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Abstract

The aim of this paper is to investigate higher level orderings on
modules over commutative rings. Based on the theory of higher level
orderings on fields and commutative rings, some results involving exis-
tence of higher level orderings are generalized to the category of mod-
ules over commutative rings. Moreover, a strict intersection theorem
for higher level orderings on modules is established.
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1 Introduction

In Artin’s solution to the Hilbert’s 17th problem, the notion of orderings on
fields played an important role. Since E. Artin and O. Schreier published two
papers [1, 2], the notion of orderings has been generalized in many directions
as a basic concept in real algebra. M. Coste and M.-F. Coste-Roy introduced
orderings on commutative rings with identity (see [8]). Later, the notion of
orderings on modules over commutative rings was proposed by G. Zeng [11].
Another remarkable direction of the generalization of orderings is the intro-
duction of higher level orderings on fields by E. Becker [4, 5]. Subsequently,
the notion of higher level orderings was further introduced into the category
of commutative rings with identity by E. Becker and S. M. Barton (see [6]
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and [3]). The study of orderings and other relevant notions, e.g. valuations
and quadratic forms, is a principal task of real algebra.

In view of the development of the study of orderings, such a question
naturally arises: can we introduce higher level orderings on modules over
commutative rings? This paper is aimed to answer this question.

In this paper, the symbol N stands for the set of all positive integers, all
rings are supposed to be commutative rings with identity and all modules
are unitary.

For two subsets A and B of a set S, denote by A \ B the complement
of B in A, i.e. A \ B = {x ∈ S | x ∈ A but x /∈ B}. Let R be a ring.
For two subsets A and B of R, set A · B = {ab | a ∈ A, b ∈ B}. Let M
be an R-module. For a prime ideal ℘ of R, denote by M℘ the localization
of M at ℘, i.e. M℘ = {η

s | η ∈ M and s ∈ R \ ℘} and write ℘M℘ for
the submodule {η

s | η ∈ ℘M and s ∈ R \ ℘} of M℘. For two nonempty
subsets A and B of M , set (A : B) = {r ∈ R | rb ∈ A for all b ∈ B}.
In particular, if A = {0} (or respectively, B = {b}) we write anni(B) (or
respectively, (A : b)) instead of (A : B). Note that (A : B) is an ideal of R
if A is a submodule of M . For a nonempty subset S of R and a nonempty
subset A of M , set S · A = {sa | s ∈ S, a ∈ A} and (A : S) = {x ∈
M | s x ∈ A for all s ∈ S}. Note that (A : S) is a submodule of M
if A is a submodule of M . For an ideal I of R and a submodule A of M ,
set I · A = {

∑s
i=1 ri xi | ri ∈ I and xi ∈ A for i = 1, . . . , s}, a submodule

of M . A submodule P of M is called prime if ax ∈ P with a ∈ R and x ∈ M
implies either a ∈ (P : M) or x ∈ P. We observe that if P is a prime
submodule of M , then (P : M) is a prime ideal of R and (P : M) = (P : x)
for any x ∈ M satisfying x /∈ P. For properties of modules and prime
submodules, we refer the reader to [9] and [10].

2 A Review of Higher Level Orderings on Rings

In this section, we recall the definition and properties of higher level order-
ings on rings.

Let R be a ring and let k(℘) be the quotient field of R/℘ where ℘ is a
prime ideal of R. In [6], Becker defined

Definition 0 A subset P of R is called an ordering of level n on R if P
satisfies the following conditions:

(1) P + P ⊆ P , P · P ⊆ P , R2n ⊆ P ;

(2) ℘ := P ∩ −P is a prime ideal of R;
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(3) xy2n ∈ P with x, y ∈ R implies either x ∈ P or y ∈ ℘;

(4) P := {
∑s

i=1 a2n
i p̄ | ai ∈ k(℘), i = 1, . . . , s, s ∈ N, p̄ = p + ℘ for p ∈ P}

is an ordering of level n on k(℘).

From Definition 0, we can set up a one-to-one correspondence between
orderings of level n on R and pairs (℘, χ) where ℘ is a prime ideal of R
and χ is a signature sending k(℘) into the cyclic group of all 2n-th roots of
unity as defined in [3]. Accordingly, such a pair (℘, χ) may be equivalently
regarded as an ordering of level n on R.

In Definition 1.5 of [3], Barton defined higher level orderings on rings in
terms of families of subsets of rings as follows

Definition 1 A family of subsets {α1, . . . , α2n } of a ring R is called an
ordering of level n on R if the following conditions are satisfied:

(1) R =
2n⋃
i=1

αi;

(2) αi
⋂

αj = ℘ for all i 6= j, where ℘ is a prime ideal of R and we de-
note α∗

i = αi \ ℘ for i = 1, . . . , 2n;

(3) α∗
i + α∗

i ⊆ α∗
i for i = 1, . . . , 2n;

(4) α∗
i · α∗

j ⊆ α∗
i+j for all i, j ∈ {1, . . . , 2n}, where the following convention

is adopted: αi = αj whenever i ≡ j (mod 2n).

In Lemma 1.7 of [3], Barton gave a slightly different definition of higher level
orderings:

Definition 2 A family of subsets α = {α1, . . . , α2n} of a ring R is called
an ordering of level n on R if the following conditions are satisfied:

(1) R =
2n⋃
i=1

αi;

(2) αi
⋂

αj = ℘ for all i 6= j, where ℘ is a prime ideal of R ;

(3) αi + αi ⊆ αi for i = 1, . . . , 2n;

(4) αi · αj ⊆ αi+j for all i, j ∈ {1, . . . , 2n}, where the same convention as
in Definition 1 is adopted: αi = αj whenever i ≡ j (mod 2n);

(5) −1 /∈ α2n (or equivalently, −1 ∈ αn).

The prime ideal ℘ is called the support of α and denoted by supp(α).
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Barton claimed that Definition 1 and Definition 2 are equivalent. How-
ever, on this “equivalence”, she did not give a rigorous proof. In fact, even
if the claim is true, the proof is not necessarily trivial. But once the claim
does not hold, both the proof and the conclusion of Theorem 1.3 in [3] are
incorrect. So, we do not adopt Definition 1 as the definition of higher level
orderings on rings. However, from Definition 2 we can still establish the
following

Proposition 1 Let R be a ring and let {α1, . . . , α2n} be a family of subsets
of R satisfying the conditions (1 − 5) in Definition 2. Set α∗

i = αi \ ℘
for i = 1, . . . , 2n. Then for an arbitrary 2n-th primitive root ξ, the map

χ : k̇(℘) −→ {ξi | i = 1, . . . , 2n} where k̇(℘) := k(℘) \ {0}

determined by a
b
7→ ξi−j with a = a+℘ and b = b+℘ for a ∈ α∗

i and b ∈ α∗
j ,

is a signature.

Proof. We first show that χ is well-defined. Suppose that a = b 6= 0
with a, b ∈ R \ ℘, then b − a ∈ ℘. Since R =

⋃2n
i=1 αi, a belongs to αi

for some i ∈ {1, . . . , 2n}. Hence, b = a + (b − a) ∈ αi + ℘ ⊆ αi by the
condition (3) of Definition 2. Thus, χ(a) = ξi = χ(b).

Now we assert that

(3′) α∗
i + α∗

i ⊆ α∗
i for i = 1, . . . , 2n;

(4′) α∗
i · α∗

j ⊆ α∗
i+j , for all i, j ∈ {1, . . . , 2n}.

Indeed, if x, y ∈ α∗
i we have x + y ∈ αi by the condition (3) of Definition 2.

Suppose that x+y ∈ ℘. Note that −1 ∈ αn, then x ∈ −y+℘ ⊆ αn ·αi +℘ ⊆
αn+i + ℘ = αn+i, which leads to x ∈ αi ∩ αn+i = ℘, a contradiction.
Hence, the assertion (3′) is verified. Obviously, α∗

i · α∗
j ⊆ αi+j . Thus, the

assertion (4′) follows immediately from the fact α∗
i · α∗

j ∩ ℘ = ∅.
Following an argument similar to the one used for proving Theorem 1.3

of [3], we get that χ is a signature. �
From Proposition 1, it is then reasonable to adopt Definition 2 as the

definition of higher level orderings on rings. In the sequel, by higher level
orderings on rings we mean those given by Definition 2.

We now study properties of higher level orderings on rings. First, we
have

Lemma 1 If α = {α1, ..., α2n} is an ordering of level n on a ring R,
then supp(α) is a real ideal of R.
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Proof. It is an immediate consequence of Proposition 1 and Korollar 2.3
in [5]. �

Another property of higher level orderings on rings is described in

Lemma 2 Let π : R → R′ be a ring homomorphism. If {α′
1, . . . , α

′
2n} is an

ordering of level n on R′, then {α1, . . . , α2n} is an ordering of level n on R
where αi = π−1(α′

i), the preimage of α′
i, for i = 1, . . . , 2n.

Proof. Obviously, we have R =
⋃2n

i=1 αi and αi +αi ⊆ αi for i = 1, . . . , 2n.
Observe that for all i, j ∈ { 1, . . . , 2n } with i 6= j, we have

x ∈ αi ∩ αj ⇐⇒ π(x) ∈ α′
i ∩ α′

j = ℘′ ⇐⇒ x ∈ π−1(℘′).

Then, αi ∩ αj = π−1(℘′) is a prime ideal of R.
If x ∈ αi and y ∈ αj , then π(x) ∈ α′

i and π(y) ∈ α′
j . Therefore, we get

that π(x y) ∈ α′
i · α′

j ⊆ α′
i+j and so xy ∈ αi+j . Hence, αi · αj ⊆ αi+j .

Finally, we have −1 6∈ α2n because otherwise −1 = π(−1) ∈ α′
2n. Then

by Definition 2, {α1, . . . , α2n} is an ordering of level n on R. �

3 Higher Level Orderings on Modules

In this section, we introduce higher level orderings on modules over rings
and then establish some results about higher level orderings on modules.

Let R be a ring and let M be an R-module. We define

Definition 3 A family of subsets Q = {Q1, . . . , Q2n } of M is called an
ordering of level n on M if the following conditions are satisfied:

(1) M =
2n⋃
i=1

Qi;

(2) Qi + Qi ⊆ Qi;

(3) Qi ∩Qj = P for all i 6= j, where P is a prime submodule of M ;

(4) R admits an ordering α = {α1, . . . , α2n} of level n such that

αi ·Qj ⊆ Qi+j , for all i, j ∈ {1, . . . , 2n},

and supp(α) = (P : M) where we adopt the convention that Qi = Qj

whenever i ≡ j (mod 2n).

The prime submodule P is called the support of Q and denoted by supp(Q).
Also, α is called an ordering on R associated with Q.
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Remark 1

(1) If Q = {Q1, . . . , Q2n} is an ordering of level n on an R-module M , then
for any k ∈ {1, . . . , 2n}, Q(k) = {Qk+1, . . . , Q2n, Q1, . . . , Qk} is also
an ordering of level n on M with the same associated ordering as Q
on R.

(2) If α := {α1, . . . , α2n } is an ordering of level n on a ring R, α is naturally
an ordering of level n on R as an R-module. Conversely, however,
an ordering {Q1, . . . , Q2n} of level n on R as an R-module is not
necessarily an ordering of level n on R as a ring.

Nevertheless, we have

Proposition 2 Let Q = {Q1, . . . , Q2n} be a family of subsets of a ring R.
Then, the following two statements are equivalent:

(i) Q is an ordering of level n on R as a ring;

(ii) Q is an ordering of level n on R as an R-module satisfying 1 ∈ Q2n.

Proof. From Remark 1 (2), we know that (i) implies (ii). Conversely,
let Q be an ordering of level n on R as an R-module satisfying 1 ∈ Q2n and
let α = {α1, . . . , α2n } be an associated ordering on R with Q. Then, we
have αi = αi · 1 ⊆ αi · Q2n ⊆ Qi for i = 1, . . . , 2n. If there exists x ∈ Qi

but x /∈ αi, then x ∈ αj for some j 6= i and thus x = x · 1 ∈ αj ·Q2n ⊆ Qj .
Hence, x ∈ Qi

⋂
Qj = P. Since P is an R-submodule of R, we have Rx ⊆ P

and therefore x ∈ (P : R) = supp(α) ⊆ αi, a contradiction. So, Qi = αi

and {Q1, . . . , Q2n} is an ordering of level n on R as a ring. �
Now, let us look at the following

Example 1 Let F be a real field and let V be a nonzero F -vector space with
a basis Γ = {γλ | λ ∈ Λ} where Λ is an index set. By Zermelo’s well-ordering
theorem, Λ admits a linear ordering ≺. Then, each nonzero x ∈ V can be
represented uniquely in the form: x = a1 γλ1 + · · ·+as γλs where ai ∈ F \{0}
and λi ∈ Λ ordered as λ1 ≺ · · · ≺ λs. We call as the leading coefficient of x.

By Korollar 2.3 in [5], F admits an ordering of level n for any n ∈ N.
Now let α = {α1, . . . , α2n} be an ordering of level n on F , then the support
of α is {0}. Consider the following subsets of V :

Qi = {x ∈ V | x = 0 or the leading coefficient of x lies in α∗
i },

for i = 1, . . . , 2n.
One can show that {Q1, . . . , Q2n} is an ordering of level n on V with the

support {0} and α is its associated ordering on F .
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Now we begin to investigate properties of higher level orderings on mod-
ules. By Definition 3, we can verify without difficulty the following

Proposition 3 If Q = {Q1, . . . , Q2n } is an ordering of level n on an R-
module M with an associated ordering α = {α1, . . . , α2n } on R, then

(i) P = supp(Q) is a real submodule of M ;

(ii) (Qi : Qk) = αi−k if Qk 6= P;

(iii) (Qi : αk) = Qi−k if αk 6= supp(α). In particular, (Qi : α2n) = Qi.

Proof. (i) Consider the quotient module M/P over R and suppose
that (

∑s
i=1 a2

i )x = 0 where ai ∈ R for i = 1, . . . , s and x̄ = x+P for x ∈ M .
Then, we have (

∑s
i=1 a2

i )x ∈ P. If x ∈ P, it follows that ai x ∈ P and
therefore aix = 0 for i = 1, . . . , s. If x /∈ P, then

∑s
i=1 a2

i ∈ (P : M)
because P is a prime submodule of M . By the condition (4) in Defini-
tion 3, we have

∑s
i=1 a2

i ∈ (P : M) = supp(α). By Lemma 1, supp(α) is
a real ideal of R. Then, ai ∈ supp(α) = (P : M) and naturally ai x ∈ P
for i = 1, . . . , s. So, we have aix = 0 for i = 1, . . . , s, which shows that M/P
is a real R-module. By Definition 3 in [11], P is a real submodule of M .

(ii) Clearly, αi−k ⊆ (Qi : Qk). If there exists a ∈ (Qi : Qk) but a /∈ αi−k,
then a ∈ α∗

j for some j 6≡ i−k (mod 2n). By supposition, for any x ∈ Qk \P
we have ax ∈ Qi. On the other hand, ax ∈ αj · Qk ⊆ Qj+k. Hence, a x ∈
Qi ∩Qj+k = P because i 6≡ j + k (mod 2n). Since P is a prime submodule
of M not containing x, then a ∈ (P : M) = supp(α) ⊆ αi−k, a contradiction.
So, we have (Qi : Qk) = αi−k.

(iii) Obviously, Qi−k ⊆ (Qi : αk). If there exists x ∈ (Qi : αk) such
that x /∈ Qi−k, then x ∈ Q∗

j for some j 6≡ i − k (mod 2n). By supposition,
for any a ∈ αk \ supp(α) we have a x ∈ Qi. On the other hand, we get
that a x ∈ αk ·Qj ⊆ Qk+j . Hence, a x ∈ Qi ∩Qk+j = P. Since P is a prime
submodule of M not containing x, a ∈ (P : M) = supp(α), a contradiction.
So, we have (Qi : Qk) = αi−k. �

Remark 2 Proposition 3 (ii) implies that for an ordering of level n on
an R-module M , its associated ordering on R is unique. Accordingly, the
word “associated ordering” should be preceded by the definite article “the”.

Proposition 4 If an R-module M admits an ordering of level n, then M
is a semireal module.
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Proof. Let Q be an ordering of level n on M . Observe that each prime
submodule of M is a proper subset of M , so we can pick out e ∈ M\supp(Q).
Set T 2n

R = {
∑s

i=1 a2n
i with ai ∈ R and s ∈ N}. We claim that (1 + t) e 6= 0

for any t ∈ T 2n
R . Indeed, otherwise, suppose that there exists t0 ∈ T 2n

R

such that (1 + t0) e = 0 ∈ supp(Q). By Proposition 3, supp(Q) is a real
submodule of M . Then, we have e ∈ supp(Q), a contradiction. So, M is a
semireal module. �

We note that the converse of Proposition 4 is not true. A counterexam-
ple for the case n = 1 can be found in [11]. In what follows, we propose
some necessary and sufficient conditions for modules to admit higher level
orderings.

Theorem 1 An R-module M admits an ordering of level n if and only if
there exists ℘ ∈ Specr(R) such that ℘M℘ 6= M℘ where Specr(R) denotes the
set of all real prime ideals of R.

Proof. For the necessity, suppose that Q = {Q1, . . . , Q2n } is an ordering
of level n on M with the associated ordering α = {α1, . . . , α2n } on R.
Set P = supp(Q) and ℘ = supp(α), then ℘ ∈ Specr(R). Since P is a
proper submodule of M , there exists e ∈ M \ P. We claim that e

1 /∈ ℘M℘.
Indeed, otherwise, suppose that there exists s ∈ R \ ℘ such that se ∈ ℘M .
By Definition 3, ℘M ⊆ P. Then, se ∈ P. Since P is a prime submodule
of M not containing e, we have sM ⊆ P and hence s ∈ (P : M) = ℘, a
contradiction to our supposition.

Conversely, for the sufficiency, suppose that there exists ℘ ∈ Specr(R)
such that ℘M℘ 6= M℘. Set V = M℘/℘M℘ and F = R℘/℘R℘. Note that ℘R℘

is a maximal ideal of R℘, then F is a field and therefore V is a nonzero F -
vector space. Since ℘ is a real ideal of R, ℘R℘ is a real ideal of R℘ and so F
is a real field.

By Example 1, F admits an ordering α′ = {α′
1, . . . , α

′
2n} of level n

with supp(α′) = {0} and V admits an ordering Q′ = {Q′
1, . . . , Q

′
2n} of

level n with supp(Q′) = {0} such that α′ is its associated ordering on F .
Denote by π the composition of two canonical homomorphisms R → R℘

and R℘ → F given by r 7→ r
1 and r

s 7→
r
s
1
s

, respectively. Let αi = π−1(α′
i)

for i = 1, . . . , 2n. By Lemma 2, we know that α = {α1, . . . , α2n} is an
ordering of level n on R and supp(α) = π−1(supp(α′)) = π−1({0}) = ℘.

Through the action of π, V can be viewed as an R-module. For any r ∈ ℘,
we have r V = π(r) · V = 0 · V = {0} and r ∈ (0 : V ). So, ℘ ⊆ (0 : V ).
Conversely, if a ∈ (0 : V ) then π(a)V = aV = {0}. Since V is a nonzero F -
vector space, we must have π(a) = 0, i.e. a ∈ ℘. Then, (0 : V ) ⊆ ℘ and
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so ℘ = (0 : V ) = (supp(Q′) : V ).
Let a ∈ αi and v ∈ Q′

j , then av = π(a) v ∈ π(αi) · Q′
j ⊆ α′

i · Q′
j ⊆ Q′

i+j

and therefore αi · Q′
j ⊆ Q′

i+j . So, Q′ = {Q′
1, . . . , Q

′
2n} is an ordering of

level n on the R-module V with the associated ordering α on R.
Denote by ϕ the composition of two canonical module homomorphisms

M → M℘ and M℘ → V given by m 7→ m
1 and m

s 7→ m
s + ℘M℘, respectively.

Set Qi = {x ∈ M | ϕ(x) ∈ Q′
i} for i = 1, . . . , 2n. By Lemma 3 below, we

know that Q = {Q1, . . . , Q2n} is an ordering of level n on M . Moreover,
the support of Q is supp(Q) = {x ∈ M | x

1 ∈ ℘M℘} and α is the associated
ordering on R with Q. This completes the proof. �

Theorem 1 then induces

Corollary 1 An R-module M admits an ordering of level n if and only
if M admits an ordering of level 1.

Proof. It is a direct consequence of Theorem 1 which holds for any n. �
The following lemma is a counterpart of Lemma 2 for higher level order-

ings on modules.

Lemma 3 Let ϕ : M → M ′ be an R-module homomorphism. If Q′ =
{Q′

1, . . . , Q
′
2n} is an ordering of level n on M ′ such that ϕ(M) 6⊆ supp(Q′),

then Q = {ϕ−1(Q′
1), . . . , ϕ

−1(Q′
2n) } is an ordering of level n on M with the

same associated ordering as Q′ on R.

Proof. Set Qi = ϕ−1(Q′
i) for i = 1, . . . , 2n. Clearly, M =

⋃2n
i=1 Qi

and Qi + Qi ⊆ Qi for i = 1, . . . , 2n. For all i, j ∈ {1, . . . , 2n} with i 6= j,
we have Qi ∩ Qj = ϕ−1(Q′

i) ∩ ϕ−1(Q′
j) = ϕ−1(Q′

i ∩ Q′
j) = ϕ−1(supp(Q′)).

Set P ′ = supp(Q′) and P = ϕ−1(P ′). From ϕ(M) 6⊆ P ′, it follows that P is
a proper submodule of M .

Let ax ∈ P with a ∈ R and x ∈ M \ P. Then, aϕ(x) = ϕ(ax) ∈ P ′

but ϕ(x) /∈ P ′. Since P ′ is a prime submodule of M ′, we have aM ′ ⊆ P ′

and ϕ(aM) ⊆ P ′. This implies that a ∈ (P : M) and P is a prime submodule
of M .

Let α = {α1, . . . , α2n} be the associated ordering on R with Q′. Then,
it follows that supp(α) = (P ′ : M ′). If a ∈ (P : M), then aM ⊆ P
and aϕ(M) = ϕ(aM) ⊆ ϕ(P) = P ′. Since P ′ is a prime submodule of M ′

and ϕ(M) 6⊆ P ′, we have a ∈ (P ′ : M ′). Hence, (P : M) ⊆ (P ′ : M ′).
Conversely, if a ∈ (P ′ : M ′) then aM ′ ⊆ P ′, and ϕ(aM) = aϕ(M) ⊆
aM ′ ⊆ P ′. So, (P ′ : M ′) ⊆ (P : M) and then (P : M) = (P ′ : M ′) =
supp(α).

Let a ∈ αi and x ∈ Qj , then ϕ(a x) = aϕ(x) ∈ αi · Q′
j ⊆ Q′

i+j , which
yields that a x ∈ Qi+j and hence αi ·Qj ⊆ Qi+j .
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By Definition 3, Q = {Q1, . . . , Q2n } is an ordering of level n on M and α
is the associated ordering on R with Q. �

Theorem 2 An R-module M admits an ordering of level n if and only if M
has a real prime submodule.

Proof. The necessity follows immediately from Proposition 3 (i). It
remains to show the sufficiency. Let P be a real prime submodule of M .
Set ℘ = (P : M), then ℘ is a real prime ideal of R by Proposition 1.1 (3)
in [11]. We claim that ℘M℘ 6= M℘. Indeed, if otherwise, then x

1 ∈ M℘ =
℘M℘ for any x ∈ M \ P. Then, there exists s ∈ R \ ℘ such that sx ∈ ℘M .
From ℘M ⊆ P, it follows that sx ∈ P. Since P is a prime submodule of M
not containing x, we get that s ∈ ℘, a contradiction. Thus, ℘M℘ 6= M℘. By
Theorem 1, M admits an ordering of level n. �

For finitely generated modules, the converse of Proposition 4 is also true.
Before we give a rigorous proof of it, we first establish a more general result
as follows

Proposition 5 Let M be a finitely generated R-module and let T be a pre-
ordering of level n on R. If there exists e ∈ M such that 0 /∈ (1+T )e, then M
admits an ordering of level n such that its associated ordering {α1, . . . , α2n}
satisfies that T ⊆ α2n.

Proof. Suppose that M is generated by x1, . . . , xm over R. Set I = anni(e).
Then, I is an ideal of R and I ∩ (1+T ) = ∅. Let T = {t+ I ∈ R/I | t ∈ T}.
From I ∩ (1 + T ) = ∅, one can show that T is a preordering of level n
on R/I. By Proposition 2.4 in [6], R/I admits an ordering {α1, . . . , α2n} of
level n such that T ⊆ α2n. Denote by π the canonical ring homomorphism
from R into R/I and set αi = π−1(αi) for i = 1, . . . , 2n. By Lemma 2, α =
{α1, . . . , α2n} is an ordering of level n on R. Clearly, T ⊆ α2n. Denote by ℘
the support of α, then ℘ is a real prime ideal of R such that anni(e) ⊆ ℘
and (1 + T ) ∩ ℘ = ∅.

Note that R℘ is a local ring with a maximal ideal ℘R℘ and M℘ is a finitely
generated R℘-module. We claim that ℘M℘ 6= M℘. Indeed, if otherwise,
then we have ℘R℘M℘ = ℘M℘ = M℘. Thus, M℘ = 0 by Nakayama lemma
and therefore xi

1 = 0 for i = 1, . . . ,m. Hence, there exists si ∈ R \ ℘
such that sixi = 0 for i = 1, . . . ,m. Set s = s1s2 · · · sm, then s ∈ R \ ℘
and sxi = 0 for i = 1, . . . ,m. Thus, s ∈ (0 : M) ⊆ anni(e) ⊆ ℘, a
contradiction. So, ℘M℘ 6= M℘. Set V = M℘/℘M℘ and F = R℘/℘R℘,
then F is a field and V is a nonzero F -vector space. Note that F can be
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also viewed as the quotient field k(℘) of R/℘. Hence, α induces uniquely an
ordering α′ = {α′

1, . . . , α
′
2n} of level n on F .

Since V 6= 0, we can decompose V into a direct sum: F · ξ ⊕W where ξ
is a non-zero element of V and W is a subspace of V . This decomposition
of V yields a family of subsets of V as follows:

Q′
i = {v ∈ V | v = aξ + w where a ∈ α′

i and w ∈ W} for i = 1, . . . , 2n.

Denote by ϕ the composition of two canonical homomorphisms M → M℘

and M℘ → V as defined in Theorem 1 and set Qi = {x ∈ M | ϕ(x) ∈ Q′
i }

for i = 1, . . . , 2n. By an argument similar to the one used in the proof for
the sufficiency of Theorem 1, we know that {Q1, . . . , Q2n } is an ordering of
level n on M with the associated ordering α on R. �

From Proposition 5, we naturally get

Theorem 3 Let M be a finitely generated R-module. Then, M admits an
ordering of level n if and only if M is semireal.

Proof. The necessity is proved by Proposition 4. Suppose that M is a
semireal R-module, then there exists e ∈ M such that 0 /∈ (1 + T 2n

R )e where
the symbol T 2n

R is of same meaning as the one introduced in the proof of
Proposition 4. Clearly, we have 0 /∈ 1 + T 2n

R and then −1 /∈ T 2n
R , which

implies that T 2n
R is a preordering of level n on R. The sufficiency then

follows from Proposition 5. �

4 An Intersection Theorem for Higher Level Or-
derings

In Theorem 6 of [7], R. Berr gave a strict intersection theorem for higher
level orderings on commutative rings. In this section, we establish a similar
theorem for higher level orderings on modules.

Let Q = {Q1, . . . , Q2n} be an ordering of level n on an R-module M .
Set Q+ := Q∗

2n. We call Q+ the set of strictly positive elements of M with
respect to the ordering Q. Note that Q+ may be empty.

Let M be an R-module. An element e ∈ M is called normal if e
1 /∈ ℘M℘

for each real prime ideal ℘ of R containing anni(e). We observe that if a
set Γ is a basis of a free R-module M then each element of Γ is normal.

Now, we establish the following

Theorem 4 Let M be an R-module and let T be a preordering of level n
on R. Suppose that e is a normal element of M and x ∈ Re. Then, the
following two statements are equivalent:

11



(i) For any ordering Q = {Q1, . . . , Q2n} of level n on M satisfying e ∈ Q+

and T ⊆ (Q2n : Q2n), we have x ∈ Q+ ;

(ii) There exist elements t and t′ of T such that tx = (1 + t′)e.

Proof. Suppose that (ii) holds. Let Q = {Q1, . . . , Q2n} be any or-
dering of level n on M satisfying e ∈ Q+ and T ⊆ (Q2n : Q2n), and
let α = {α1, . . . , α2n} be the associated ordering on R with Q. By Proposi-
tion 3 (ii), (Q2n : Q2n) = α2n. Suppose that x ∈ Qj for some j ∈ {1, . . . , 2n},
then tx ∈ α2n ·Qj = Qj . By (ii), we have tx = (1 + t′)e ∈ α∗

2n ·Q∗
2n = Q∗

2n.
So, j = 2n and x ∈ Q2n. If x ∈ supp(Q), then −(1 + t′)e ∈ supp(Q).
Since e 6∈ supp(Q), we have −(1+ t′) ∈ (supp(Q) : M) ⊆ (Q2n : Q2n) = α2n.
This implies that −1 ∈ t′ + α2n ⊆ α2n, a contradiction. So, x ∈ Q+ and (i)
holds.

Now suppose that (i) holds but (ii) is false. By supposition, there ex-
ists a ∈ R such that x = ae. We claim that (1 + T − aT ) ∩ I = ∅
where I := anni(e). Indeed, if otherwise, there exist t1, t2 ∈ T such
that (1 + t1 − a t2) e = 0. Then t2x = (at2)e = (1 + t1)e ∈ (1 + T )e,
which is a contradiction to our supposition that (ii) is false.

Set T = {t + I ∈ R/I | t ∈ T}. From (1 + T − aT ) ∩ I = ∅, we
deduce that T is a preordering of level n on R/I and aT ∩ (1 + T ) = ∅
where a = a + I ∈ R/I. By Theorem 6 in [7], R/I admits an ordering α =
{α1, . . . , α2n} of level n such that T ⊆ α2n but a /∈ α∗

2n. Denote by π
the canonical ring homomorphism from R to R/I and set αi = π−1(αi)
for i = 1, . . . , 2n. By Lemma 2, α = {α1, . . . , α2n} is an ordering of level n
on R. Clearly, T ⊆ α2n. Write ℘ for the support of α, then ℘ is a real prime
ideal of R satisfying anni(e) ⊆ ℘ and (1 + T ) ∩ ℘ = ∅. Since e is normal,
we have e

1 /∈ ℘M℘. Hence, ℘M℘ 6= M℘. Set F = R℘/℘R℘, then F is a field
and V = M℘/℘M℘ is a non-zero F -vector space. View F as the quotient
field of R/℘, then α induces uniquely an ordering of level n on F .

By the same argument as the one used in the proof for the sufficiency
of Theorem 1, M admits an ordering Q = {Q1, . . . , Q2n} of level n with
the associated ordering α on R such that supp(Q) = {y ∈ M | y

1 ∈ ℘M℘}
and T ⊆ α2n. From a /∈ α∗

2n, we have a /∈ α∗
2n. If a ∈ ℘, then x = ae ∈

supp(Q), a contradiction to the assumption (i). Thus, we must have a 6∈ ℘
and then a ∈ α∗

j for some j ∈ {1, . . . , 2n} with j 6= 2n. From the structure
of supp(Q), we have e /∈ supp(Q) and then e ∈ Q∗

k for some k ∈ {1, . . . , 2n}.
Hence, x = ae ∈ α∗

j ·Q∗
k ⊆ Q∗

j+k and so x /∈ Q∗
k. By Remark 1 (1), we know

that Q(k) = {Qk+1, . . . , Q2n, Q1, . . . , Qk} is also an ordering on M with the
associated ordering α on R. Note that T ⊆ α2n = (Qk : Qk) and e ∈ Q+

(k)
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but x /∈ Q+
(k), which contradicts to the assumption (i). So, (ii) holds. �

Since a ring R can be viewed as a free R-module with a basis {1},
then 1 is a normal element of R. By Remark 1 (2), a family of subsets Q =
{Q1, . . . , Q2n} of R is an ordering of level n on R as a ring if and only
if Q is an ordering of level n on R as an R-module such that 1 ∈ Q+. So,
Theorem 4 generalizes Theorem 6 in [7].

Moreover, Theorem 4 induces

Corollary 2 Let M be an R-module and let e be a semireal and normal
element of M . Then, M admits an ordering Q of level n satisfying e ∈ Q+.

Proof. By supposition, we have −e ∈ Re and T 2n
R (−e) ∩ (1 + T 2n

R )e = ∅
where T 2n

R is of same meaning as the one introduced in the proof of Propo-
sition 4. This implies that T 2n

R is a preordering of level n on R. By the
proof of “(i) implying (ii)” in Theorem 4, M admits an ordering Q of level n
satisfying e ∈ Q+ (but −e /∈ Q+). �

At the end of this paper, we point out that, both in Theorem 4 and in
Corollary 2, the hypothesis that e is normal is not superfluous even if the
module M under discussion is finitely generated. Here is an example to
illustrate this point.

Example 2 Let R = Q[t] where t is an indeterminate over the field Q of
rational numbers and let M = R/Rt2 be an R-module. Then, e = t + Rt2 is
a semireal element of M .

We assert that e ∈ supp(Q) for any ordering Q of level n on M . In-
deed, otherwise, suppose that there exists an ordering Q of level n on M
such that e /∈ supp(Q). Suppose that α is the associated ordering on R
with Q. From te = 0 ∈ supp(Q), we have t ∈ (supp(Q) : M) = supp(α) and
hence e = t(1 + Rt2) ∈ supp(α) ·M ⊆ supp(Q), a contradiction.
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