
&= — A& =
& > g=1 api&
We therefore say that £ € NY is a solution “in N” of the
system A(Z) =0 if A(§) =0, and write soly (A(Z) = 0) for

all its solutions in N. Clearly, soly(A(Z) = 0) is a vector
space over Cp.



As in the case of D-modules [8], we can associate to A an
R-module as follows: the matrix A € RP*? induces the
R-linear map p : R™? — R Y given by p(r1,...,7p) =
(r1,...,mp)A. Let M = coker(p) = R*™9/R'*P A, which is
simply the quotient of R**4 by the submodule generated by
the rows of A. Then

RYP L, R T M — 0 (11)

is an exact sequence of R-modules where 7 : R — M is
the canonical map. For every s > 1 and 1 < i < s, let e;s
be the unit vector in R**® with 1 in the ith position and 0

elsewhere. Then eip,...,epp and eiq,...,eqq are canonical
bases of R**P and R'*9, respectively. Set e; = m(e;q) for
1 < j < q. Since 7 is surjective, e1,...,eq generate M as an

R-module. Since p(e;p) is the i-th row of A, we have

q q q
0=m(p(eip)) =m (Z az‘jejq) = aim(ese) = Y aijes,
j=1 j=1 j=1

for 1 < i < p, which implies that (e1,...,eq)7 is a solution
of A(Z)=0in M.

Given two R-modules N; and N2, let Homg (N1, N2) denote
the C'r-vector space of all the R-linear maps from Ni to Na.
We next show that the proof of Proposition 1.1 of [8] remains
valid when D is replaced by R.

THEOREM 4. Let M=R'*9/R'*P A. Then soly(A(Z)=0)
and Hompg (M, N) are isomorphic as Cg-vector spaces for
any R-module N.

Proof. Applying the functor Hompg(-, N) to the exact se-
quence (11) of Cr-vector spaces and using the isomorphism
Hompg(R' *,N) — N* given by f — (f(e1s),..., f(ess))T,
we get the exact sequence:

0 — Hompg(M, N) = N¢ 2 NP,

in which 7*(f) = (f(e1), ..., f(eq))" and A ((n1,...,nq)7) =
A(ny,...,ng)" for n1, ..., ng in N. Since 7" is injective,

Homp (M, N) ~ Im(7™*)=ker(\)=soln (A(Z)=0). O

Theorem 4 reveals that e:=(e1,...,eq)” € M?is a “generic”
solution of the system A(Z) = 0 in the sense that any so-
lution of A(Z) = 0 is the image of e under some homomor-
phism. This means that M describes the properties of all
the solutions of A(Z) =0 “anywhere”. So we define

DEFINITION 4. Let A € SP*? C RP*?. We call the R-
module

M =R"/R"?A

the module of formal solutions of the system A(Z) = 0. The
dimension of M as an F-vector space is called the linear
dimension of the system. The system is said to be of finite
linear dimension if 0 < dimp M < +00.

Note that we choose to exclude systems with dimrp M = 0
in our definition since such systems cannot have nonzero so-
lutions in any R-module (which includes all orthogonal A-
extensions of F'). The next lemma is used to describe mod-
ules of formal solutions for finite-rank left ideals in S ([6]).

LEMMA 2. Let J be a left ideal of S. Assume that J does
not contain any monomial in et1,...,0m, and that S/J is
finite dimensional over F. Let I be the left ideal generated
by J in R and J =1NS. Then S/J and R/I are isomor-
phic as vector spaces over F. In particular, R/I is finite
dimensional over F'.

Proof. Let H be the set of all monomials in d¢y1, ..., Om.
Since every element of H is invertible in R,
J={a€ S|hac Jforsomeh € H}. (12)

Since J C J, dimp (S/J) is finite. Let f; be a nonzero
polynomial in F[9;] N J with minimal degree for j > /.
Then each f; is of positive degree with a nonzero coefficient
of 8? = 1, for otherwise, J would contain 1, and, hence, J
would have a nonempty intersection with H by (12), a con-
tradiction to our assumption. Since 8]._1fj el 3;1 is con-
gruent to an element of F[9;] modulo I. It follows that every
element of R is congruent to an element of S modulo I (note
that every element of R can be written as an element of S
multiplied by the inverse of an element of H from the right-
hand side).

Let ¢ be the map from S/J to R/I that sends a+J to a+ I
for a € S. The map is well-defined, injective and linear
over F because J = SN I. By the conclusion made in
the previous paragraph, for every element (b + I) of R/I
with b € R, there exists b’ in S such that b = ¥’ mod I.
Thus ¢ (b' 4+ J) = b+ I. The map ¢ is surjective. ]

ExamMpPLE 3. Consider a px1 matric A = (L1,...,Lp)",
where the L; are in S. The system A(z) = 0 corresponds to
scalar equations Li(z) = --- = Ly(z) = 0, whose R-module
of formal solutions is M = R/p(R"*P) = R/I, where I is the
left ideal >-%_| RL; of R. Let J be the left ideal >%_| SL;
of S. Then, by Lemma 2, dimr M is finite if dimp S/J is
finite and J contains no monomial in O¢41, - .., Om.
Consider the case £ = 0 and m = 2. If J is S(01 + 1),
then dimp (M) is not finite. On the other hand, if J is equal
to S(0102(01 + 1)) + 5(0102(02 + 1)), then dimp S/J is not
finite, but dimp M = 1, because I = R(01 + 1) + R(92+ 1).

EXAMPLE 4  (INTEGRABLE SYSTEMS). Let A1,..., Am
be in F™*™, 1, be the identity matriz in F™*" and
o1, — Ay
A — . 6 S’!YL'/LX?’L
Om - 1n — Ay

The system A(Z) = 0 corresponds to {0;(Z) = AiZ}1<i<m,
which is not necessarily fully integrable. Let M be its module
of formal solutions and e = (e1,...,en)” € M™ be as above.
Then A(e) = 0 implies that O;e = Ase for each i. Since
the entries of A; are in F, Oie; € >."_| Fes for all 4,7, and
thus Re; C Y. Fes for all j. Hence M = Y "_, Res, =
Yo, Fes. In particular, dimp M < n.

To check in practice whether a system is of finite linear
dimension, we need to compute dimpr M. As seen in Ex-
ample 4, when the system is given as an integrable sys-
tem, we have a set of generators for M over F, so com-
puting dimr M could be done by linear algebra over F' as



in Example 5. Note that in the purely differential case, we
have dimp M = n if the matrices A; satisfy (2), dimp M = 0
otherwise. When the system is given by an ideal in S, then
Lemma 2 shows that either M = 0 (if the ideal contains
a monomial in dgy1,...,0m) or an F-basis of M can be
computed via Grébner bases of S-modules. There are algo-
rithms and implementations for this task [3, 4]. For more
general matrices A € SP*9 computing an F-basis of M in-
volves computing Grobner bases of R-modules. In the purely
differential case, this is again Grébner bases of S-modules.
When difference operators are involved, the algorithms de-
veloped in [9, 13] for pure difference equations with constant
coefficients are generalized in [12] to produce Grébner bases
of R-modules.

Let A € S?*? and M be the R-module of formal solutions
for A(Z)=0. Suppose that dimgp M = n and b1, ..., b, form
a basis of M over F. Then, for b := (b1,...,bs)" there ex-
ists B; € F™*™ such that 0;(b) = B;b for each i. We can
regard M as the module of formal solutions for the inte-
grable system {0;(X) = BiX}i<i<m. Indeed, suppose we
find, as described in Example 4, its module Mp of formal
solutions and f := (f1,..., fn)” such that Mp =>"_, Ff,
and 0;(f) = Bif for each 7. Since b € M"™ is a solution
of {0;(X) = BiX}i<i<m, there exists ¢ € Homgr(Mp, M)
such that b = ¢(f) by Theorem 4. Since the b; are linearly
independent over F, so are the f;. Hence Mp = ®5_, F'fs
and ¢ is an isomorphism of R-modules.

Since 9; and 9; commute for any ¢ and j, we have 9;(9;(b)) =
9;(0;(b)). From 9;(b) = B;b and the linear independence
of b1,...,b, over F, it follows that

0i(B;j)Bi + 6i(B;) = 0;(B:)B; + 6:(B;),

i.e. Bi,. .., Bn satisfy the compatibility conditions (2). Sup-
pose that By is singular for some ¢t > ¢. Then, there exists
a nonzero v € F'*™ such that vB; = 0 and thus v (b) =
vB:b = 0. Since M is an R-module on which Bt_l acts, we
have 0 = ;' (v9:(b)) = o; ' (v)9; *(8:(b)) = o7 * (v)b, which
implies that by, ..., b, are linearly dependent over F', a con-
tradiction. So the B; are invertible for £+ 1 < j < m and
the system {0;(X) = BiX}i<i<m is fully integrable. We
call it? the fully integrable system associated to M w.r.t. the
basis b1,...,bn.

1<i,j <m,

Since any orthogonal A-extension E of F' is turned into
an R-module via the action 9;(e) = d;(e) for i < £ and
Oi(e) = oi(e) for i > £, solg(A(Z) = 0) is well-defined. We
now set up a correspondence between the solutions in F of
A(Z) = 0 and those of its associated fully integrable system.

PROPOSITION 2. Let A(Z) = 0 with A € SP*? be a sys-
tem of finite linear dimension, M be its module of formal
solutions, e1,...,eq be R-generators for M and b1,...,b,
be an F-basis of M such that A(e1,...,eq)” =0 and

8i (b1, .., bn)" = Bi(b1,...,bn)"

Let P € F*™ be given by (e1,...,eq)” = P(b1,...,bn)".
Then, for any orthogonal A-extension E of F, the corre-
spondence & — P& is an isomorphism of Cg-modules be-
tween solg({0:;(X) = BiX }1<i<m) and solg(A(Z) = 0).

2Tt is also called an integrable connection.

for each 1.

Proof. To simplify notation, we denote solg(A(Z)=0) and
solg({0:(X) = BiX }i<i<m) by Wa and Wag, respectively.
Write e = (e1,...,eq)" and b = (b1,...,bn)". According to
Theorem 4, for any £ € Wp, there exists ¢ € Homg (M, E)
such that & = ¢(b). Hence

A(PE) = A(Pp(b)) = ¢(A(PD)) = ¢(A(e)) =0,

so P& belongs to W4. Thus the correspondence £ — P¢ is
a homomorphism of Cg-modules from Wg to Wa.

For every n € W4 there exists ¢» € Homg(M, E) such that
n = ¥(e) = Y(Pb) = Py(b). The correspondence & — P&
is then surjective, because 1 (b) belongs to Wg. If £ € Wp
and P¢ = 0, then there exists ¢ € Homg(M, E) such that
& = ¢(b). Hence 0 = P& = ¢(Pb) = ¢(e). It follows that ¢
maps everything to 0 as M is generated by e1, ..., eq over R.
Thus ¢ = 0 and the correspondence is bijective. a

DEFINITION 5. Let A, M, by,...,b, and P be as in Propo-
sition 2. A q X n matriz 'V with entries in an orthog-
onal A-extension E of F is called a fundamental matrix
for A(Z) = 0 if V = PU where U € E™™" is a funda-
mental matriz of the fully integrable system associated to M
w.r.t. the basis bi,...,bn.

A Picard-Vessiot ring for any fully integrable system associ-
ated to M is called a Picard-Vessiot ring for A(Z) = 0.

Although this is not stated in the definition, it follows from
Proposition 2 that the columns of a fundamental matrix
form a Cg-basis of the Cg-module solg(A(Z)=0): denote
solg(A(Z)=0) and solg({0;(X) = BiX }1<i<m) by Wa and
Wpg respectively. Then the columns of V' = PU are in W4
by Proposition 2. Let ¢ € Cx*" be such that 0=Ve¢ = PUec.
Since Uc € Wy, we have Uc = 0 by Proposition 2, hence ¢=0
since U is invertible. Thus the columns of V' are linearly
independent over C'g. For any n € Wy there exists £ € Wg
such that n = P¢. By Proposition 1 there exists ¢ € C’g“
such that £ = Uc. Hence n = PUc = Ve.

Let b1,...,b, and di,...,d, be two bases of M over F.
Write b = (b1,...,bn)" and d = (d1,...,dn)", and let T €
GL,(F) be given by d = Tb. For each i, let B;, D; € F™*"
be such that 9;(b) = B;b and 9;(d) = D;d. If E is a Picard-
Vessiot ring for {0;(X) = B;X }1<i<m and U € E™*" is a
corresponding fundamental matrix, then TU is a fundamen-
tal matrix for {9;(Y) = D;Y }1<i<m by Theorem 4, so E is
a Picard-Vessiot ring for that system too. This justifies the
second part of Definition 5.

As a final consequence of Theorems 1 and 2, we have

THEOREM 5. Every system A(Z)=0 of finite linear di-
mension has a fundamental matriz and has a Picard-Vessiot
ring . If F' has characteristic 0 and CF is algebraically
closed, then Cg = Cp.

Proof. Let A € 577 be such that A(Z) = 0 is of finite lin-
ear dimension n > 0, M be its module of formal solutions,
ei,...,eq be R-generators for M and bi1,...,b, be an F-
basis of M such that A(e1,...,eq)"=0and 0;(b1,...,bn)" =
B;(b1,...,b,)T for each i. Let P € F?*™ be given by
(61, ey eq)" = P(bl, ey bn)T. Since {BZ(X) = BiX}lgigm



is a fully integrable system, there exists, by Theorem 1, a
fundamental matrix U € E™*™ for that system where E is
some orthogonal A-extension of F. Then V := PU € E¥*™
is a fundamental matrix for A(Z) = 0. The existence of the
Picard-Vessiot ring and the second statement follow directly
from Theorem 2. ad

Assume that F' has characteristic 0 with an algebraically
closed field of constants. Let E be a Picard-Vessiot ring
for the system A(Z) = 0. As mentioned after Theorem 2,
solg ({0:(X) = BiX }1<i<m) is of dimension n over Cp. But
that space is isomorphic to solg(A(Z) = 0) by Proposition 2.
Therefore the dimension of solg(A(Z) = 0) as a C'r-vector
space equals n, the linear dimension of A(Z) = 0.

EXAMPLE 5. Let F, 0, and o be as in Example 1, and
the system A is given by

z+1 k(z+1—k) _ k(z+1-k)
x 22(k—1) 22(k—1)
A — CL'+1 ack—k2+2952+k:x2+k—l _ack—k2+2952+kac2
v z(k—1) 2(k—1) )
z+1 k422 +ka? —2k°+k  _ ak+22%+ka?—2k%41
z(k—1) z(k—1)
k+1 k+l—zk—=x zk+x—k—1
k z(k—1) z(k—1)
Ak — z(k+1) 172z+k7mk+zg 2m+zk7m37k71

k k—1 —
z(k+1)  1-2zk—2zx+k+z° 2zk+2z—k—z°—1
k k—1

Note that Ay and Ay satisfy the compatibility conditions (2)
but Ay is singular, so the system is not fully integrable.
Let S = [0z;1,04][0k;0%,0] and R be the corresponding
Laurent-Ore algebra. Let A € S%*3 be the matriz corre-
sponding to the system given by Az and Ay (see Exam-
ple 4), M = R*3®/R'® A be the module of formal solutions
for the system A(Z) = 0, and {e1,e2,e3} be a set of R-
generators of M such that Oy(e1,e2,e3)” = Ag(e1,e2,e3)”
and Ox(e1,e2,e3)” = Ak(e1,e2,e3)”. Solving the linear sys-
tem (v1,v2,v3)Ar = 0 over F, we see that Ax has rank 2,
and Ok (e1), Ox(e2) and Ok (e3) are linearly dependent over F
(so are e1, e2 and es by an application of 8,:1). A nontrivial
solution of (v1,v2,v3)Ar = 0 and an application ofak_1 yield

e 1 0 .
er | = 0 1 “ ),
z(k—1) 22—k 2
€3 21 21
P

which, together with Ay and Ay, implies that 0z(e1,e2)” =
By(e1,e2)” and dx(e1,e2)” = Bi(e1,e2)” where

—z4a3—1+a? —ak—k+k? k(z+1—k)
B, = z(x2—1 z2(x2-1) ,

—x—xk+x3—1—a¢ +k2—kx2 —k2+xk+kx2+3m2—1
21 z(z2-1)

zhta+k?42k+1 k41
_ k(z+1) z(z+1)
By = _ (ka?—z—k?2k-1)z  224z—1-k
k(z+1) r+1

Since By, is invertible, the system B given by B, and By, is
fully integrable, and, hence, e1 and e2 form an F-basis of M .
The same method to construct a fundamental matriz for the
system in Example 1 yields a fundamental matriz for B:

U— xke” —kx*
T\ kz?e® (2% — k- 1) )

hence PU is for A. In addition, a Picard-Vessiot ring of B
is a Picard-Vessiot ring of A.
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