|
Publications of T. Szirányi
Result of the query in the list of publications :
3 Articles |
1 - Detection of Object Motion Regions in Aerial Image Pairs with a Multi-Layer Markovian Model. C. Benedek and T. Szirányi and Z. Kato and J. Zerubia. IEEE Trans. Image Processing, 18(10): pages 2303-2315, October 2009. Keywords : Change detection, Aerial images, Camera motion, MRF.
@ARTICLE{benedekTIP09,
|
author |
= |
{Benedek, C. and Szirányi, T. and Kato, Z. and Zerubia, J.}, |
title |
= |
{Detection of Object Motion Regions in Aerial Image Pairs with a Multi-Layer Markovian Model}, |
year |
= |
{2009}, |
month |
= |
{October}, |
journal |
= |
{IEEE Trans. Image Processing}, |
volume |
= |
{18}, |
number |
= |
{10}, |
pages |
= |
{2303-2315}, |
url |
= |
{http://www.ieeexplore.ieee.org/xpls/abs_all.jsp?tp=&arnumber=5089480&isnumber=5234065?tag=1}, |
keyword |
= |
{Change detection, Aerial images, Camera motion, MRF} |
} |
Abstract :
We propose a new Bayesian method for detecting the regions of object displacements in aerial image pairs. We use a robust but coarse 2-D image registration algorithm. Our main challenge is to eliminate the registration errors from the extracted change map. We introduce a three-layer Markov Random Field model which integrates information from two different features, and ensures connected homogeneous regions in the segmented images. Validation is given on real aerial photos. |
|
2 - Change Detection in Optical Aerial Images by a Multi-Layer Conditional Mixed Markov Model. C. Benedek and T. Szirányi. IEEE Trans. Geoscience and Remote Sensing, 47(10): pages 3416-3430, October 2009. Keywords : mixed Markov models, Change detection, Aerial images, MAP estimation. Copyright : IEEE
@ARTICLE{benedekTGRS09,
|
author |
= |
{Benedek, C. and Szirányi, T.}, |
title |
= |
{Change Detection in Optical Aerial Images by a Multi-Layer Conditional Mixed Markov Model}, |
year |
= |
{2009}, |
month |
= |
{October}, |
journal |
= |
{IEEE Trans. Geoscience and Remote Sensing}, |
volume |
= |
{47}, |
number |
= |
{10}, |
pages |
= |
{3416-3430}, |
url |
= |
{http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?isnumber=5257398&arnumber=5169964&count=26&index=11}, |
keyword |
= |
{mixed Markov models, Change detection, Aerial images, MAP estimation} |
} |
Abstract :
In this paper we propose a probabilistic model for detecting relevant changes in registered aerial image pairs taken with the time differences of several years and in different seasonal conditions. The introduced approach, called the Conditional Mixed Markov model (CXM), is a combination of a mixed Markov model and a conditionally independent random field of signals. The model integrates global intensity statistics with local correlation and contrast features. A global energy optimization process ensures simultaneously optimal local feature selection and smooth, observation-consistent segmentation. Validation is given on real aerial image sets provided by the Hungarian Institute of Geodesy, Cartography and Remote Sensing and Google Earth. |
|
3 - Image segmentation using Markov random field model in fully parallel cellular network architectures. T. Szirányi and J. Zerubia and L. Czúni and D. Geldreich and Z. Kato. Real Time Imaging, 6(3): pages 195-211, June 2000.
@ARTICLE{jz00y,
|
author |
= |
{Szirányi, T. and Zerubia, J. and Czúni, L. and Geldreich, D. and Kato, Z.}, |
title |
= |
{Image segmentation using Markov random field model in fully parallel cellular network architectures}, |
year |
= |
{2000}, |
month |
= |
{June}, |
journal |
= |
{Real Time Imaging}, |
volume |
= |
{6}, |
number |
= |
{3}, |
pages |
= |
{195-211}, |
pdf |
= |
{http://dx.doi.org/10.1006/rtim.1998.0159}, |
keyword |
= |
{} |
} |
Abstract :
Markovian approaches to early vision processes need a huge amount of computing power. These algorithms can usually be implemented on parallel computing structures. Herein, we show that the Markovian labeling approach can be implemented in fully parallel cellular network architectures, using simple functions and data representations. This makes possible to implement our model in parallel imaging VLSI chips.
As an example, we have developed a simplified statistical image segmentation algorithm for the Cellular Neural/Nonlinear Networks Universal Machine (CNN-UM), which is a new image processing tool, containing thousands of cells with analog dynamics, local memories and processing units. The Modified Metropolis Dynamics (MMD) optimization method can be implemented into the raw analog architecture of the CNN-UM. We can introduce the whole pseudo-stochastic segmentation process in the CNN architecture using 8 memories/cell. We use simple arithmetic functions (addition, multiplication), equality-test between neighboring pixels and very simple nonlinear output functions (step, jigsaw). With this architecture, the proposed VLSI CNN chip can execute a pseudo-stochastic relaxation algorithm of about 100 iterations in about 100 μs.
In the suggested solution the segmentation is unsupervised, where a pixel-level statistical estimation model is used. We have tested different monogrid and multigrid architectures.
In our CNN-UM model several complex preprocessing steps can be involved, such as texture-classification or anisotropic diffusion. With these preprocessing steps, our fully parallel cellular system may work as a high-level image segmentation machine, using only simple functions based on the close-neighborhood of a pixel. |
|
top of the page
3 Conference articles |
1 - Graph-based Analysis of Textured Images for Hierarchical Segmentation. R. Gaetano and G. Scarpa and T. Sziranyi. In Proc. British Machine Vision Conference (BMVC), Aberystwyth, UK, August 2010.
@INPROCEEDINGS{Gaetano2010,
|
author |
= |
{Gaetano, R. and Scarpa, G. and Sziranyi, T.}, |
title |
= |
{Graph-based Analysis of Textured Images for Hierarchical Segmentation}, |
year |
= |
{2010}, |
month |
= |
{August}, |
booktitle |
= |
{Proc. British Machine Vision Conference (BMVC)}, |
address |
= |
{Aberystwyth, UK}, |
url |
= |
{http://hal.archives-ouvertes.fr/inria-00506596}, |
keyword |
= |
{} |
} |
Abstract :
The Texture Fragmentation and Reconstruction (TFR) algorithm has beenrecently introduced to address the problem of image segmentationby textural properties, based on a suitable image description toolknown as the Hierarchical Multiple Markov Chain (H-MMC) model. TFRprovides a hierarchical set of nested segmentation maps by firstidentifying the elementary image patterns, and then merging themsequentially to identify complete textures at different scales ofobservation.In this work, we propose a major modification to the TFR by resortingto a graph based description of the image content and a graph clusteringtechnique for the enhancement and extraction of image patterns. Aprocedure based on mathematical morphology will be introduced thatallows for the construction of a color-wise image representationby means of multiple graph structures, along with a simple clusteringtechnique aimed at cutting the graphs and correspondingly segmentgroups of connected components with a similar spatial context.The performance assessment, realized both on synthetic compositionsof real-world textures and images from the remote sensing domain,confirm the effectiveness and potential of the proposed method. |
|
2 - A Mixed Markov Model for Change Detection in Aerial Photos with Large Time Differences. C. Benedek and T. Szirányi. In Proc. International Conference on Pattern Recognition (ICPR), Tampa, USA, December 2008. Keywords : Aerial images, Change detection, mixed Markov models.
@INPROCEEDINGS{benedekICPR08,
|
author |
= |
{Benedek, C. and Szirányi, T.}, |
title |
= |
{A Mixed Markov Model for Change Detection in Aerial Photos with Large Time Differences}, |
year |
= |
{2008}, |
month |
= |
{December}, |
booktitle |
= |
{Proc. International Conference on Pattern Recognition (ICPR)}, |
address |
= |
{Tampa, USA}, |
pdf |
= |
{http://hal.inria.fr/docs/00/35/91/16/PDF/benedekICPR08.pdf}, |
keyword |
= |
{Aerial images, Change detection, mixed Markov models} |
} |
Abstract :
In the paper we propose a novel multi-layer Mixed Markov model for detecting relevant changes in registered aerial images taken with significant time differences. The introduced approach combines global intensity statistics with local correlation and contrast features. A global energy optimization process simultaneously ensures optimal local feature selection and smooth, observation-consistent classification. Validation is given on real aerial photos. |
|
3 - A Multi-Layer MRF Model for Object-Motion Detection in Unregistered Airborne Image-Pairs. C. Benedek and T. Szirányi and Z. Kato and J. Zerubia. In Proc. IEEE International Conference on Image Processing (ICIP), Vol. 6, pages 141--144, San Antonio, Texas, USA, September 2007. Keywords : Change detection, Aerial images, Camera motion, MRF. Copyright : Copyright IEEE
@INPROCEEDINGS{benedek_ICIP07,
|
author |
= |
{Benedek, C. and Szirányi, T. and Kato, Z. and Zerubia, J.}, |
title |
= |
{A Multi-Layer MRF Model for Object-Motion Detection in Unregistered Airborne Image-Pairs}, |
year |
= |
{2007}, |
month |
= |
{September}, |
booktitle |
= |
{Proc. IEEE International Conference on Image Processing (ICIP)}, |
volume |
= |
{6}, |
pages |
= |
{141--144}, |
address |
= |
{San Antonio, Texas, USA}, |
url |
= |
{http://ieeexplore.ieee.org/search/srchabstract.jsp?arnumber=4379541&isnumber=4379494&punumber=4378863&k2dockey=4379541@ieeecnfs&query=%28benedek+%3Cin%3E+metadata%29+%3Cand%3E+%284379494+%3Cin%3E+isnumber%29&pos=0}, |
pdf |
= |
{http://web.eee.sztaki.hu/~bcsaba/Publications/Pdf/benedek_icip2007.pdf}, |
keyword |
= |
{Change detection, Aerial images, Camera motion, MRF} |
} |
Abstract :
In this paper, we give a probabilistic model for automatic change detection on airborne images taken with moving cameras. To ensure robustness, we adopt an unsupervised coarse matching instead of a precise image registration. The challenge of the proposed model is to eliminate the registration errors, noise and the parallax artifacts caused by the static objects having considerable height (buildings, trees, walls etc.) from the difference image. We describe the background membership of a given image point through two different features, and introduce a novel three-layerMarkov Random Field (MRF) model to ensure connected homogenous regions in the segmented image. |
|
top of the page
Technical and Research Report |
1 - A Three-layer MRF model for Object Motion Detection in Airborne Images. C. Benedek and T. Szirányi and Z. Kato and J. Zerubia. Research Report 6208, INRIA, June 2007. Keywords : Aerial images, Change detection, Camera motion, MRF.
@TECHREPORT{benedek_INRIARR07,
|
author |
= |
{Benedek, C. and Szirányi, T. and Kato, Z. and Zerubia, J.}, |
title |
= |
{A Three-layer MRF model for Object Motion Detection in Airborne Images}, |
year |
= |
{2007}, |
month |
= |
{June}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{6208}, |
url |
= |
{https://hal.inria.fr/inria-00150805}, |
pdf |
= |
{https://hal.inria.fr/inria-00150805}, |
keyword |
= |
{Aerial images, Change detection, Camera motion, MRF} |
} |
|
top of the page
These pages were generated by
|