1 - Unsupervised Hierarchical Image Segmentation based on the TS-MRF model and Fast Mean-Shift Clustering. R. Gaetano et G. Scarpa et G. Poggi et J. Zerubia. Dans Proc. European Signal Processing Conference (EUSIPCO), Lausanne, Switzerland, août 2008. Mots-clés : Segmentation, Markov Random Fields, Mean Shift, Land Classification.
@INPROCEEDINGS{Gaetano2008,
|
author |
= |
{Gaetano, R. and Scarpa, G. and Poggi, G. and Zerubia, J.}, |
title |
= |
{Unsupervised Hierarchical Image Segmentation based on the TS-MRF model and Fast Mean-Shift Clustering}, |
year |
= |
{2008}, |
month |
= |
{août}, |
booktitle |
= |
{Proc. European Signal Processing Conference (EUSIPCO)}, |
address |
= |
{Lausanne, Switzerland}, |
pdf |
= |
{http://www.diet.unina.it/users/gaetano/publications/Gaetano_EUSIPCO_2008.pdf}, |
keyword |
= |
{Segmentation, Markov Random Fields, Mean Shift, Land Classification} |
} |
Abstract :
Tree-Structured Markov Random Field (TS-MRF) models have been recently proposed to provide a hierarchical multiscale description of images. Based on such a model, the unsupervised image segmentation is carried out by means of a sequence of nested class splits, where each class is modeled as a local binary MRF.
We propose here a new TS-MRF unsupervised segmentation technique which improves upon the original algorithm by selecting a better tree structure and eliminating spurious classes. Such results are obtained by using the Mean-Shift procedure to estimate the number of pdf modes at each node (thus allowing for a non-binary tree), and to obtain a more reliable initial clustering for subsequent MRF optimization. To this end, we devise a new reliable and fast clustering algorithm based on the Mean-Shift technique. Experimental results prove the potential of the proposed method. |
|