|
Publications sur remote sensing
Résultat de la recherche dans la liste des publications :
3 Articles |
1 - On the Illumination Invariance of the Level Lines under Directed Light: Application to Change Detection. P. Weiss et A. Fournier et L. Blanc-Féraud et G. Aubert. SIAM Journal on Imaging Sciences, 4(1): pages 448-471, mars 2011. Mots-clés : Level Lines, topographic map, illumination invariance, Change detection, contrast equalization, remote sensing.
@ARTICLE{SIIMS_2011,
|
author |
= |
{Weiss, P. and Fournier, A. and Blanc-Féraud, L. and Aubert, G.}, |
title |
= |
{On the Illumination Invariance of the Level Lines under Directed Light: Application to Change Detection}, |
year |
= |
{2011}, |
month |
= |
{mars}, |
journal |
= |
{SIAM Journal on Imaging Sciences}, |
volume |
= |
{4}, |
number |
= |
{1}, |
pages |
= |
{448-471}, |
url |
= |
{http://www.math.univ-toulouse.fr/~weiss/Publis/SIIMS_2011_Weiss.pdf}, |
pdf |
= |
{http://www.math.univ-toulouse.fr/~weiss/Publis/SIIMS_2011_Weiss.pdf}, |
keyword |
= |
{Level Lines, topographic map, illumination invariance, Change detection, contrast equalization, remote sensing} |
} |
Abstract :
We analyze the illumination invariance of the level lines of an image. We show that if the scene
surface has Lambertian reflectance and the light is directed, then a necessary and sufficient condition
for the level lines to be illumination invariant is that the three-dimensional scene be developable and
that its albedo satisfy some geometrical constraints. We then show that the level lines are “almost”
invariant for piecewise developable surfaces. Such surfaces fit most of the urban structures. This
allows us to devise a fast and simple algorithm that detects changes between pairs of remotely
sensed images of urban areas, independently of the lighting conditions. We show the effectiveness of
the algorithm both on synthetic OpenGL scenes and real QuickBird images. The synthetic results
illustrate the theory developed in this paper. The two real QuickBird images show that the proposed
change detection algorithm is discriminant. For easy scenes it achieves a rate of 85% detected changes
for 10% false positives, while it reaches a rate of 75% detected changes for 25% false positives on
demanding scenes.
|
|
2 - Geometric Feature Extraction by a Multi-Marked Point Process . F. Lafarge et G. Gimel'farb et X. Descombes. IEEE Trans. Pattern Analysis and Machine Intelligence, 32(9): pages 1597-1609, septembre 2010. Mots-clés : Shape extraction, Spatial point process, Geometrie stochastique, fast optimization, Texture, remote sensing.
@ARTICLE{pami09b_lafarge,
|
author |
= |
{Lafarge, F. and Gimel'farb, G. and Descombes, X.}, |
title |
= |
{Geometric Feature Extraction by a Multi-Marked Point Process }, |
year |
= |
{2010}, |
month |
= |
{septembre}, |
journal |
= |
{IEEE Trans. Pattern Analysis and Machine Intelligence}, |
volume |
= |
{32}, |
number |
= |
{9}, |
pages |
= |
{1597-1609}, |
url |
= |
{http://dx.doi.org/10.1109/TPAMI.2009.152}, |
keyword |
= |
{Shape extraction, Spatial point process, Geometrie stochastique, fast optimization, Texture, remote sensing} |
} |
Abstract :
This paper presents a new stochastic marked point process for describing images in terms of a finite library of geometric objects. Image analysis based on conventional marked point processes has already produced convincing results but at the expense of parameter tuning, computing time, and model specificity. Our more general multimarked point process has simpler parametric setting, yields notably shorter computing times, and can be applied to a variety of applications. Both linear and areal primitives extracted from a library of geometric objects are matched to a given image using a probabilistic Gibbs model, and a Jump-Diffusion process is performed to search for the optimal object configuration. Experiments with remotely sensed images and natural textures show that the proposed approach has good potential. We conclude with a discussion about the insertion of more complex object interactions in the model by studying the compromise between model complexity and efficiency. |
|
3 - Extended Phase Field Higher-Order Active Contour Models for Networks. T. Peng et I. H. Jermyn et V. Prinet et J. Zerubia. International Journal of Computer Vision, 88(1): pages 111-128, mai 2010. Mots-clés : Contour actif, Champ de Phase, Shape prior, Parameter analysis, remote sensing, Road network extraction.
@ARTICLE{Peng09,
|
author |
= |
{Peng, T. and Jermyn, I. H. and Prinet, V. and Zerubia, J.}, |
title |
= |
{ Extended Phase Field Higher-Order Active Contour Models for Networks}, |
year |
= |
{2010}, |
month |
= |
{mai}, |
journal |
= |
{International Journal of Computer Vision}, |
volume |
= |
{88}, |
number |
= |
{1}, |
pages |
= |
{ 111-128}, |
url |
= |
{http://www.springerlink.com/content/d3641g2227316w58/}, |
keyword |
= |
{Contour actif, Champ de Phase, Shape prior, Parameter analysis, remote sensing, Road network extraction} |
} |
Abstract :
This paper addresses the segmentation from an image of entities that have the form of a ‘network’, i.e. the region in the image corresponding to the entity is composed of branches joining together at junctions, e.g. road or vascular networks. We present new phase field higher-order active contour (HOAC) prior models for network regions, and apply them to the segmentation of road networks from very high resolution satellite images. This is a hard problem for two reasons. First, the images are complex, with much ‘noise’ in the road region due to cars, road markings, etc., while the background is very varied, containing many features that are locally similar to roads. Second, network regions are complex to model, because they may have arbitrary topology. In particular, we address a limitation of a previous model in which network branch width was constrained to be similar to maximum network branch radius of curvature, thereby providing a poor model of networks with straight narrow branches or highly curved, wide branches. We solve this problem by introducing first an additional nonlinear nonlocal HOAC term, and then an additional linear nonlocal HOAC term to improve the computational speed. Both terms allow separate control of branch width and branch curvature, and furnish better prolongation for the same width, but the linear term has several advantages: it is more efficient, and it is able to model multiple widths simultaneously. To cope with the difficulty of parameter selection for these models, we perform a stability analysis of a long bar with a given width, and hence show how to choose the parameters of the energy functions. After adding a likelihood energy, we use both models to extract the road network quasi-automatically from pieces of a QuickBird image, and compare the results to other models in the literature. The state-of-the-art results obtained demonstrate the superiority of our new models, the importance of strong prior knowledge in general, and of the new terms in particular. |
|
haut de la page
7 Articles de conférence |
1 - Synthetic Aperture Radar Image Classification via Mixture Approaches. V. Krylov et J. Zerubia. Dans Proc. IEEE International Conference on Microwaves, Communications, Antennas and Electronic Systems (COMCAS), Tel Aviv, Israel, novembre 2011. Mots-clés : Radar a Ouverture Synthetique (SAR), remote sensing, high resolution, Classification, finite mixture models, generalized gamma distribution. Copyright : IEEE
@INPROCEEDINGS{krylovCOMCAS11,
|
author |
= |
{Krylov, V. and Zerubia, J.}, |
title |
= |
{Synthetic Aperture Radar Image Classification via Mixture Approaches}, |
year |
= |
{2011}, |
month |
= |
{novembre}, |
booktitle |
= |
{Proc. IEEE International Conference on Microwaves, Communications, Antennas and Electronic Systems (COMCAS)}, |
address |
= |
{Tel Aviv, Israel}, |
url |
= |
{http://www.comcas.org/pages.asp?category=042_043_}, |
pdf |
= |
{http://hal.archives-ouvertes.fr/inria-00625551/en/}, |
keyword |
= |
{Radar a Ouverture Synthetique (SAR), remote sensing, high resolution, Classification, finite mixture models, generalized gamma distribution} |
} |
Abstract :
In this paper we focus on the fundamental synthetic aperture radars (SAR) image processing problem of supervised classification. To address it we consider a statistical finite mixture approach to probability density function estimation. We develop a generalized approach to address the problem of mixture estimation and consider the use of several different classes of distributions as the base for mixture approaches. This allows performing the maximum likelihood classification which is then refined by Markov random field approach, and optimized by graph cuts. The developed method is experimentally validated on high resolution SAR imagery acquired by Cosmo-SkyMed and TerraSAR-X satellite sensors. |
|
2 - A theoretical and numerical study of a phase field higher-order active contour model of directed networks. A. El Ghoul et I. H. Jermyn et J. Zerubia. Dans The Tenth Asian Conference on Computer Vision (ACCV), Queenstown, New Zealand, novembre 2010. Mots-clés : Champ de Phase, Shape prior, Directed networks, Stability analysis, river extraction, remote sensing. Copyright : Springer-Verlag GmbH Berlin Heidelberg
@INPROCEEDINGS{Elghoul10b,
|
author |
= |
{El Ghoul, A. and Jermyn, I. H. and Zerubia, J.}, |
title |
= |
{A theoretical and numerical study of a phase field higher-order active contour model of directed networks}, |
year |
= |
{2010}, |
month |
= |
{novembre}, |
booktitle |
= |
{The Tenth Asian Conference on Computer Vision (ACCV)}, |
address |
= |
{Queenstown, New Zealand}, |
pdf |
= |
{http://hal.archives-ouvertes.fr/inria-00522443/fr/}, |
keyword |
= |
{Champ de Phase, Shape prior, Directed networks, Stability analysis, river extraction, remote sensing} |
} |
Abstract :
We address the problem of quasi-automatic extraction of directed networks, which have characteristic geometric features, from images. To include the necessary prior knowledge about these geometric features, we use a phase field higher-order active contour model of directed networks. The model has a large number of unphysical parameters (weights of energy terms), and can favour different geometric structures for different parameter values. To overcome this problem, we perform a stability analysis of a long, straight bar in order to find parameter ranges that favour networks. The resulting constraints necessary to produce
stable networks eliminate some parameters, replace others by physical parameters such as network branch width, and place lower and upper bounds on the values of the rest.We validate the theoretical analysis via numerical experiments, and then apply the model to the problem of hydrographic network extraction from multi-spectral VHR satellite images. |
|
3 - Segmentation of networks from VHR remote sensing images using a directed phase field HOAC model. A. El Ghoul et I. H. Jermyn et J. Zerubia. Dans Proc. ISPRS Technical Commission III Symposium on Photogrammetry Computer Vision and Image Analysis (PCV), Paris, France, septembre 2010. Mots-clés : Champ de Phase, Shape prior, Directed networks, Road network extraction, river extraction, remote sensing. Copyright : ISPRS
@INPROCEEDINGS{Elghoul10a,
|
author |
= |
{El Ghoul, A. and Jermyn, I. H. and Zerubia, J.}, |
title |
= |
{Segmentation of networks from VHR remote sensing images using a directed phase field HOAC model}, |
year |
= |
{2010}, |
month |
= |
{septembre}, |
booktitle |
= |
{Proc. ISPRS Technical Commission III Symposium on Photogrammetry Computer Vision and Image Analysis (PCV)}, |
address |
= |
{Paris, France}, |
pdf |
= |
{http://hal.inria.fr/index.php?action_todo=search&view_this_doc=inria-00491017&version=1&halsid=45cdaqmgn5vij59jmnqqqkbos7}, |
keyword |
= |
{Champ de Phase, Shape prior, Directed networks, Road network extraction, river extraction, remote sensing} |
} |
Abstract :
We propose a new algorithm for network segmentation from VHR remote sensing images. The algorithm performs this task quasi-automatically,
that is, with no human intervention except to fix some parameters. The task is made difficult by the amount of prior knowledge about network region geometry needed to perform the task, knowledge that is usually provided by a human being. To include such prior knowledge, we make use of methodological advances in region modelling: a phase field higher-order active contour of directed networks is used as the prior model for region geometry. By adjoining an approximately conserved flow to a phase field model encouraging network shapes (i.e. regions composed of branches meeting at junctions), the model favours network regions in which different branches may have very different widths, but in which width change along a branch is slow; in which branches do not
come to an end, hence tending to close gaps in the network; and in which junctions show approximate ‘conservation of width’. We also introduce image models for network and background, which are validated using maximum likelihood segmentation against other possibilities. We then test the full model on VHR optical and multispectral satellite images. |
|
4 - Multi-class SVM for forestry classification. N. Hajj Chehade et JG. Boureau et C. Vidal et J. Zerubia. Dans Proc. IEEE International Conference on Image Processing (ICIP), Cairo, Egypt, novembre 2009. Mots-clés : Support Vector Machines, texture segmentation, Haralick feature, remote sensing, Forest vegetation.
@INPROCEEDINGS{Nabil09,
|
author |
= |
{Hajj Chehade, N. and Boureau, JG. and Vidal, C. and Zerubia, J.}, |
title |
= |
{Multi-class SVM for forestry classification}, |
year |
= |
{2009}, |
month |
= |
{novembre}, |
booktitle |
= |
{Proc. IEEE International Conference on Image Processing (ICIP)}, |
address |
= |
{Cairo, Egypt}, |
url |
= |
{http://dx.doi.org/10.1109/ICIP.2009.5413395}, |
keyword |
= |
{Support Vector Machines, texture segmentation, Haralick feature, remote sensing, Forest vegetation} |
} |
Abstract :
In this paper we propose a method for classifying the vegetation types in an aerial color infra-red (CIR) image. Different vegetation types do not only differ in color, but also in texture. We study the use of four Haralick features (energy, contrast, entropy, homogeneity) for texture analysis, and then perform the classification using the one-against-all (OAA) multi-class support vector machine (SVM), which is a popular supervised learning technique for classification. The choice of features (along with their corresponding parameters), the choice of the training set, and the choice of the SVM kernel highly affect the performance of the classification. The study was done on several CIR aerial images provided by the French National Forest Inventory (IFN). In this paper, we will show one example on a national forest near Sedan (in France), and compare our result with the IFN map. |
|
5 - Inflection point model under phase field higher-order active contours for network extraction from VHR satellite images. A. El Ghoul et I. H. Jermyn et J. Zerubia. Dans Proc. European Signal Processing Conference (EUSIPCO), Glasgow, Scotland, août 2009. Mots-clés : Geometric prior, Forme, Contour actif d'ordre supérieur, Champ de Phase, remote sensing. Copyright : EURASIP
@INPROCEEDINGS{ElGhoul09a,
|
author |
= |
{El Ghoul, A. and Jermyn, I. H. and Zerubia, J.}, |
title |
= |
{Inflection point model under phase field higher-order active contours for network extraction from VHR satellite images}, |
year |
= |
{2009}, |
month |
= |
{août}, |
booktitle |
= |
{Proc. European Signal Processing Conference (EUSIPCO)}, |
address |
= |
{Glasgow, Scotland}, |
url |
= |
{http://hal.inria.fr/inria-00390446/fr/}, |
pdf |
= |
{http://hal.inria.fr/docs/00/39/04/46/PDF/eusipco09aymenelghoul.pdf}, |
keyword |
= |
{Geometric prior, Forme, Contour actif d'ordre supérieur, Champ de Phase, remote sensing} |
} |
Abstract :
The segmentation of networks is important in several imaging domains, and models incorporating prior shape knowledge are often essential for the automatic performance of this task. We incorporate such knowledge via phase fields and higher-order active contours (HOACs). In this paper: we introduce an improved prior model, the phase field HOAC ‘inflection point’ model of a network; we present an improved data term for the segmentation of road networks; we confirm the robustness of the resulting model to choice of gradient descent initialization; and we illustrate these points via road network extraction results on VHR satellite images. |
|
6 - Complex wavelet regularization for solving inverse problems in remote sensing. M. Carlavan et P. Weiss et L. Blanc-Féraud et J. Zerubia. Dans Proc. IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Cape Town, South Africa, juillet 2009. Mots-clés : Deconvolution, Dual smoothing, nesterov scheme, remote sensing, wavelet.
|
7 - A contrast equalization procedure for change detection algorithms: applications to remotely sensed images of urban areas. A. Fournier et P. Weiss et L. Blanc-Féraud et G. Aubert. Dans International Conference on Pattern Recognition (ICPR), Tampa, USA, décembre 2008. Mots-clés : Change detection, Level Lines, remote sensing. Copyright : ©2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
@INPROCEEDINGS{l_lines_icpr08,
|
author |
= |
{Fournier, A. and Weiss, P. and Blanc-Féraud, L. and Aubert, G.}, |
title |
= |
{A contrast equalization procedure for change detection algorithms: applications to remotely sensed images of urban areas}, |
year |
= |
{2008}, |
month |
= |
{décembre}, |
booktitle |
= |
{International Conference on Pattern Recognition (ICPR)}, |
address |
= |
{Tampa, USA}, |
url |
= |
{http://www.math.univ-toulouse.fr/~weiss/Publis/Conferences/icpr2008.pdf}, |
pdf |
= |
{http://www.math.univ-toulouse.fr/~weiss/Publis/Conferences/icpr2008.pdf}, |
keyword |
= |
{Change detection, Level Lines, remote sensing} |
} |
|
haut de la page
Ces pages sont générées par
|