|
Publications sur parametric estimation
Résultat de la recherche dans la liste des publications :
Article |
1 - Enhanced Dictionary-Based SAR Amplitude Distribution Estimation and Its Validation With Very High-Resolution Data. V. Krylov et G. Moser et S.B. Serpico et J. Zerubia. IEEE-Geoscience and Remote Sensing Letters, 8(1): pages 148-152, janvier 2011. Mots-clés : finite mixture models, parametric estimation, probability-density-function estimation, EM Stochastique (SEM), synthetic aperture radar. Copyright : IEEE
@ARTICLE{krylovGRSL2011,
|
author |
= |
{Krylov, V. and Moser, G. and Serpico, S.B. and Zerubia, J.}, |
title |
= |
{Enhanced Dictionary-Based SAR Amplitude Distribution Estimation and Its Validation With Very High-Resolution Data}, |
year |
= |
{2011}, |
month |
= |
{janvier}, |
journal |
= |
{IEEE-Geoscience and Remote Sensing Letters}, |
volume |
= |
{8}, |
number |
= |
{1}, |
pages |
= |
{148-152}, |
url |
= |
{http://dx.doi.org/10.1109/LGRS.2010.2053517}, |
pdf |
= |
{http://hal.archives-ouvertes.fr/inria-00503893/en/}, |
keyword |
= |
{finite mixture models, parametric estimation, probability-density-function estimation, EM Stochastique (SEM), synthetic aperture radar} |
} |
Abstract :
In this letter, we address the problem of estimating the amplitude probability density function (pdf) of single-channel synthetic aperture radar (SAR) images. A novel flexible method is developed to solve this problem, extending the recently proposed dictionary-based stochastic expectation maximization approach (developed for a medium-resolution SAR) to very high resolution (VHR) satellite imagery, and enhanced by introduction of a novel procedure for estimating the number of mixture components, that permits to reduce appreciably its computational complexity. The specific interest is the estimation of heterogeneous statistics, and the developed method is validated in the case of the VHR SAR imagery, acquired by the last-generation satellite SAR systems, TerraSAR-X and COSMO-SkyMed. This VHR imagery allows the appreciation of various ground materials resulting in highly mixed distributions, thus posing a difficult estimation problem that has not been addressed so far. We also conduct an experimental study of the extended dictionary of state-of-the-art SAR-specific pdf models and consider the dictionary refinements. |
|
haut de la page
Article de conférence |
1 - Dictionary-based probability density function estimation for high-resolution SAR data. V. Krylov et G. Moser et S.B. Serpico et J. Zerubia. Dans Proc. of SPIE (IS&T/SPIE Electronic Imaging 2009), Vol. 7246, pages 72460S, San Jose, USA, janvier 2009. Mots-clés : SAR image, Probability density function, parametric estimation, finite mixture models, EM Stochastique (SEM). Copyright : SPIE
@INPROCEEDINGS{KrylovSPIE09,
|
author |
= |
{Krylov, V. and Moser, G. and Serpico, S.B. and Zerubia, J.}, |
title |
= |
{Dictionary-based probability density function estimation for high-resolution SAR data}, |
year |
= |
{2009}, |
month |
= |
{janvier}, |
booktitle |
= |
{Proc. of SPIE (IS&T/SPIE Electronic Imaging 2009)}, |
volume |
= |
{7246}, |
pages |
= |
{72460S}, |
address |
= |
{San Jose, USA}, |
url |
= |
{http://spiedl.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=PSISDG00724600000172460S000001&idtype=cvips&gifs=yes&ref=no}, |
pdf |
= |
{http://hal.archives-ouvertes.fr/inria-00361384/en/}, |
keyword |
= |
{SAR image, Probability density function, parametric estimation, finite mixture models, EM Stochastique (SEM)} |
} |
Abstract :
In the context of remotely sensed data analysis, a crucial problem is represented by the need to develop accurate models for the statistics of pixel intensities. In this work, we develop a parametric finite mixture model for the statistics of pixel intensities in high resolution synthetic aperture radar (SAR) images. This method is an extension of previously existing method for lower resolution images. The method integrates the stochastic expectation maximization (SEM) scheme and the method of log-cumulants (MoLC) with an automatic technique to select, for each mixture component, an optimal parametric model taken from a predefined dictionary of parametric probability density functions (pdf). The proposed dictionary consists of eight state-of-the-art SAR- specific pdfs: Nakagami, log-normal, generalized Gaussian Rayleigh, Heavy-tailed Rayleigh, Weibull, K-root, Fisher and generalized Gamma. The designed scheme is endowed with the novel initialization procedure and the algorithm to automatically estimate the optimal number of mixture components. The experimental results with a set of several high resolution COSMO-SkyMed images demonstrate the high accuracy of the designed algorithm, both from the viewpoint of a visual comparison of the histograms, and from the viewpoint of quantitive accuracy measures such as correlation coefficient (above 99,5%). The method proves to be effective on all the considered images, remaining accurate for multimodal and highly heterogeneous scenes. |
|
haut de la page
Rapport de recherche et Rapport technique |
1 - Modeling the statistics of high resolution SAR images. V. Krylov et G. Moser et S.B. Serpico et J. Zerubia. Research Report 6722, INRIA, novembre 2008. Mots-clés : Synthetic Aperture Radar (SAR) image, Probability density function, parametric estimation, finite mixture models, EM Stochastique (SEM). Copyright : INRIA/ARIANA, 2008
@TECHREPORT{krylovDSEM08,
|
author |
= |
{Krylov, V. and Moser, G. and Serpico, S.B. and Zerubia, J.}, |
title |
= |
{Modeling the statistics of high resolution SAR images}, |
year |
= |
{2008}, |
month |
= |
{novembre}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{6722}, |
url |
= |
{http://hal.archives-ouvertes.fr/inria-00342681/en/}, |
pdf |
= |
{http://hal.archives-ouvertes.fr/docs/00/35/76/27/PDF/RR-6722.pdf}, |
keyword |
= |
{Synthetic Aperture Radar (SAR) image, Probability density function, parametric estimation, finite mixture models, EM Stochastique (SEM)} |
} |
Abstract :
In the context of remotely sensed data analysis, a crucial problem is represented by the need to develop accurate models for the statistics of pixel intensities. In this work, we develop a parametric finite mixture model for modelling the statistics of intensities in high resolution Synthetic Aperture Radar (SAR) images. Along with the models we design an efficient parameter estimation scheme by integrating the Stochastic Expectation Maximization scheme and the Method of log-cumulants with an automatic technique to select, for each mixture component, an optimal parametric model taken from a predefined dictionary of parametric probability density functions (pdf). In particular, the proposed dictionary consists of eight most efficient state-of-the-art SAR-specific pdfs: Nakagami, log-normal, generalized Gaussian Rayleigh, Heavy-tailed Rayleigh, Weibull, K-root, Fisher and generalized Gamma. The experiment results with a set of several real SAR (COSMO-SkyMed) images demonstrate the high accuracy of the designed algorithm, both from the viewpoint of a visual comparison of the histograms, and from the viewpoint of quantitive measures such as correlation coefficient (always above 99,5%) . We stress, in particular, that the method proves to be effective on all the considered images, remaining accurate for multimodal and highly heterogeneous images. |
|
haut de la page
Ces pages sont générées par
|