|
Publications sur Markov random field
Résultat de la recherche dans la liste des publications :
Article |
1 - Supervised High Resolution Dual Polarization SAR Image Classification by Finite Mixtures and Copulas. V. Krylov et G. Moser et S.B. Serpico et J. Zerubia. IEEE Journal of Selected Topics in Signal Processing, 5(3): pages 554-566, juin 2011. Mots-clés : Polarimetric synthetic aperture radar, Supervised classification, probability density function (pdf), dictionary-based pdf estimation, Markov random field, copula. Copyright : IEEE
@ARTICLE{krylovJSTSP2011,
|
author |
= |
{Krylov, V. and Moser, G. and Serpico, S.B. and Zerubia, J.}, |
title |
= |
{Supervised High Resolution Dual Polarization SAR Image Classification by Finite Mixtures and Copulas}, |
year |
= |
{2011}, |
month |
= |
{juin}, |
journal |
= |
{ IEEE Journal of Selected Topics in Signal Processing}, |
volume |
= |
{5}, |
number |
= |
{3}, |
pages |
= |
{554-566}, |
url |
= |
{http://dx.doi.org/10.1109/JSTSP.2010.2103925}, |
pdf |
= |
{http://hal.archives-ouvertes.fr/inria-00562326/en/}, |
keyword |
= |
{Polarimetric synthetic aperture radar, Supervised classification, probability density function (pdf), dictionary-based pdf estimation, Markov random field, copula} |
} |
Abstract :
In this paper a novel supervised classification approach is proposed for high resolution dual polarization (dualpol) amplitude satellite synthetic aperture radar (SAR) images. A novel probability density function (pdf) model of the dual-pol SAR data is developed that combines finite mixture modeling for marginal probability density functions estimation and copulas for multivariate distribution modeling. The finite mixture modeling is performed via a recently proposed SAR-specific dictionarybased stochastic expectation maximization approach to SAR amplitude pdf estimation. For modeling the joint distribution of dual-pol data the statistical concept of copulas is employed, and a novel copula-selection dictionary-based method is proposed. In order to take into account the contextual information, the developed joint pdf model is combined with a Markov random field approach for Bayesian image classification. The accuracy of the developed dual-pol supervised classification approach is validated and compared with benchmark approaches on two high resolution dual-pol TerraSAR-X scenes, acquired during an epidemiological study. A corresponding single-channel version of the classification algorithm is also developed and validated on a single polarization COSMO-SkyMed scene. |
|
haut de la page
3 Articles de conférence |
1 - Brain tumor vascular network segmentation from micro-tomography. X. Descombes et F. Plouraboue et El Boustani Habdelhkim et Fonta Caroline et |LeDuc Geraldine et Serduc Raphael et Weitkamp Timm. Dans Internation Symposium of Biomedical Imaging (ISBI), Chicago, USA, avril 2011. Mots-clés : Segmentation, Markov random field, Tomography, Brain, vascular network. Copyright : IEEE
@INPROCEEDINGS{isbi11,
|
author |
= |
{Descombes, X. and Plouraboue, F. and Boustani Habdelhkim, El and Caroline, Fonta and Geraldine, |LeDuc and Raphael, Serduc and Timm, Weitkamp}, |
title |
= |
{Brain tumor vascular network segmentation from micro-tomography}, |
year |
= |
{2011}, |
month |
= |
{avril}, |
booktitle |
= |
{Internation Symposium of Biomedical Imaging (ISBI)}, |
address |
= |
{Chicago, USA}, |
url |
= |
{http://dx.doi.org/10.1109/ISBI.2011.5872596}, |
keyword |
= |
{Segmentation, Markov random field, Tomography, Brain, vascular network} |
} |
Abstract :
Micro-tomography produces high resolution images of biological structures such as vascular networks. In this paper, we present a new approach for segmenting vascular network into pathological and normal regions from considering their micro-vessel 3D structure only. We define and use a conditional random field for segmenting the output of a watershed algorithm. The tumoral and normal classes are thus characterized by their respective distribution of watershed region size interpreted as local vascular territories. |
|
2 - Multichannel SAR Image Classification by Finite Mixtures, Copula Theory and Markov Random Fields. V. Krylov et G. Moser et S.B. Serpico et J. Zerubia. Dans Proc. of Bayesian Inference and Maximum Entropy Methods in Science and Engineering (MaxEnt 2010), Vol. 1305, pages 319-326, Chamonix, France, juillet 2010. Mots-clés : multichannel SAR, Classification, probability density function estimation, Markov random field, copula. Copyright : AIP
@INPROCEEDINGS{krylovMaxEnt10,
|
author |
= |
{Krylov, V. and Moser, G. and Serpico, S.B. and Zerubia, J.}, |
title |
= |
{Multichannel SAR Image Classification by Finite Mixtures, Copula Theory and Markov Random Fields}, |
year |
= |
{2010}, |
month |
= |
{juillet}, |
booktitle |
= |
{Proc. of Bayesian Inference and Maximum Entropy Methods in Science and Engineering (MaxEnt 2010)}, |
volume |
= |
{1305}, |
pages |
= |
{319-326}, |
address |
= |
{Chamonix, France}, |
url |
= |
{http://hal.archives-ouvertes.fr/inria-00495557/en/}, |
pdf |
= |
{http://hal.archives-ouvertes.fr/docs/00/49/55/57/PDF/krylov_MaxEnt2010.pdf}, |
keyword |
= |
{multichannel SAR, Classification, probability density function estimation, Markov random field, copula} |
} |
Abstract :
The last decades have witnessed an intensive development and a significant increase of interest to remote sensing, and, in particular, to synthetic aperture radar (SAR) imagery. In this paper we develop a supervised classification approach for medium and high resolution multichannel SAR amplitude images. The proposed technique combines finite mixture modeling for probability density function estimation, copulas for multivariate distribution modeling and the Markov random field approach to Bayesian image classification. The finite mixture modeling is done via a recently proposed SAR-specific dictionary-based stochastic expectation maximization approach to class-conditional amplitude probability density function estimation, which is applied separately to all the SAR channels. For modeling the class-conditional joint distributions of multichannel data the statistical concept of copulas is employed, and a dictionary-based copula selection method is proposed. Finally, the Markov random field approach enables to take into account the contextual information and to gain robustness against the inherent noise-like phenomenon of SAR known as speckle. The designed method is an extension and a generalization to multichannel SAR of a recently developed single-channel and Dual-pol SAR image classification technique. The accuracy of the developed multichannel SAR classification approach is validated on several multichannel Quad-pol RADARSAT-2 images and compared to benchmark classification techniques. |
|
3 - High resolution SAR-image classification by Markov random fields and finite mixtures. G. Moser et V. Krylov et S.B. Serpico et J. Zerubia. Dans Proc. of SPIE (IS&T/SPIE Electronic Imaging 2010), Vol. 7533, pages 753308, San Jose, USA, janvier 2010. Mots-clés : SAR image classification, Dictionnaire, amplitude probability density, EM Stochastique (SEM), Markov random field, copula. Copyright : SPIE
@INPROCEEDINGS{moserSPIE2010a,
|
author |
= |
{Moser, G. and Krylov, V. and Serpico, S.B. and Zerubia, J.}, |
title |
= |
{High resolution SAR-image classification by Markov random fields and finite mixtures}, |
year |
= |
{2010}, |
month |
= |
{janvier}, |
booktitle |
= |
{Proc. of SPIE (IS&T/SPIE Electronic Imaging 2010)}, |
volume |
= |
{7533}, |
pages |
= |
{753308}, |
address |
= |
{San Jose, USA}, |
url |
= |
{http://spiedl.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=PSISDG007533000001753308000001&idtype=cvips&gifs=yes&ref=no}, |
pdf |
= |
{http://hal.archives-ouvertes.fr/inria-00442348/en/}, |
keyword |
= |
{SAR image classification, Dictionnaire, amplitude probability density, EM Stochastique (SEM), Markov random field, copula} |
} |
Abstract :
In this paper we develop a novel classification approach for high and very high resolution polarimetric synthetic aperture radar (SAR) amplitude images. This approach combines the Markov random field model to Bayesian image classification and a finite mixture technique for probability density function estimation. The finite mixture modeling is done via a recently proposed dictionary-based stochastic expectation maximization approach for SAR amplitude probability density function estimation. For modeling the joint distribution from marginals corresponding to single polarimetric channels we employ copulas. The accuracy of the developed semiautomatic supervised algorithm is validated in the application of wet soil classification on several high resolution SAR images acquired by TerraSAR-X and COSMO-SkyMed. |
|
haut de la page
Rapport de recherche et Rapport technique |
1 - High resolution SAR-image classification. V. Krylov et J. Zerubia. Research Report 7108, INRIA, novembre 2009. Mots-clés : SAR image classification, Dictionnaire, amplitude probability density, EM Stochastique (SEM), Markov random field, copula. Copyright : INRIA/ARIANA, 2009
@TECHREPORT{RR-7108,
|
author |
= |
{Krylov, V. and Zerubia, J.}, |
title |
= |
{High resolution SAR-image classification}, |
year |
= |
{2009}, |
month |
= |
{novembre}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{7108}, |
url |
= |
{http://hal.archives-ouvertes.fr/inria-00433036/en/}, |
pdf |
= |
{http://hal.archives-ouvertes.fr/docs/00/44/81/40/PDF/RR-7108.pdf}, |
keyword |
= |
{SAR image classification, Dictionnaire, amplitude probability density, EM Stochastique (SEM), Markov random field, copula} |
} |
Résumé :
Dans ce rapport, nous proposons une nouvelle approche pour la classification des images de type Radar à Synthèse d’Ouverture (RSO) haute résolution. Cette approche combine la méthode des champs Markoviens (MRF) pour la classification bayésienne et un modèle de mélange fini pour l’estimation des densités de probabilité. Ce modèle de mélange fini est realisé grace à une approche fondée sur une espérance-maximisation stochastique, à partir d'un dictionnaire, pour l’estimation des densités de probabilité d’amplitude. Cette approche semi-automatique est étendue au cas important des images RSO avec plusieurs polarisations, en utilisant des copulas pour modéliser les distributions jointes. Des résultats expérimentaux, sur plusieurs images RSO réelles (Dual-Pol TerraSAR-X et Single-Pol COSMO-SkyMed), pour la classification de zones humides, sont présentés pour montrer l’efficacité de l’algorithme proposé. |
Abstract :
In this report we propose a novel classification algorithm for high and very high resolution synthetic aperture radar (SAR) amplitude images that combines the Markov random field approach to Bayesian image classification and a finite mixture technique for probability density function estimation. The finite mixture modeling is done by dictionary-based stochastic expectation maximization amplitude histogram estimation approach. The developed semiautomatic algorithm is extended to an important case of multi-polarized SAR by modeling the joint distributions of channels via copulas. The accuracy of the proposed algorithm is validated for the application of wet soil classification on several high resolution SAR images acquired by TerraSAR-X and COSMO-SkyMed. |
|
haut de la page
Ces pages sont générées par
|