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ABSTRACT

This paper presents a two-steps algorithm to perform an
unsupervised extraction of line networks from satellite im-
ages, within a stochastic geometry framework. First, we
propose a new operator providing a measure of the possi-
bility of linear structure presence on each image pixel. Sec-
ond, we propose a Bayesian model in order to extract the
line network from the operator output. The prior model, a
Markov object process, incorporates the topological prop-
erties of the network through interactions between objects,
while the line operator answers are taken into account in the
likelihood. Optimization is realized by simulated anneal-
ing using a RJMCMC algorithm. An application to hydro-
graphic network extraction is presented.

1. INTRODUCTION

Our purpose is to provide an algorithm for line network ex-
traction from satellite images. The final application would
be either the production or the update of geographical data.
A wide variety of methods have been developed to answer
this difficult problem, in particular for the case of road net-
work extraction. One possibility is to consider a semi-au-
tomatic approach where an operator gives some checking
points [1, 2, 3, 4] in order to initialize a road tracking algo-
rithm. This approach can be extended to a fully-automatic
one by an automatic detection of road seeds [5, 6]. Such
methods are strongly sensitive to the road seed initializa-
tion. In [7], a Markov random field on graph is initialized
by a pre-detection of linear features. Here, we propose to
perform a pre-processing on the satellite image I providing
an output image YI where each value measures the possibil-
ity of the presence of a line structure on the corresponding
pixel of the satellite image. Those values are then consid-
ered as noisy data. This is less restrictive than the previous
methods because the pre-processing does not initialize some
fixed structures or fixed seeds.
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The line network is modeled by a Markov object pro-
cess, that is to say a random set of objects whose num-
ber of points is also a random variable (almost surely fi-
nite). The objects of this process are segments described
by three random variables corresponding to their midpoint,
their length and their orientation. Interactions between seg-
ments are taken into account in the prior density hp of the
process, which allows to incorporate constraints on the net-
work topology, such as continuity or slight curvature. Such
prior models have been proposed in [8, 9] for road extrac-
tion. We choose to take as prior the "Quality Candy" model
proposed in [9], which uses quality coefficients for interac-
tions between objects to better model the curvature and the
junctions of the network. Contrary to previous works [8, 9]
where the likelihood of the observations was replaced by a
data term, our approach is Bayesian. Indeed, the likelihood
hd of YI given the configuration of segments S can be de-
fined as:

hd(YI/S) = hd(YI/XS)

where XS is a binary image induced by S. Our aim is thus
to determine the set of segment S∗ which maximizes the
posterior density defined by:

f(S/YI) ∝ hp(S)hd(YI/S) (1)

Section 2 explains how to obtain the data field YI . After
a recall on the prior density hp in Section 3, the likelihood
hd is given in Section 4. The optimization - described in
Section 5 - is conducted via a simulated annealing. This
algorithm is finally tested in Section 6 on a hydrographic
network.

2. DETECTING LINEAR STRUCTURE PRESENCE

We aim to assign to each pixel of the satellite image a value
measuring the possibility of belonging to the line network.
To achieve this task, we propose a new operator based on
the two usual assumptions made for road extraction:



• H1: The grey level variation between the structure
and the nearby background is large.

• H2: The grey level inside the structure is homoge-
neous.

For a given number of orientations, we consider a mask
of pixels composed of an inside region V (which contains
a fixed number of strips) and two collinear regions corre-
sponding to the nearby background. These two regions are
positioned at a distance d from V in order to allow a range
of widths of the linear structure. An example of a mask is
given in Figure 1 for the orientation 0. Let Mi,l be the mask
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Fig. 1. Mask of pixels for the orientation 0.

of orientation θl positioned at pixel i. Student’s t-tests are
used to determine if the averages of the different regions
of Mi,l are significantly different. H1 and H2 are checked
computing respectively TH1

(i, l), the minimum test value
between V and the two external regions, and TH2

(i, l), the
maximal test value between two internal strips. In order to
measure conjointly H1 and H2 for the mask Mi,l, we com-

pute the following statistical value t(i, l) =
TH1

(i,l)

max{1 , TH2
(i,l)} .

Then, we perform a thresholding of t(i, l) between t1 and t2
and a conversion from [t1, t2] to [0, 1]. For each pixel j be-
longing to V (i, l), the value t(i, l) is placed in a list of val-
ues L(j) associated to j. After performing this procedure
for each orientation and each pixel, we assign to each yk of
YI the maximum of the values contained in L(k). This pro-
cedure defines an operator, called “Student Linear Structure
Presence” (SLSP) operator. Let note that yk will be one as
soon as a mask containing k strongly supports H1 and H2;
it will be zero if any mask containing k does not verify the
two hypotheses.

3. PRIOR MODEL

The prior model is a Markov object process specified by
a density with respect to a uniform Poisson process. The
latter corresponds to completely random process (points,
lengths and orientations are uniformly and independently
distributed) and whose number of points follows a Poisson
law. The chosen model, called “Quality Candy” model [9],
is based on two relations between segments of the configu-
ration S: connection and proximity. Firstly, free segments
(not connected) and single segments (connected by only one
endpoint) are penalized by a constant positive potential in

order to avoid false alarms and to favor line network exten-
sion. Secondly, a connection will be more or less favored
according to the continuity and the local curvature of the
network. Thirdly, all segment pairs verifying the proximity
relation are more or less penalized by a positive potential in
order to avoid pairs of segments whose midpoints and orien-
tations are too close and to forbid nearby parallel segments
(infinite potential in the latter case). So, the prior density
can be written as follows:

hp(S) ∝ exp(−Up(S)) (2)

where Up(S) is the prior energy equal to a weighted sum of
potentials computed on the configuration S:

Up(S) = ω1nf + ω2ns + ω3

∑

p∈C

gc(p) + ω4

∑

p∈P

gp(p)

where the ωi,i=1..4 are constant positive weights, nf (resp.
ns) the number of free (resp. single) segments, C (resp.
P) the set of pairs of segments which verify the relation of
connection (resp. proximity), and gc (resp. gp) the potential
function corresponding to the connection (resp. the prox-
imity) taking his values in [-1,0] for a connection of good
quality and in [0,1] otherwise (resp. taking his values in
[0,1]).

4. LIKELIHOOD

The output YI of the SLSP operator (cf. Section 2) applied
to the satellite image I , is considered as a noisy data image.
The hidden image corresponds to the Boolean image XS

where a pixel takes the value 1 when it belongs to (at least) a
mask of pixels associated to a segment of S and 0 otherwise.
We suppose that:

YI = XS + B

where B is the noise process, defined as follows:

B(i) =

{
|Z(i)| if XS(i) = 0
B(i) = −|Z(i)| if XS(i) = 1

where Z is a white Gaussian process of variance σ. The
likelihood of YI can thus be written as follows:

hd(YI/S) =

N∏

j=1

p(B(j)/XS(j))
︸ ︷︷ ︸

2 p(Z(j))

hd(YI/S) =

(

2

√

λd

π

)N P∏

j=1

exp
(
−λd (yj − XS(j))2

)

(3)
where N is the number of pixels and λd = 1

2σ2 .



5. OPTIMIZATION

5.1. Parameter calibration

The line network minimizing the posterior energy:

U(S/YI) = Up(S) + λd

∑

j

(YI(j) − XS(j))2 (4)

has to verify topological constraints. These constraints can
be expressed as constraints on the energy parameters, λd

and ωi,i=1..4.
Firstly, replacing two connected single segments by a

free segment - whose mask covers the same pixels as the
masks associated with the two single segments - must not
induce an energy difference because the hidden image would
be the same:

2w2 − w3 = w1 (5)

Secondly, we impose that the optimal network does not
contain any free segment whose associated mask is com-
posed of less than nm pixels. That provides:

w1 − λd nm ≥ 0 (6)

Note that equation (6) implies:

λd nm ≤ 2 w2 (7)

which implies that the energy decreases when adding a dou-
ble segment of minimal quality linking two single segments
through connections with a negative potential. A segment of
minimal quality is defined as a segment which does not ver-
ify the proximity relation and whose number of mask pixel
values equal to zero is lower than nm.

Thirdly, the optimal segment configuration is not sup-
posed to contain superpositions of segments. This constraint
is verified as soon as ω4 > 0 due to the “hard-core” (infi-
nite) potential imposed on the relation of proximity.

Finally, our segment mask is composed of three strips
and we have chosen to take nm = 40 pixels. Taking λd =
0.025, we choose to assign to w1 the lower boundary of
values satisfying equation (6): w1 = 1. Choosing w2 = 0.7,
we have w3 = 0.4 by equation (5). The chosen positive
value for w4 is 1.

5.2. MAP Estimation

We aim to find a configuration of segments S∗ which max-
imizes the posterior density f :

S∗ = arg max
S∈
⋃
∞

n=0
Ωn

f(S/YI) (8)

where Ωn is the set of configurations of n segments and f
is given by equation (1). This is a non convex problem for
which a direct optimization is not possible given the large

size of the state space. We propose to estimate this maxi-
mum a posteriori by a simulated annealing embedded in a
Reversible Jump Monte Carlo Markov Chain (RJMCMC)
algorithm.

The RJMCMC algorithm allows to sample the distribu-
tion π of a Markov object process specified by an unnor-
malized density. It consists of simulating a discrete Markov
Chain of invariant measure π which performs small jumps
between the spaces Ωi [10, 11]. This iterative algorithm
does not depend on the initial state (we consider here the
empty configuration). At each step, a transition from the
current state to a new state is proposed according to a propo-
sition kernel which is composed of several sub-kernels, each
corresponding to a reversible move, such as birth and death
of a segment or a symmetrical transformation of segment(s)
(ex: rotation). The transition is accepted with a probability
given by Green’s ratio.

The simulated annealing allows to access to the density
modes by performing successive simulations by RJMCMC
of processes specified by f 1/T , with T gradually dropping
to 0. Here, we propose to add a decrease temperature sched-
ule on the data weight. Let λd(t) be the value of this weight
at iteration t. We start with λd(0) larger than λd (= 0.025)
and perform a slight decrease by plateaus until the itera-
tion tf such that λd(tf ) = λd. In this way, a lot of free
segment fitting data could be accepted at the beginning of
the algorithm as many start points, whereas the constraint
of “no free segment” could be respected at the end of the
algorithm.

6. APPLICATION: RIVER EXTRACTION

This section presents extraction results on a satellite image
of Guinea provided by the BRGM (French Geological Sur-
vey) shown in Figure 2, where the sought-after cartographic
item is a riverine forest. The latter is a hydrographic net-
work, spotted by the presence of trees near rivers. Figure 2
presents the results obtained by our Bayesian approach and
by the previous method proposed in [9] (same prior but not
used within a Bayesian framework). We have a reference
network provided by the BRGM (Fig. 2(c)). A matching
of the two networks allow us to compute quantitative crite-
ria of performance, such as F , the false alarms ratio, and
O, the omission ratio, which are given for the two methods
in Figure 2. The two extracted line networks are contin-
uous with few omissions and false alarms in spite of the
low image contrast and the line network sinuosity. Working
within a Bayesian framework definitely improves the per-
formances (no omission, no break, low overdetection ratio).
Moreover, the computing time is reduced due to the use of a
pre-computing for the likelihood (which is possible thanks
to the SLSP operator) and the simple hypotheses we have
made on noise: YI was obtained in 1 minutes, (d) in 4 min-



(a) Satellite image I (b) YI (b) Reference (d) F ∼ 0% - O ∼ 11% (e) F ∼ 10% - O ∼ 14%

Fig. 2. Results of line network extraction from a satellite image - (a) original image (682 × 674 pixels, resolution: 20 m) -
(b) output of the SLSP operator - (c) reference line network, manually extracted by an expert (BRGM) - (d) extraction with
our Bayesian model (e) extraction with “Quality Candy” model with a data term instead of the likelihood.

utes and (e) in 20 minutes with a processor of 2 GHz.

7. CONCLUSION

We have proposed in this paper a relevant method to per-
form unsupervised line network extraction from satellite im-
age. The use of the SLSP operator based on statistical tests
seems to be adapted to the construction of data for our Baye-
sian Markov object model. The Maximum A Posteriori es-
timation provides a continuous, smooth extracted line net-
work with low omission and overdetection ratios, improv-
ing the results of [9]. The adding of a decrease schedule on
the data weight allows to accept a lot of free segments well-
positioned in the first iterations of the simulated annealing
and thus to arise algorithm performance. A parameter tun-
ing rule has been defined from geometrical constraints al-
lowing to easily fix the density parameters. Taking into ac-
count these constraints, we will focus in a near future on
the estimation of density parameters. Moreover, the pro-
posed stochastic modeling allows us to consider working in
a frame of data fusion in order to benefit from the contri-
bution of several sources (for instance, outputs provided by
different operators or multi-sensor data). Finally, this mod-
eling could be extended to more complex objects such as
broken lines which would adapt themselves more easily to
sinuous networks.
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