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ABSTRACT
Picard-Vessiot extensions for ordinary differential and differ-
ence equations are well known and are at the core of the as-
sociated Galois theories. In this paper, we construct funda-
mental matrices and Picard-Vessiot extensions for systems
of linear partial functional equations having finite linear di-
mension. We then use those extensions to show that all the
solutions of a factor of such a system can be completed to
solutions of the original system.

Categories and Subject Descriptors
I.1.2 [Computing Methodologies]: Symbolic and Alge-
braic Manipulation—Algorithms

General Terms
Algorithms

Keywords
Linear functional systems; Picard-Vessiot extensions; Fun-
damental matrices; Modules of formal solutions.

1. INTRODUCTION
A linear functional system is a system of form A(Z) = 0

where A is a matrix whose entries are (partial) linear oper-
ators, such as differential, shift or q-shift operators or any
mixture thereof, and Z denotes a vector of unknowns. A
common special case consists of integrable systems, which
are of the form {∂i(Z) = AiZ}1≤i≤m, and correspond to
the matrix A given by the stacking of blocks of the form
(∂i −Ai). We show in this paper that fundamental matri-
ces1 and Picard-Vessiot extensions1 always exist for linear
functional systems having finite linear dimension1, which
include in particular all integrable systems. In addition, if

1To be defined precisely in Sect. 3 and 5.
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the field of coefficients has characteristic 0 and has an al-
gebraically closed constant field, then Picard-Vessiot exten-
sions for such systems contain no new constants.

In this paper, rings are not necessarily commutative and
have arbitrary characteristic, unless otherwise specified. Ide-
als and modules are left ideals and left modules. Fields are
however always commutative. The notation (·)τ denotes the
transpose of vectors or matrices, while R p×q denotes the set
of p× q matrices with entries in (the ring) R. The commu-
tator of a, b ∈ R is [a, b] = ab − ba. We write 1R for the
identity map on R and 0R for the zero map on R, and we
omit the subscripts when the context is clear.

2. FULLY INTEGRABLE SYSTEMS
Let R be a ring and σ be an endomorphism of R. A σ-

derivation ([4]) is an additive map δ : R → R satisfying
δ(ab) = σ(a)δ(b) + δ(a)b for all a, b ∈ R. A ∆-ring (R,Φ)
is a ring R together with a set Φ = {(σ1, δ1), . . . , (σm, δm)},
where each σi is an automorphism of R, each δi is a σi-
derivation of R, and [σi, σj ] = [δi, δj ] = [σi, δj ] = 0 for all
i 6= j. If R is also a field, then (R,Φ) is called a ∆-field. An
element c of R is called a constant if σi(c) = c and δi(c) = 0
for all i. The set of all the constants of R is denoted CR and
is clearly a subring of R, and a subfield when R is a field.
Remark that a ∆-ring is a (partial) differential ring if σi = 1
for all i, and a (partial) difference ring if δi = 0 for all i.

Definition 1. We say that the ∆-ring (R,Φ) is orthog-
onal if δi = 0 for each i such that σi 6= 1. By reordering
the indices, we can assume that there exists an integer ` ≥ 0
such that σi = 1 for 1 ≤ i ≤ ` and δi = 0 for ` < i ≤ m.
We write (R,Φ, `) for such an orthogonal ∆-ring.

All the δi are usual derivations in an orthogonal ∆-ring.
Mixed systems of partial linear differential, difference and q-
difference equations can be represented by matrices with en-
tries in Ore algebras ([4]) over orthogonal ∆-rings. Let (F,Φ)
be a ∆-field, and suppose that for each i such that σi 6= 1,
there exists ai ∈ F such that σi(ai) 6= ai and σj(ai)− ai =
δj(ai) = 0 for all j 6= i. Replacing the xi by the ai in
the proof of Theorem 1 in [6], one sees that linear func-
tional equations over F can be rewritten as equations over
an orthogonal ∆-field. There are however orthogonal ∆-
rings that do not contain such ai’s, for example F = C(x)
together with Φ = {(1, d/dx), (σx,0)} where σx is the auto-
morphism of F over C that sends x to x − 1. This field is
used in modeling differential-delay equations, and does not
match the definition of orthogonality given in [6].



Let (F,Φ, `) be an orthogonal ∆-field. We say that a com-
mutative ring E containing F is an orthogonal ∆-extension
of (F,Φ, `) if the σi and δi can be extended to automor-
phisms and derivations of E satisfying: (i) the commutators
[σi, σj ] = [δi, δj ] = [σi, δj ] = 0 on E for 1 ≤ i 6= j ≤ m;
(ii) σi = 1E for i ≤ ` and δi = 0E for j > `.

Let E and Ẽ be two orthogonal ∆-extensions of F . A
map φ from E to Ẽ is called a ∆-morphism if φ is a ring ho-
momorphism leaving F fixed and commuting with all the δi

and σi. Two orthogonal ∆-extensions of F are said to
be isomorphic if there exists a bijective ∆-morphism be-
tween them.

Definition 2. A system of form

δi(Z) = AiZ for i ≤ `, σi(Z) = AiZ for i > ` , (1)

where Ai ∈ Fn×n and Z = (z1, . . . , zn)τ is called an inte-
grable system if the following conditions are satisfied:

σi(Aj)Ai + δi(Aj) = σj(Ai)Aj + δj(Ai) for all i, j. (2)

The integrable system (1) is said to be fully integrable if the
matrices A`+1, . . . , Am are invertible.

Using Ore algebra notation, we write {∂i(Z) = AiZ}1≤i≤m

for the system (1) where the action of ∂i is meant to be δi

for i ≤ ` and σi for i > `. Note that the conditions (2) are
derived from the condition ∂i(∂j(Z)) = ∂j(∂i(Z)) and are
exactly the matrix-analogues of the compatibility conditions
for first order scalar equations in [6].

Example 1. Let F = C(x, k) and δx and σk denote re-
spectively the ordinary differentiation w.r.t. x and the shift
operator w.r.t. k. Then {δx(Z)=AxZ, σk(Z)=AkZ} where

Ax =

 x2−kx−k
x(x−k)(x−1)

x2−kx+3k−2x
kx(x−k)(x−1)

k(kx+x−x2−2k)
(x−k)(x−1)

x3+x2−kx2−2x+2k
x(x−k)(x−1)



Ak =

 k+1+kx2−xk2−x
(x−k)(x−1)

− k+1+kx−k2−x
k(x−k)(x−1)

x(k+1)(k+1+kx−k2−x)
(x−k)(x−1)

(k+1)(x2−2kx−x+k2)
k(x−k)(x−1)


is a fully integrable system.

3. FUNDAMENTAL MATRICES AND
PICARD-VESSIOT EXTENSIONS

A square matrix with entries in a commutative ring is said
to be invertible if its determinant is a unit in that ring. Let
the orthogonal ∆-ring (F,Φ, `) be as in the previous sec-
tion and {∂i(Z) = AiZ}1≤i≤m be a fully integrable system
of size n over F . An n × n matrix U with entries in an
orthogonal ∆-extension E of F is a fundamental matrix for
{∂i(Z) = AiZ}1≤i≤m if U is invertible and ∂i(U) = AiU for
each i, that is, each column of U is a solution of the system.

Theorem 1. For every fully integrable system, there ex-
ists a fundamental matrix whose entries lie in an orthogonal
∆-extension of F .

Proof. Let {∂i(Z) = AiZ}1≤i≤m be a fully integrable sys-
tem of size n over F , U = (ust) be a matrix of n2 distinct
indeterminates and R = F [u11, . . . , u1n, . . . , un1, . . . , unn].
For 1 ≤ i ≤ `, the δi are extended to derivations of R

via δi(U) = AiU and for ` + 1 ≤ j ≤ m, the σj are ex-
tended to automorphisms of R via σj(U) = AjU (σj is bi-
jective because Aj is invertible). It follows from the con-
ditions (2) that these extended maps turn R into a well-
defined orthogonal ∆-extension of F and that ∂i(U) = AiU
for each i. Let D = det(U) and R be the localization of R
with respect to D. Extend the δi and σj via the formulas
δi (1/D) = −δi(D)/D2 and σj (1/D) = 1/σj(D), respec-
tively (note that σj(D) = det(Aj)D for j > `). Then R
becomes an orthogonal ∆-extension of F , and U is a funda-
mental matrix of the system. 2

The following proposition reveals that any two fundamen-
tal matrices differ by a constant matrix.

Proposition 1. Let {∂i(Z) = AiZ}1≤i≤m be a fully in-
tegrable system of size n over F and U ∈ En×n be a funda-
mental matrix where E is an orthogonal ∆-extension of F .
If V ∈ En×d with d ≥ 1 is a matrix whose columns are so-
lutions of the system then V = UT for some T ∈ C n×d

E . In
particular, any solution of {∂i(Z) = AiZ}1≤i≤m in En is a
linear combination of the columns of U over CE.

Proof. Let T = U−1V . A straightforward calculation im-
plies that δi(T ) = 0 for i ≤ `, and σj(T ) = T for j > `.
Hence all the entries of T belong to CE . 2

In [10, 11], Picard-Vessiot rings for linear ordinary dif-
ferential and difference systems are defined. Picard-Vessiot
fields for integrable systems of partial differential equations
have been studied by Kolchin who proved their existence and
developed the associated Galois theory [2, §2][5]. Picard-
Vessiot extension fields have also been defined in [1] for
fields with operators, which are more general ∆-fields where
the operators do not necessarily commute. While the as-
sociated Galois theory was developed there, the existence
of Picard-Vessiot extensions was not shown. Indeed, with
automorphisms allowed, there are fully integrable systems
for which no Picard-Vessiot field exists. Generalizing the
definition of Picard-Vessiot rings used for difference equa-
tions [10, (Errata)], we obtain Picard-Vessiot rings together
with a construction proving their existence. Our definition is
compatible with the previous ones: for differential systems,
Picard-Vessiot rings turn out to be integral domains, and
the Picard-Vessiot fields of [5] are their fields of fractions;
For ∆-rings, the Picard-Vessiot rings are generated by ele-
ments satisfying linear scalar operator equations, which is
the defining property of the Picard-Vessiot fields of [1].

An ideal I of a commutative ∆-ring R is said to be in-
variant if δi(I) ⊂ I and σi(I) ⊂ I for all 1 ≤ i ≤ m. The
ring R is said to be simple if its only invariant ideals are (0)
and R.

Definition 3. Let {∂i(Z) = AiZ}1≤i≤m be a fully inte-
grable system over F . A Picard-Vessiot ring for this system
is a (commutative) ring E such that:

(i) E is a simple orthogonal ∆-extension of F .

(ii) E = F [U,det(U)−1] for some fundamental matrix U for
the system.

We now construct Picard-Vessiot rings by the same approach
used in the ordinary differential and difference cases [10, 11].

Lemma 1. Let R be an orthogonal ∆-extension of F and I
a maximal invariant ideal in R. Then, (i) E := R/I is a



simple orthogonal ∆-extension of F . (ii) CE is a field. (iii)
If F has characteristic 0, CF is algebraically closed and E
is a finitely generated algebra over F , then CE = CF .

Proof. Let I = {σk`+1
`+1 · · ·σkm

m (a)| a ∈ I, k`+1, . . . , km ∈ Z}.
One can verify that I is an invariant ideal containing I
but 1 /∈ I, and hence I = I since I is maximal. The δi

and σj can be viewed as derivations and surjective endomor-
phisms on E = R/I via the formulas δi(a + I) = δi(a) + I
and σj(a + I) = σj(a) + I for all a in R, respectively.
If σj(a + I) = I then σj(a) ∈ I = I and thus a ∈ I. So
the σj are automorphisms of E and E is a simple orthogo-
nal ∆-extension of F . To show the second statement, let c
be a nonzero constant of E. Then the ideal (c) is invariant.
Since E is simple, (c) contains 1. To show the last state-
ment, suppose that b ∈ CE but b /∈ CF . By the argument
used in the proof of Lemma 1.8 in [10], there exists a nonzero
monic polynomial g over F with minimal degree d such that

g(b) =
(
bd +

∑d−1
k=0 gkb

k
)

= 0. Apply the δi and σj to g(b),

respectively, we obtain
(∑d−1

k=0 δi(gk)bk
)

= 0 for i ≤ ` , and(∑d−1
k=0(σj(gk)− gk)bk

)
= 0 for j > `. The minimality of d

then implies gk ∈ CF for 0 ≤ k < d. So b ∈ CF since CF is
algebraically closed, a contradiction. 2

The existence of the Picard-Vessiot extensions is stated in
the next theorem.

Theorem 2. Every fully integrable system over F has a
Picard-Vessiot ring E. If F has characteristic 0 and CF

is algebraically closed, then CE = CF . Furthermore, that
extension is minimal, meaning that no proper subring of E
satisfies condition (ii) of Definition 3.

Proof. Let {∂i(Z) = AiZ}1≤i≤m be a fully integrable sys-
tem over F . By Theorem 1, it has a fundamental matrix
U = (ust) with entries in the orthogonal ∆-extension

R = F [u11, . . . , unn,det(U)−1].

Let I be a maximal invariant ideal of R and E = R/I.
Then E is a simple orthogonal ∆-extension of F by Lemma 1.
Clearly, E is generated over F by the entries of the matrix
U := (ust + I) and by det(U)−1. Since U is a fundamental
matrix for the system, E is a Picard-Vessiot ring for the sys-
tem. Assume further that F has characteristic 0 and CF is
algebraically closed. Then CE = CF by the third assertion
of Lemma 1. Let S = F [V,det(V )−1] be a subring of E
where V is some fundamental matrix of the system. By
Proposition 1, there exists T ∈ Cn×n

E such that V = UT .
Since CE = CF , all the entries of U and the inverse of det(U)
are contained in S. Hence S = E. 2

Assume that the ground field F has characteristic 0 with
an algebraically closed field of constants. Let E be a Picard-
Vessiot ring for a fully integrable system of size n over F .
Then Proposition 1 together with CE = CF implies that
all the solutions of this system in En form a CF -vector
space of dimension n. A direct generalization of Proposi-
tion 1.20 in [11] and Proposition 1.9 in [10] reveals that any
two Picard-Vessiot rings for a fully integrable system over F
are isomorphic as orthogonal ∆-extensions.

We present a few examples for Picard-Vessiot rings. Con-
sider the fully integrable system of size one:

∂i(z) = aiz where ai ∈ F and i = 1, . . . ,m. (3)

Let E be the orthogonal ∆-extension F [T, T−1] such that
δi(T ) = aiT for i ≤ ` and σj(T ) = ajT for j > `.

Case 1. There does not exist an integer k > 0 and r ∈ F ∗

such that δi(r) = kair for i ≤ ` and σj(r) = ak
j r for j>`.

Then E is a Picard-Vessiot ring of (3).
Case 2. Assume that the integer k > 0 is minimal so

that δi(r) = kair and σj(r) = ak
j r for some r ∈ F ∗ and for

all i ≤ ` and j>`. Then E/
(
T k − r

)
is a Picard-Vessiot ring

of (3). The verification of the above two assertions is similar
to that in Example 1.19 in [11].

Unlike in the differential case, the elements of Picard-
Vessiot rings cannot always be interpreted as complex func-
tions: the system {dy/dx = y(x), y(x + 1) = y(x)} is in
Case 1 above and has a Picard-Vessiot ring over C(x), but
has no nonzero complex function solution.

Next, we show that a Picard-Vessiot ring of the system
in Example 1 is F [ex, e−x,Γ(k),Γ(k)−1] where F = C(x, k).
Note that the change of variable1 Z = MY , where

M =

(
x−k

x
x2

(x− k)k x2k

)
,

transforms the system into B : {δx(Y )=BxY, σk(Y )=BkY },

where Bx =

(
1 0
0 0

)
and Bk =

(
1 0
0 k

)
.

Thus we need only to find a Picard-Vessiot ring of B. First,
let U be a 2× 2 matrix with indeterminate entries u11, u12,
u21 and u22. Define δx(U) = BxU and σk(U) = BkU . This
turns R = F [u11, u12, u21, u22, 1/det(U)] into an orthogonal
∆-extension of F . Clearly, I = (u12, u21) is an invariant
ideal of R and σ−1

k (I) is contained in I. Hence R/I is an
orthogonal ∆-ring. As the ∆-rings E = F [u11, u22, u

−1
11 , u

−1
22 ]

and R/I are isomorphic, it suffices to show that E is simple.
Suppose that J is a nontrivial invariant ideal of E. Let f
be a nonzero polynomial in I ∩F [u11, u22] with the smallest
number of terms. It cannot be a monomial, for otherwise J
would be E since u−1

11 and u−1
22 are in E. We write

f = ud1
11u

d2
22 + rue1

11u
e2
22 + other terms,

where r ∈ F with r 6= 0, and (d1, d2) 6= (e1, e2). It follows
from δx(u11) = u11 and δx(u22) = 0 that

δx(f) = d1u
d1
11u

d2
22 + (δx(r) + e1r)u

e1
11u

e2
22 + other terms,

in which each monomial has already appeared in f . Thus
(δx(f)− d1f) must be zero, because it is in I but has fewer
terms. It follows that (δx(r)−(d1−e1)r) is equal to zero. In
the same way, one can show that

(
σk(r)− kd2−e2r

)
= 0, be-

cause σk(u11) = u11 and σk(u22) = ku22. But the existence
of such a rational function r would imply d1=e1 and d2=e2,
a contradiction. Thus E is simple, and so a Picard-Vessiot
ring of B, hence also of the system in Example 1. If we un-

derstand u11 as ex and u22 as Γ(k), then V =

(
ex 0
0 Γ(k)

)
is a fundamental matrix for B in E, and hence MV is for
the system in Example 1.

Last, we describe a simple orthogonal ∆-extension that
contains a solution of the inhomogeneous system

δi(z) = ai for i ≤ ` and σj(z) = z + aj for j > `, (4)

1which can be found, for example, by computing the hyper-
exponential solutions of the system ([6, 12])



where the ai and aj are in a simple orthogonal ∆-ring E
with characteristic zero. This is an extension of Exam-
ple 1.18 in [11]. Note that the ai and aj have to satisfy
some compatibility conditions due to the commutativity of
the δi and σj . A more general form for these conditions are
given in (8) in the next section.

If (4) has a solution in E, then there is nothing to do.
Otherwise, let R = E[T ] and extend the δi and σj on R by
the formulas δi(T ) = ai and σj(T ) = T + aj . The com-
patibility conditions imply that R becomes a well-defined
orthogonal ∆-ring. If R has a nontrivial invariant ideal I,
let f = fdT

d + fd−1T
d−1 + · · · + f0 be a nonzero element

in I with minimal degree. Let J be the set consisting of
zero and leading coefficients of elements in I with degree d.
Our extensions of δi and σj imply that J is an invariant
ideal of E. Hence 1 ∈ J and, therefore, we may also as-
sume d > 0 and fd = 1. Since d is minimal, both δi(f)

and (σj(f) − f) are 0. Consequently,
−fd−1

d
is a solution

of (4), a contradiction. Thus R is simple and contains a
solution T of (4).

4. COMPLETING PARTIAL SOLUTIONS
We now consider reducible systems, i.e. systems that can

be put into simultaneous block-triangular form by a change
of variable Y = MZ for some M ∈ GLn(F ). Factorization
algorithms for modules over Laurent–Ore algebras [12] yield
such a change of variable for reducible systems, and we mo-
tivate them by showing that the solutions of a factor can
always be extended to solutions of the complete system.

Theorem 3. Let A: {∂i(Z) = AiZ}1≤i≤m be a fully in-
tegrable system of size n over F , and suppose that there ex-
ist a positive integer d < n and matrices Bi in F d×d, Ci

in F (n−d)×d and Di in F (n−d)×(n−d) such that

Ai =

(
Bi 0
Ci Di

)
for 1 ≤ i ≤ m. (5)

Then

(i) B : {∂i(X)=BiX}1≤i≤m and D : {∂i(X)=DiX}1≤i≤m

are both fully integrable systems.

(ii) (0, . . . , 0, ζd+1, . . . , ζn)τ is a solution of A whenever
(ζd+1, . . . , ζn)τ is a solution of D.

(iii) For any solution (η1, . . . , ηd)τ of B in an orthogonal ∆-
extension of F , there exists an orthogonal ∆-extension
of F containing η1, . . . , ηd as well as ηd+1, . . . , ηn such
that (η1, . . . , ηn)τ is a solution of A.

Proof. LetX = (z1, . . . , zd)τ and Y = (zd+1, . . . , zn)τ . The
system A can then be rewritten into a homogeneous system
and an inhomogeneous system:{

∂i(X) = BiX,
∂i(Y ) = DiY + CiX,

for 1 ≤ i ≤ m. (6)

Since A is fully integrable, the matrices Ai satisfy (2) and Aj

is invertible for j > `. Hence, the Bj and Dj for j > `
must also be invertible since det(Aj) = det(Bj) det(Dj). In
addition, a routine calculation shows that for all i, j,

σi(Aj)Ai + δi(Aj) =(
σi(Bj)Bi + δi(Bj) 0

σi(Cj)Bi + σi(Dj)Ci + δi(Cj) σi(Dj)Di + δi(Dj)

)
,

(7)

which implies that the Bi and Di also satisfy the compat-
ibility conditions (2). Therefore B and D are both fully
integrable. The first statement is proved. The second is
immediate from (6).

From Theorem 1, there exist an orthogonal ∆-extension E
of F and a fundamental matrix U with entries in E for D.
Let η = (η1, . . . , ηd)τ be a solution of B in some orthogo-
nal ∆-extension R of F . Viewing E and R as commutative
F -algebras, we can extend the δi and σj to the commuta-
tive E-algebra E ⊗F R via δi(e⊗ r) = δi(e)⊗ r + e⊗ δi(r)
and σj(e ⊗ r) = σj(e) ⊗ σj(r) for i ≤ ` and j > `. Then
(1⊗ η1, . . . , 1⊗ ηd)τ is also a solution of B, so, replacing R
by E⊗F R, we can assume without loss of generality that R
contains E. Substitute η into (6) to get ∂i(Y ) = DiY+Ciη
for each i. Let v = (v1, . . . , vn−d)τ , where the vk are dis-
tinct indeterminates over R, and G = R[v1, . . . , vn−d]. We
extend the δi and σj to G via δi(v)=bi and σj(v)=v + bj
where b1, . . . , bm ∈ Rn−d are given by bi = U−1Ciη for i ≤ `
and bj = U−1Dj

−1Cjη for j > `.
To turn G into an orthogonal ∆-extension of R, all the δi

and σj on G should commute, which is equivalent to the
following integrability conditions: δi(bj) = δj(bi), for 1 ≤ i, j ≤ `,

δi(bj) = σj(bi)− bi, for i ≤ `, j > `,
σi(bj)− bj = σj(bi)− bi, for `+ 1 ≤ i, j ≤ m.

(8)

Although the conditions (8) are generally not satisfied for
arbitrary bi’s, we show that they are satisfied in our case.
Since the Ai satisfy the compatibility conditions (2), it fol-
lows from the bottom-left block in (7) that, for all i, j,

σi(Cj)Bi+σi(Dj)Ci+δi(Cj)=σj(Ci)Bj+σj(Di)Cj+δj(Ci).
(9)

For 1 ≤ i, j ≤ `, we have

δi(bj) = δi

(
U−1Cjη

)
= −U−1δi(U)U−1Cjη+U

−1δi(Cj)η+U
−1Cjδi(η)

= −U−1 (DiCj − δi(Cj)− CjBi) η ,

which, together with σi = σj = 1 for 1 ≤ i, j ≤ `, and (9)
implies δi(bj) = δj(bi). The last two integrability condi-
tions in (8) are verified with similar calculations, using the
fact that the Di satisfy the compatibility conditions (2).
Therefore G is an orthogonal ∆-extension of R, hence of F .
Let ζ = Uv ∈ Gn−d. Then, for i ≤ `,

∂i(ζ) = δi(ζ) = δi(U)v+Uδi(v) = DiUv+Ubi = Diζ+Ciη,

and, for j > `,

∂j(ζ) = σj(ζ) = σj(U)σj(v) = DjU(v + bj) = Djζ + Cjη.

So (ητ , ζτ )τ is a solution of the initial system A. 2

We point out here (but omitting the detailed explanation)
that in the differential case, the quotient systems of [7] yield
an alternative approach to completing solutions of factors.

Example 2. Let F , δx and σk be as in Example 1, and
consider the fully integrable system{

δx(Z) =

(
Bx 0
Cx Dx

)
Z, σk(Z) =

(
Bk 0
Ck Dk

)
Z

}
(10)



where Z = (z1, z2, z3)
τ , Bx = x+k

x
, Bk = (k+1)x

k
,

Cx =

 2x2−k2+2x−kx
x(x−k)

x3−x2k+2x2−kx+2x−k2

(x−k)x

 ,

Ck =

 (k+1)(x3−2x2k−3x2+k2x+4kx+x−k2)

k(x−k−1)2

x2(k+1)
k

− (k+1)(x−k)2

k(x−k−1)2
− xk(x− 1)

 ,

and

Dx=

( −2−x+k
x−k

0

−2x−x2+k2

(x−k)x
k
x

)
, Dk=

 (k+1)(x−k)2

k(x−k−1)2
0

(k+1)(x−k)2

k(x−k−1)2
− kx xk

 .

We complete the solution η1 = kexxk of the system given
by Bx and Bk to a solution of (10). Note that

U =

(
0 ke−x

(x−k)2

Γ(k)xk ke−x

(x−k)2

)

is a fundamental matrix for the system given by Dx and Dk.
By the proof of Theorem 3, we let

b1 =

(
kx

Γ(k)
ex

(x− k)(2x2 − k2 + 2x− kx)xk−1e2x

)
,

b2 =

(
x+kx+k2−xk2−k−1

Γ(k+1)
ex

(x3 − 2kx2 − 3x2 + k2x+ 4kx+ x− k2)xke2x

)
.

We find that

v =

(
Γ(k)−kex+xkex

Γ(k)

xk+2e2x − 2xk+1ke2x + xkk2e2x + 1

)

satisfies δx(v) = b1 and σk(v)− v = b2. Therefore,

(
η1

U−1v

)
=

 kexxk

kexxk + ke−x

(x−k)2

xk+1kex + ke−x

(x−k)2
+ Γ(k)xk


is a solution of (10).

Theorem 3 also yields fundamental matrices for reducible
systems. Let {∂i(Z) = AiZ}1≤i≤m be a fully integrable sys-
tem where the Ai are as in (5). Suppose that U=(uij)∈Rd×d

and V ∈ E(n−d)×(n−d) are fundamental matrices for the
systems {∂i(X)=BiX}1≤i≤m and {∂i(X)=DiX}1≤i≤m re-
spectively, where R and E are orthogonal ∆-extensions of F .
As in the procedure of completing solutions, we can assume
without loss of generality that R contains E. Then a funda-
mental matrix for the initial system can be constructed as
follows: for each 1 ≤ i ≤ d, following the procedure of com-
pleting solutions, we can find an orthogonal ∆-extension Gi

of R and ξi ∈ Gn−d
i such that (u1i, . . . , udi, ξ

τ
i )τ ∈ Gn

i is
a solution of {∂i(Z) = AiZ}1≤i≤m. Viewing all the entries
of U , V and the ξi as elements of G = G1 ⊗F · · · ⊗F Gd,

W =

(
U 0

ξ1 . . . ξd V

)
∈ Gn×n is easily seen to be a

fundamental matrix for {∂i(Z) = AiZ}1≤i≤m (it is invert-
ible because det(W ) = det(U) det(V )).

5. MODULES AND PICARD-VESSIOT
RINGS FOR GENERAL LINEAR
FUNCTIONAL SYSTEMS

We now generalize the previous notions and results to
systems of the form A(Z) = 0 where A is a matrix of lin-
ear operators. As in previous sections, let (F,Φ, `) be an
orthogonal ∆-field and S = F [∂1;σ1, δ1] · · · [∂m;σm, δm] be
the corresponding Ore algebra [4]. In the differential case,
an S-module is classically associated to such a system [8, 11].
In the difference case, however, S-modules do not have ap-
propriate dimensions, so modules over Laurent algebras are
used instead [9, 10, 13]. It is therefore natural to introduce in
our setting the following extension of S: let θ`+1, . . . , θm be
indeterminates independent of the ∂i. Since the σ−1

j are also

automorphisms of F , S = S[θ`+1;σ
−1
`+1,0] · · · [θm;σ−1

m ,0] is

also an Ore algebra. Since (∂jθj)a = ∂jσ
−1
j (a)θj = a∂jθj for

any j > ` and any a ∈ F , ∂jθj is in the center of S. There-
fore the left ideal I =

∑m
j=`+1 S(∂jθj−1) is a two-sided ideal

of S, and we call the factor ring R=S/I the Laurent-Ore al-
gebra generated by Φ over F . Writing ∂−1

j for the image
of θj in R, we can also write R (by convention) as

R := F [∂1;1, δ1] · · · [∂`;1, δ`]
[∂`+1, ∂

−1
`+1;σ`+1,0] · · · [∂m, ∂

−1
m ;σm,0]

and view it as an extension of S. For linear ordinary differ-
ence equations, R = F [σ, σ−1], is the algebra used in [10].
For linear partial difference equations with constant coef-
ficients, R is the Laurent polynomial ring used in [9, 13].
Laurent-Ore algebras allow us to construct fundamental ma-
trices and Picard-Vessiot extensions for linear functional sys-
tems of finite linear dimension, a concept that we now define
precisely.

For our purposes, a linear functional system is a ma-
trix A=(aij) ∈ S p×q ⊂ R p×q. For any R-module N , we
can associate to A a CF -linear map λ : Nq → Np given by

ξ :=

 ξ1
...
ξq

 7→ Aξ =


∑q

j=1 a1jξj

...∑q
j=1 apjξj

 .

We therefore say that ξ ∈ Nq is a solution “in N” of the
system A(Z) = 0 if A(ξ) = 0, and write solN (A(Z) = 0) for
all its solutions in N . Clearly, solN (A(Z) = 0) is a vector
space over CF .

As in the case of D-modules [8], we can associate to A
an R-module as follows: the matrix A ∈ Rp×q induces
the R-linear map ρ : R1×p → R1×q given by ρ(r1, . . . , rp) =
(r1, . . . , rp)A. Let M = coker(ρ) = R1×q/R1×pA, which is
simply the quotient of R1×q by the submodule generated by
the rows of A. Then

R 1×p ρ−→ R 1×q π−→M −→ 0 (11)

is an exact sequence of R-modules where π : R 1×q → M is
the canonical map. For every s ≥ 1 and 1 ≤ i ≤ s, let eis

be the unit vector in R 1×s with 1 in the ith position and
0 elsewhere. Then e1p, . . . , epp and e1q, . . . , eqq are canoni-
cal bases of R 1×p and R 1×q, respectively. Set ej = π(ejq)
for 1 ≤ j ≤ q. Since π is surjective, e1, . . . , eq generate M



as an R-module. Since ρ(eip) is the i-th row of A, we have

0 = π(ρ(eip)) = π

(
q∑

j=1

aijejq

)
=

q∑
j=1

aijπ(ejq) =

q∑
j=1

aijej ,

for 1 ≤ i ≤ p, which implies that (e1, . . . , eq)
τ is a solution

of A(Z) = 0 in M .
Given two R-modules N1 and N2, let HomR(N1, N2) de-

note the CF -vector space of all the R-linear maps from N1

to N2. We next show that the proof of Proposition 1.1 of [8]
remains valid when D is replaced by R.

Theorem 4. Let M=R1×q/R1×pA. Then solN (A(Z)=0)
and HomR(M,N) are isomorphic as CF -vector spaces for
any R-module N .

Proof. Applying the functor HomR(·, N) to the exact se-
quence (11) of CF -vector spaces and using the isomorphism
HomR(R 1×s, N) → Ns given by f 7→ (f(e1s), . . . , f(ess))

τ ,
we get the exact sequence:

0 −→ HomR(M,N)
π∗−→ Nq λ−→ Np,

in which π∗(f) = (f(e1), . . . , f(eq))
τ and λ ((n1, . . . , nq)

τ ) =
A(n1, . . . , nq)

τ for n1, . . . , nq in N . Since π∗ is injective,
HomR(M,N) ' Im(π∗)=ker(λ)=solN (A(Z)=0). 2

Theorem 4 reveals that e := (e1, . . . , eq)
τ ∈ Mq is a

“generic” solution of the system A(Z) = 0 in the sense that
any solution of A(Z) = 0 is the image of e under some ho-
momorphism. This means that M describes the properties
of all the solutions of A(Z) = 0 “anywhere”. So we define

Definition 4. Let A ∈ Sp×q ⊂ Rp×q. We call the R-
module

M = R1×q/R1×pA

the module of formal solutions of the system A(Z) = 0. The
dimension of M as an F -vector space is called the linear
dimension of the system. The system is said to be of finite
linear dimension if 0 < dimF M < +∞.

Note that we choose to exclude systems with dimF M = 0
in our definition since such systems cannot have nonzero so-
lutions in any R-module (which includes all orthogonal ∆-
extensions of F ). The next lemma is used to describe mod-
ules of formal solutions for finite-rank left ideals in S ([6]).

Lemma 2. Let J be a left ideal of S. Assume that J does
not contain any monomial in ∂`+1, . . . , ∂m, and that S/J is
finite dimensional over F . Let I be the left ideal generated
by J in R and J̄ = I ∩ S. Then S/J̄ and R/I are isomor-
phic as vector spaces over F . In particular, R/I is finite
dimensional over F .

Proof. Let H be the set of all monomials in ∂`+1, . . . , ∂m.
Since every element of H is invertible in R,

J̄ = {a ∈ S |ha ∈ J for someh ∈ H}. (12)

Since J ⊂ J̄ , dimF

(
S/J̄

)
is finite. Let fj be a nonzero

polynomial in F [∂j ] ∩ J̄ with minimal degree for j > `.
Then each fj is of positive degree with a nonzero coefficient
of ∂0

j = 1, for otherwise, J̄ would contain 1, and, hence, J
would have a nonempty intersection with H by (12), a con-
tradiction to our assumption. Since ∂−1

j fj ∈ I, ∂−1
j is con-

gruent to an element of F [∂j ] modulo I. It follows that

every element of R is congruent to an element of S mod-
ulo I (note that every element of R can be written as an
element of S multiplied by the inverse of an element of H
from the right-hand side).

Let φ be the map from S/J̄ to R/I that sends a + J̄
to a + I for a ∈ S. The map is well-defined, injective and
linear over F because J̄ = S ∩ I. By the conclusion made
in the previous paragraph, for every element (b+ I) of R/I
with b ∈ R, there exists b′ in S such that b ≡ b′ mod I.
Thus φ

(
b′ + J̄

)
= b+ I. The map φ is surjective. 2

Example 3. Consider a p×1 matrix A = (L1, . . . , Lp)τ ,
where the Li are in S. The system A(z) = 0 corresponds to
scalar equations L1(z) = · · · = Lp(z) = 0, whose R-module
of formal solutions is M = R/ρ(R1×p) = R/I, where I is the
left ideal

∑p
i=1RLi of R. Let J be the left ideal

∑p
i=1 SLi

of S. Then, by Lemma 2, dimF M is finite if dimF S/J is
finite and J contains no monomial in ∂`+1, . . . , ∂m.

Consider the case ` = 0 and m = 2. If J is S(∂1 + 1),
then dimF (M) is not finite. On the other hand, if J is equal
to S(∂1∂2(∂1 + 1)) + S(∂1∂2(∂2 + 1)), then dimF S/J is not
finite, but dimF M = 1, because I = R(∂1 + 1) +R(∂2 + 1).

Example 4 (Integrable systems). Let A1,. . . , Am

be in Fn×n, 1n be the identity matrix in Fn×n and

A =

 ∂1 · 1n −A1

...
∂m · 1n −Am

 ∈ Smn×n .

The system A(Z) = 0 corresponds to {∂i(Z) = AiZ}1≤i≤m,
which is not necessarily fully integrable. Let M be its module
of formal solutions and e = (e1, . . . , en)τ ∈Mn be as above.
Then A(e) = 0 implies that ∂ie = Aie for each i. Since
the entries of Ai are in F , ∂iej ∈

∑n
s=1 Fes for all i, j, and

thus Rej ⊂
∑n

s=1 Fes for all j. Hence M =
∑n

s=1Res =∑n
s=1 Fes. In particular, dimF M ≤ n.

To check in practice whether a system is of finite linear
dimension, we need to compute dimF M . As seen in Ex-
ample 4, when the system is given as an integrable sys-
tem, we have a set of generators for M over F , so com-
puting dimF M can be done by linear algebra over F as
in Example 5. Note that in the purely differential case, we
have dimF M = n if the matrices Ai satisfy (2), dimF M = 0
otherwise. When the system is given by an ideal in S, then
Lemma 2 shows that either M = 0 (if the ideal contains
a monomial in ∂`+1, . . . , ∂m) or an F -basis of M can be
computed via Gröbner bases of S-modules. There are algo-
rithms and implementations for this task [3, 4]. For more
general matrices A ∈ Sp×q, computing an F -basis of M in-
volves computing Gröbner bases ofR-modules. In the purely
differential case, this is again Gröbner bases of S-modules.
When difference operators are involved, the algorithms de-
veloped in [9, 13] for pure difference equations with constant
coefficients are generalized in [12] to produce Gröbner bases
of R-modules.

Let A ∈ Sp×q and M be the R-module of formal solutions
for A(Z)= 0. Suppose that dimF M = n and b1, . . . , bn form
a basis of M over F . Then, for b := (b1, . . . , bn)τ there ex-
ists Bi ∈ Fn×n such that ∂i(b) = Bib for each i. We can
regard M as the module of formal solutions for the inte-
grable system {∂i(X) = BiX}1≤i≤m. Indeed, suppose we
find, as described in Example 4, its module MB of formal



solutions and f := (f1, . . . , fn)τ such that MB =
∑n

s=1 Ffs

and ∂i(f) = Bif for each i. Since b ∈ Mn is a solution
of {∂i(X) = BiX}1≤i≤m, there exists ϕ ∈ HomR(MB ,M)
such that b = ϕ(f) by Theorem 4. Since the bi are linearly
independent over F , so are the fi. Hence MB = ⊕n

s=1Ffs

and ϕ is an isomorphism of R-modules.
Since ∂i and ∂j commute for any i and j, ∂i(∂j(b)) =

∂j(∂i(b)). From ∂i(b) = Bib and the linear independence
of b1, . . . , bn over F , it follows that

σi(Bj)Bi + δi(Bj) = σj(Bi)Bj + δi(Bj), 1 ≤ i, j ≤ m,

i.e.B1, . . . , Bm satisfy the compatibility conditions (2). Sup-
pose that Bt is singular for some t > `. Then, there exists
a nonzero v ∈ F 1×n such that vBt = 0 and thus v∂t(b) =
vBtb = 0. Since M is an R-module on which ∂−1

t acts, we
have 0 = ∂−1

t (v∂t(b)) = σ−1
t (v)∂−1

t (∂t(b)) = σ−1
t (v)b, which

implies that b1, . . . , bn are linearly dependent over F , a con-
tradiction. So the Bj are invertible for ` + 1 ≤ j ≤ m and
the system {∂i(X) = BiX}1≤i≤m is fully integrable. We
call it2 the fully integrable system associated to M w.r.t. the
basis b1, . . . , bn.

Since any orthogonal ∆-extension E of F is turned into
an R-module via the action ∂i(e) = δi(e) for i ≤ ` and
∂i(e) = σi(e) for i > `, solE(A(Z) = 0) is well-defined. We
now set up a correspondence between the solutions in E of
A(Z) = 0 and those of its associated fully integrable system.

Proposition 2. Let A(Z) = 0 with A ∈ Sp×q be a sys-
tem of finite linear dimension, M be its module of formal
solutions, e1, . . . , eq be R-generators for M and b1, . . . , bn
be an F -basis of M such that A(e1, . . . , eq)

τ = 0 and

∂i(b1, . . . , bn)τ = Bi(b1, . . . , bn)τ for each i .

Let P ∈ F q×n be given by (e1, . . . , eq)
τ = P (b1, . . . , bn)τ .

Then, for any orthogonal ∆-extension E of F , the corre-
spondence ξ 7→ Pξ is an isomorphism of CE-modules be-
tween solE({∂i(X) = BiX}1≤i≤m) and solE(A(Z) = 0).

Proof. To simplify notation, we denote solE(A(Z)=0) and
solE({∂i(X) = BiX}1≤i≤m) by WA and WB , respectively.
Write e = (e1, . . . , eq)

τ and b = (b1, . . . , bn)τ . According to
Theorem 4, for any ξ ∈ WB , there exists ϕ ∈ HomR(M,E)
such that ξ = ϕ(b). Hence

A(Pξ) = A(Pϕ(b)) = ϕ(A(Pb)) = ϕ(A(e)) = 0,

so Pξ belongs to WA. Thus the correspondence ξ 7→ Pξ is
a homomorphism of CE-modules from WB to WA.

For every η ∈WA there exists ψ ∈ HomR(M,E) such that
η = ψ(e) = ψ(Pb) = Pψ(b). The correspondence ξ 7→ Pξ
is then surjective, because ψ(b) belongs to WB . If ξ ∈ WB

and Pξ = 0, then there exists ϕ ∈ HomR(M,E) such that
ξ = ϕ(b). Hence 0 = Pξ = ϕ(Pb) = ϕ(e). It follows that ϕ
maps everything to 0 as M is generated by e1, . . . , eq over R.
Thus ξ = 0 and the correspondence is bijective. 2

Definition 5. Let A,M, b1, . . . , bn and P be as in Propo-
sition 2. A q × n matrix V with entries in an orthog-
onal ∆-extension E of F is called a fundamental matrix
for A(Z) = 0 if V = PU where U ∈ En×n is a funda-
mental matrix of the fully integrable system associated to M
w.r.t. the basis b1, . . . , bn.

A Picard-Vessiot ring for any fully integrable system as-
sociated to M is called a Picard-Vessiot ring for A(Z) = 0.

2It is also called an integrable connection.

Although this is not stated in the definition, it follows from
Proposition 2 that the columns of a fundamental matrix
form a CE-basis of the CE-module solE(A(Z) = 0): de-
note solE(A(Z)=0) and solE({∂i(X) = BiX}1≤i≤m) by WA

and WB respectively. Then the columns of V = PU are
in WA by Proposition 2. Let c ∈ Cn×1

E be such that 0=V c =
PUc. Since Uc ∈ WB , we have Uc = 0 by Proposition 2,
hence c=0 since U is invertible. Thus the columns of V
are linearly independent over CE . For any η ∈ WA there
exists ξ ∈ WB such that η = Pξ. By Proposition 1 there
exists c ∈ Cn×1

E such that ξ = Uc. Hence η = PUc = V c.
Let b1, . . . , bn and d1, . . . , dn be two bases of M over F .

Write b = (b1, . . . , bn)τ and d = (d1, . . . , dn)τ , and let T ∈
GLn(F ) be given by d = Tb. For each i, let Bi, Di ∈ Fn×n

be such that ∂i(b) = Bib and ∂i(d) = Did. If E is a Picard-
Vessiot ring for {∂i(X) = BiX}1≤i≤m and U ∈ En×n is a
corresponding fundamental matrix, then TU is a fundamen-
tal matrix for {∂i(Y ) = DiY }1≤i≤m by Theorem 4, so E is
a Picard-Vessiot ring for that system too. This justifies the
second part of Definition 5.

As a final consequence of Theorems 1 and 2, we have

Theorem 5. Every system A(Z)=0 of finite linear di-
mension has a fundamental matrix and has a Picard-Vessiot
ring E. If F has characteristic 0 and CF is algebraically
closed, then CE = CF .

Proof. Let A ∈ Sp×q be such that A(Z) = 0 is of finite lin-
ear dimension n > 0, M be its module of formal solutions,
e1, . . . , eq be R-generators for M and b1, . . . , bn be an F -
basis of M such that A(e1, . . . , eq)

τ=0 and ∂i(b1, . . . , bn)τ =
Bi(b1, . . . , bn)τ for each i. Let P ∈ F q×n be given by
(e1, . . . , eq)

τ = P (b1, . . . , bn)τ . Since {∂i(X) = BiX}1≤i≤m

is a fully integrable system, there exists, by Theorem 1, a
fundamental matrix U ∈ En×n for that system where E is
some orthogonal ∆-extension of F . Then V := PU ∈ Eq×m

is a fundamental matrix for A(Z) = 0. The existence of the
Picard-Vessiot ring and the second statement follow directly
from Theorem 2. 2

Assume that F has characteristic 0 with an algebraically
closed field of constants. Let E be a Picard-Vessiot ring
for the system A(Z) = 0. As mentioned after Theorem 2,
solE({∂i(X) = BiX}1≤i≤m) is of dimension n over CF . But
that space is isomorphic to solE(A(Z) = 0) by Proposition 2.
Therefore the dimension of solE(A(Z) = 0) as a CF -vector
space equals n, the linear dimension of A(Z) = 0.

Example 5. Let F , δx and σk be as in Example 1, and
the system A is given by

Ax=


x+1

x
k(x+1−k)

x2(k−1)
− k(x+1−k)

x2(k−1)

x+ 1 xk−k2+2x2+kx2+k−1
x(k−1)

−xk−k2+2x2+kx2

x(k−1)

x+ 1 xk+2x2+kx2−2k2+k
x(k−1)

−xk+2x2+kx2−2k2+1
x(k−1)

 ,

Ak =


k+1

k
k+1−xk−x

x(k−1)
xk+x−k−1

x(k−1)
x(k+1)

k
1−2x+k−xk+x3

k−1
2x+xk−x3−k−1

k−1
x(k+1)

k
1−2xk−2x+k+x3

k−1
2xk+2x−k−x3−1

k−1

 .

Note that Ax and Ak satisfy the compatibility conditions (2)
but Ak is singular, so the system is not fully integrable.
Let S = [∂x;1, δx][∂k;σk,0] and R be the corresponding
Laurent-Ore algebra. Let A ∈ S6×3 be the matrix corre-
sponding to the system given by Ax and Ak (see Exam-
ple 4), M = R1×3/R1×6A be the module of formal solutions



for the system A(Z) = 0, and {e1, e2, e3} be a set of R-
generators of M such that ∂x(e1, e2, e3)

τ = Ax(e1, e2, e3)
τ

and ∂k(e1, e2, e3)
τ = Ak(e1, e2, e3)

τ . Solving the linear sys-
tem (v1, v2, v3)Ak = 0 over F , we see that Ak has rank 2,
and ∂k(e1), ∂k(e2) and ∂k(e3) are linearly dependent over F
(so are e1, e2 and e3 by an application of ∂−1

k ). A nontrivial
solution of (v1, v2, v3)Ak = 0 and an application of ∂−1

k yield e1
e2
e3

 =

 1 0
0 1

x(k−1)

x2−1
x2−k
x2−1


︸ ︷︷ ︸

P

(
e1
e2

)
,

which, together with Ax and Ak, implies that ∂x(e1, e2)
τ =

Bx(e1, e2)
τ and ∂k(e1, e2)

τ = Bk(e1, e2)
τ where

Bx =

(
−x+x3−1+x2−xk−k+k2

x(x2−1)

k(x+1−k)

x2(x2−1)
−x−xk+x3−1−x2+k2−kx2

x2−1
−k2+xk+kx2+3x2−1

x(x2−1)

)
,

Bk =

(
xk+x+k2+2k+1

k(x+1)
− k+1

x(x+1)

− (kx2−x−k2−2k−1)x
k(x+1)

x2+x−1−k
x+1

)
.

Since Bk is invertible, the system B given by Bx and Bk is
fully integrable, and, hence, e1 and e2 form an F -basis of M .
The same method to construct a fundamental matrix for the
system in Example 1 yields a fundamental matrix for B:

U =

(
xkex −kxk

kx2ex (x2 − k − 1)xk+1

)
,

hence PU is for A. In addition, a Picard-Vessiot ring of B
is a Picard-Vessiot ring of A.
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Université de Nice, expected 2005.

[13] Zampieri, S. A solution of the Cauchy problem for
multidimensional discrete linear shift-invariant
systems. Linear algebra and appl. 202 (1994), 143–162.


