|
The Publications
Result of the query in the list of publications :
101 Articles |
21 - A Point Process for Fully Automatic Road Network Detection in Satellite and Aerial Images. P. Cariou and X. Descombes and E. Zhizhina. Problems of Information Transmission, 10(3): pages 247-256, 2010. Keywords : Marked point process, birth and death process, Road network extraction.
@ARTICLE{cariou2010,
|
author |
= |
{Cariou, P. and Descombes, X. and Zhizhina, E.}, |
title |
= |
{A Point Process for Fully Automatic Road Network Detection in Satellite and Aerial Images}, |
year |
= |
{2010}, |
journal |
= |
{Problems of Information Transmission}, |
volume |
= |
{10}, |
number |
= |
{3}, |
pages |
= |
{247-256}, |
url |
= |
{ http://www.jip.ru/2010/247-256-2010.pdf}, |
keyword |
= |
{Marked point process, birth and death process, Road network extraction} |
} |
|
22 - Comparative study on the performance of multi paramater SAR data for operational urban areas extraction. C. Corbane and N. Baghdadi and X. Descombes and M. Petit. IEEE-Geoscience and Remote Sensing Letters, 6(4): pages 728-732, October 2009. Keywords : Markov random field model, synthetic aperture radar, urban remote sensing.
@ARTICLE{COR-09,
|
author |
= |
{Corbane, C. and Baghdadi, N. and Descombes, X. and Petit, M.}, |
title |
= |
{Comparative study on the performance of multi paramater SAR data for operational urban areas extraction}, |
year |
= |
{2009}, |
month |
= |
{October}, |
journal |
= |
{IEEE-Geoscience and Remote Sensing Letters}, |
volume |
= |
{6}, |
number |
= |
{4}, |
pages |
= |
{728-732}, |
url |
= |
{http://dx.doi.org/10.1109/LGRS.2009.2024225}, |
keyword |
= |
{Markov random field model, synthetic aperture radar, urban remote sensing} |
} |
Abstract :
The advent of a new generation of synthetic aperture radar (SAR) satellites, such as Advanced SAR/Environmental Satellite (C-band), Phased Array Type L-band Synthetic Aperture Radar/Advanced Land Observing Satellite (L-band), and TerraSAR-X (X-band), offers advanced potentials for the detection of urban tissue. In this letter, we analyze and compare the performance of multiple types of SAR images in terms of band frequency, polarization, incidence angle, and spatial resolution for the purpose of operational urban areas delineation. As a reference for comparison, we use a proven method for extracting textural features based on a Gaussian Markov Random Field (GMRF) model. The results of urban areas delineation are quantitatively analyzed allowing performing intrasensor and intersensors comparisons. Sensitivity of the GMRF model with respect to texture window size and to spatial resolutions of SAR images is also investigated. Intrasensor comparison shows that polarization and incidence angle play a significant role in the potential of the GMRF model for the extraction of urban areas from SAR images. Intersensors comparison evidences the better performances of X-band images, acquired at 1-m spatial resolution, when resampled to resolutions of 5 and 10 m. |
|
23 - Detection of Object Motion Regions in Aerial Image Pairs with a Multi-Layer Markovian Model. C. Benedek and T. Szirányi and Z. Kato and J. Zerubia. IEEE Trans. Image Processing, 18(10): pages 2303-2315, October 2009. Keywords : Change detection, Aerial images, Camera motion, MRF.
@ARTICLE{benedekTIP09,
|
author |
= |
{Benedek, C. and Szirányi, T. and Kato, Z. and Zerubia, J.}, |
title |
= |
{Detection of Object Motion Regions in Aerial Image Pairs with a Multi-Layer Markovian Model}, |
year |
= |
{2009}, |
month |
= |
{October}, |
journal |
= |
{IEEE Trans. Image Processing}, |
volume |
= |
{18}, |
number |
= |
{10}, |
pages |
= |
{2303-2315}, |
url |
= |
{http://www.ieeexplore.ieee.org/xpls/abs_all.jsp?tp=&arnumber=5089480&isnumber=5234065?tag=1}, |
keyword |
= |
{Change detection, Aerial images, Camera motion, MRF} |
} |
Abstract :
We propose a new Bayesian method for detecting the regions of object displacements in aerial image pairs. We use a robust but coarse 2-D image registration algorithm. Our main challenge is to eliminate the registration errors from the extracted change map. We introduce a three-layer Markov Random Field model which integrates information from two different features, and ensures connected homogeneous regions in the segmented images. Validation is given on real aerial photos. |
|
24 - Change Detection in Optical Aerial Images by a Multi-Layer Conditional Mixed Markov Model. C. Benedek and T. Szirányi. IEEE Trans. Geoscience and Remote Sensing, 47(10): pages 3416-3430, October 2009. Keywords : mixed Markov models, Change detection, Aerial images, MAP estimation. Copyright : IEEE
@ARTICLE{benedekTGRS09,
|
author |
= |
{Benedek, C. and Szirányi, T.}, |
title |
= |
{Change Detection in Optical Aerial Images by a Multi-Layer Conditional Mixed Markov Model}, |
year |
= |
{2009}, |
month |
= |
{October}, |
journal |
= |
{IEEE Trans. Geoscience and Remote Sensing}, |
volume |
= |
{47}, |
number |
= |
{10}, |
pages |
= |
{3416-3430}, |
url |
= |
{http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?isnumber=5257398&arnumber=5169964&count=26&index=11}, |
keyword |
= |
{mixed Markov models, Change detection, Aerial images, MAP estimation} |
} |
Abstract :
In this paper we propose a probabilistic model for detecting relevant changes in registered aerial image pairs taken with the time differences of several years and in different seasonal conditions. The introduced approach, called the Conditional Mixed Markov model (CXM), is a combination of a mixed Markov model and a conditionally independent random field of signals. The model integrates global intensity statistics with local correlation and contrast features. A global energy optimization process ensures simultaneously optimal local feature selection and smooth, observation-consistent segmentation. Validation is given on real aerial image sets provided by the Hungarian Institute of Geodesy, Cartography and Remote Sensing and Google Earth. |
|
25 - Looking for shapes in two-dimensional, cluttered point clouds. A. Srivastava and I. H. Jermyn. IEEE Trans. Pattern Analysis and Machine Intelligence, 31(9): pages 1616-1629, September 2009. Keywords : Shape, Bayesian, Point cloud, Diffeomorphism, Sampling, Fisher-Rao. Copyright : ©2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
@ARTICLE{SrivastavaJermyn09,
|
author |
= |
{Srivastava, A. and Jermyn, I. H.}, |
title |
= |
{Looking for shapes in two-dimensional, cluttered point clouds}, |
year |
= |
{2009}, |
month |
= |
{September}, |
journal |
= |
{IEEE Trans. Pattern Analysis and Machine Intelligence}, |
volume |
= |
{31}, |
number |
= |
{9}, |
pages |
= |
{1616-1629}, |
url |
= |
{http://dx.doi.org/10.1109/TPAMI.2008.223}, |
pdf |
= |
{http://www-sop.inria.fr/members/Ian.Jermyn/publications/SrivastavaJermyn09.pdf}, |
keyword |
= |
{Shape, Bayesian, Point cloud, Diffeomorphism, Sampling, Fisher-Rao} |
} |
Abstract :
We study the problem of identifying shape classes in point clouds. These clouds contain sampled contours and are
corrupted by clutter and observation noise. Taking an analysis-by-synthesis approach, we simulate high-probability configurations of
sampled contours using models learnt from training data to evaluate the given test data. To facilitate simulations, we develop statistical
models for sources of (nuisance) variability: (i) shape variations within classes, (ii) variability in sampling continuous curves, (iii) pose
and scale variability, (iv) observation noise, and (v) points introduced by clutter. The variability in sampling closed curves into finite
points is represented by positive diffeomorphisms of a unit circle. We derive probability models on these functions using their squareroot
forms and the Fisher-Rao metric. Using a Monte Carlo approach, we simulate configurations from a joint prior on the shape-sample
space and compare them to the data using a likelihood function. Average likelihoods of simulated configurations lead to estimates of
posterior probabilities of different classes and, hence, Bayesian classification. |
|
26 - Blind deconvoltion for thin layered confocal imaging. P. Pankajakshan and B. Zhang and L. Blanc-Féraud and Z. Kam and J.C. Olivo-Marin and J. Zerubia. Applied Optics, 48(22): pages 4437-4448, August 2009. Keywords : Blind Deconvolution, Confocal microscopy, Inverse Problems. Copyright : Optical Society of America
@ARTICLE{ppankajakshan09b,
|
author |
= |
{Pankajakshan, P. and Zhang, B. and Blanc-Féraud, L. and Kam, Z. and Olivo-Marin, J.C. and Zerubia, J.}, |
title |
= |
{Blind deconvoltion for thin layered confocal imaging}, |
year |
= |
{2009}, |
month |
= |
{August}, |
journal |
= |
{Applied Optics}, |
volume |
= |
{48}, |
number |
= |
{22}, |
pages |
= |
{4437-4448}, |
pdf |
= |
{http://hal.inria.fr/docs/00/39/55/23/PDF/AppliedOpticsPaperTypesetting.pdf}, |
keyword |
= |
{Blind Deconvolution, Confocal microscopy, Inverse Problems} |
} |
Abstract :
We propose an alternate minimization algorithm for estimating the point-spread function (PSF) of a confocal laser scanning microscope and the specimen fluorescence distribution. A three-dimensional separable Gaussian model is used to restrict the PSF solution space and a constraint on the specimen is used so as to favor the stabilization and convergence of the algorithm. The results obtained from the simulation show that the PSF can be estimated to a high degree of accuracy, and those on real data show better deconvolution as compared to a full theoretical PSF model. |
|
27 - Hierarchical Multiple Markov Chain Model for Unsupervised Texture Segmentation. G. Scarpa and R. Gaetano and M. Haindl and J. Zerubia. IEEE Trans. on Image Processing, 18(8): pages 1830-1843, August 2009. Keywords : Hierarchical Image Models, Markov Process, Pattern Analysis.
@ARTICLE{ScarpaTIP09,
|
author |
= |
{Scarpa, G. and Gaetano, R. and Haindl, M. and Zerubia, J.}, |
title |
= |
{ Hierarchical Multiple Markov Chain Model for Unsupervised Texture Segmentation}, |
year |
= |
{2009}, |
month |
= |
{August}, |
journal |
= |
{IEEE Trans. on Image Processing}, |
volume |
= |
{18}, |
number |
= |
{8}, |
pages |
= |
{1830-1843}, |
url |
= |
{http://ieeexplore.ieee.org/xpls/abs_all.jsp?isnumber=5161445&arnumber=4914796&count=21&index=11}, |
keyword |
= |
{Hierarchical Image Models, Markov Process, Pattern Analysis} |
} |
Abstract :
In this paper, we present a novel multiscale texture model and a related algorithm for the unsupervised segmentation of color images. Elementary textures are characterized by their spatial interactions with neighboring regions along selected directions. Such interactions are modeled, in turn, by means of a set of Markov chains, one for each direction, whose parameters are collected in a feature vector that synthetically describes the texture. Based on the feature vectors, the texture are then recursively merged, giving rise to larger and more complex textures, which appear at different scales of observation: accordingly, the model is named Hierarchical Multiple Markov Chain (H-MMC). The Texture Fragmentation and Reconstruction (TFR) algorithm, addresses the unsupervised segmentation problem based on the H-MMC model. The “fragmentation” step allows one to find the elementary textures of the model, while the “reconstruction” step defines the hierarchical image segmentation based on a probabilistic measure (texture score) which takes into account both region scale and inter-region interactions. The performance of the proposed method was assessed through the Prague segmentation benchmark, based on mosaics of real natural textures, and also tested on real-world natural and remote sensing images. |
|
28 - Détection de flamants roses par processus ponctuels marqués pour l'estimation de la taille des populations. S. Descamps and X. Descombes and A. Béchet and J. Zerubia. Traitement du Signal, 26(2): pages 95-108, July 2009. Keywords : flamants roses.
@ARTICLE{flamTS,
|
author |
= |
{Descamps, S. and Descombes, X. and Béchet, A. and Zerubia, J.}, |
title |
= |
{Détection de flamants roses par processus ponctuels marqués pour l'estimation de la taille des populations}, |
year |
= |
{2009}, |
month |
= |
{July}, |
journal |
= |
{Traitement du Signal}, |
volume |
= |
{26}, |
number |
= |
{2}, |
pages |
= |
{95-108}, |
pdf |
= |
{http://documents.irevues.inist.fr/handle/2042/28809}, |
keyword |
= |
{flamants roses} |
} |
Résumé :
Nous présentons dans cet article une nouvelle technique de détection de flamants roses sur des images aériennes. Nous considérons une approche stochastique fondée sur les processus ponctuels marqués, aussi appelés processus objets. Ici, les objets représentent les flamants, qui sont modélisés par des ellipses. La densité associée au processus ponctuel marqué d'ellipses est définie par rapport à une mesure de Poisson. Dans un cadre gibbsien, le problème se réduit à la minimisation d'une énergie, qui est constituée d'un terme de régularisation (densité a priori), qui introduit des contraintes sur les objets et leurs interactions; et un terme d'attache aux données, qui permet de localiser sur l'image les flamants à extraire. Nous échantillonnons le processus pour extraire la configuration d'objets minimisant l'énergie grâce à une nouvelle dynamique de Naissances et Morts multiples, amenant finalement à une estimation du nombre total de flamants présents sur l'image. Cette approche donne des comptes avec une bonne précision comparée aux comptes manuels. De plus, elle ne nécessite aucun traitement préalable ou intervention manuelle, ce qui réduit considérablement le temps d'obtention des comptes. |
|
29 - A higher-order active contour model of a ‘gas of circles' and its application to tree crown extraction. P. Horvath and I. H. Jermyn and Z. Kato and J. Zerubia. Pattern Recognition, 42(5): pages 699-709, May 2009. Keywords : Shape, Higher-order, Active contour, Gas of circles, Tree Crown Extraction, Bayesian.
@ARTICLE{Horvath09,
|
author |
= |
{Horvath, P. and Jermyn, I. H. and Kato, Z. and Zerubia, J.}, |
title |
= |
{A higher-order active contour model of a ‘gas of circles' and its application to tree crown extraction}, |
year |
= |
{2009}, |
month |
= |
{May}, |
journal |
= |
{Pattern Recognition}, |
volume |
= |
{42}, |
number |
= |
{5}, |
pages |
= |
{699-709}, |
url |
= |
{http://dx.doi.org/10.1016/j.patcog.2008.09.008}, |
pdf |
= |
{http://www-sop.inria.fr/members/Ian.Jermyn/publications/Horvathetal09.pdf}, |
keyword |
= |
{Shape, Higher-order, Active contour, Gas of circles, Tree Crown Extraction, Bayesian} |
} |
Abstract :
We present a model of a ‘gas of circles’: regions in the image domain composed of a unknown
number of circles of approximately the same radius. The model has applications
to medical, biological, nanotechnological, and remote sensing imaging. The model is constructed
using higher-order active contours (HOACs) in order to include non-trivial prior
knowledge about region shape without constraining topology. The main theoretical contribution
is an analysis of the local minima of the HOAC energy that allows us to guarantee
stable circles, fix one of the model parameters, and constrain the rest. We apply the model
to tree crown extraction from aerial images of plantations. Numerical experiments both
confirm the theoretical analysis and show the empirical importance of the prior shape information. |
|
30 - Object Extraction Using a Stochastic Birth-and-Death Dynamics in Continuum. X. Descombes and R. Minlos and E. Zhizhina. Journal of Mathematical Imaging and Vision, 33(3): pages 347-359, 2009. Keywords : birth and death process, Marked point process, Object extraction. Copyright : Springer
@ARTICLE{DZM08,
|
author |
= |
{Descombes, X. and Minlos, R. and Zhizhina, E.}, |
title |
= |
{Object Extraction Using a Stochastic Birth-and-Death Dynamics in Continuum}, |
year |
= |
{2009}, |
journal |
= |
{Journal of Mathematical Imaging and Vision}, |
volume |
= |
{33}, |
number |
= |
{3}, |
pages |
= |
{347-359}, |
pdf |
= |
{http://dx.doi.org/10.1007/s10851-008-0117-y}, |
keyword |
= |
{birth and death process, Marked point process, Object extraction} |
} |
Abstract :
We define a new birth and death dynamics dealing with configurations of disks in the plane. We prove the convergence of the continuous process and propose a discrete scheme converging to the continuous case. This framework is developed to address image processing problems consisting in detecting a configuration of objects from a digital image. The derived algorithm is applied for tree crown extraction and bird detection from aerial images. The performance of this approach is shown on real data. |
|
31 - Efficient schemes for total variation minimization under constraints in image processing. P. Weiss and L. Blanc-Féraud and G. Aubert. SIAM journal on Scientific Computing, 31(3): pages 2047-2080, 2009. Keywords : Total variation, l1 norm, nesterov scheme, Rudin Osher Fatemi, fast optimization, real time. Copyright : Copyright Siam Society for Industrial and Applied
@ARTICLE{SIAM_JSC_PWEISS,
|
author |
= |
{Weiss, P. and Blanc-Féraud, L. and Aubert, G.}, |
title |
= |
{Efficient schemes for total variation minimization under constraints in image processing}, |
year |
= |
{2009}, |
journal |
= |
{SIAM journal on Scientific Computing}, |
volume |
= |
{31}, |
number |
= |
{3}, |
pages |
= |
{2047-2080}, |
url |
= |
{http://www.math.univ-toulouse.fr/~weiss/Publis/SIAM_JSC09_PWEISS.pdf}, |
pdf |
= |
{http://www.math.univ-toulouse.fr/~weiss/Publis/SIAM_JSC09_PWEISS.pdf}, |
keyword |
= |
{Total variation, l1 norm, nesterov scheme, Rudin Osher Fatemi, fast optimization, real time} |
} |
|
32 - Incorporating generic and specific prior knowledge in a multi-scale phase field model for road extraction from VHR images. T. Peng and I. H. Jermyn and V. Prinet and J. Zerubia. IEEE Trans. Geoscience and Remote Sensing, 1(2): pages 139--146, June 2008. Keywords : Dense urban areas, Geographic Information System (GIS), Multiscale, Road network, Variational methods, Very high resolution. Copyright : ©2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
@ARTICLE{Peng08b,
|
author |
= |
{Peng, T. and Jermyn, I. H. and Prinet, V. and Zerubia, J.}, |
title |
= |
{Incorporating generic and specific prior knowledge in a multi-scale phase field model for road extraction from VHR images}, |
year |
= |
{2008}, |
month |
= |
{June}, |
journal |
= |
{IEEE Trans. Geoscience and Remote Sensing}, |
volume |
= |
{1}, |
number |
= |
{2}, |
pages |
= |
{139--146}, |
url |
= |
{http://dx.doi.org/10.1109/JSTARS.2008.922318}, |
pdf |
= |
{http://www-sop.inria.fr/members/Ian.Jermyn/publications/PengetalTGRS08.pdf}, |
keyword |
= |
{Dense urban areas, Geographic Information System (GIS), Multiscale, Road network, Variational methods, Very high resolution} |
} |
Abstract :
This paper addresses the problem of updating digital road maps in dense urban areas by extracting the main road network from very high resolution (VHR) satellite images. Building on the work of Rochery et al. (2005), we represent the road region as a 'phase field'. In order to overcome the difficulties due to the complexity of the information contained in VHR images, we propose a multi-scale statistical data model. It enables the integration of segmentation results from coarse resolution, which furnishes a simplified representation of the data, and fine resolution, which provides accurate details. Moreover, an outdated GIS digital map is introduced into the model, providing specific prior knowledge of the road network. This new term balances the effect of the generic prior knowledge describing the geometric shape of road networks (i.e. elongated and of low-curvature) carried by a 'phase field higher-order active contour' term. Promising results on QuickBird panchromatic images and comparisons with several other methods demonstrate the effectiveness of our approach. |
|
33 - Automatic Building Extraction from DEMs using an Object Approach and Application to the 3D-city Modeling. F. Lafarge and X. Descombes and J. Zerubia and M. Pierrot-Deseilligny. Journal of Photogrammetry and Remote Sensing, 63(3): pages 365-381, May 2008. Keywords : Building extraction, 3D reconstruction, Digital Elevation Model, Stochastic geometry.
@ARTICLE{lafarge_jprs08,
|
author |
= |
{Lafarge, F. and Descombes, X. and Zerubia, J. and Pierrot-Deseilligny, M.}, |
title |
= |
{Automatic Building Extraction from DEMs using an Object Approach and Application to the 3D-city Modeling}, |
year |
= |
{2008}, |
month |
= |
{May}, |
journal |
= |
{Journal of Photogrammetry and Remote Sensing}, |
volume |
= |
{63}, |
number |
= |
{3}, |
pages |
= |
{365-381}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/2008_lafarge_jprs08.pdf}, |
keyword |
= |
{Building extraction, 3D reconstruction, Digital Elevation Model, Stochastic geometry} |
} |
Abstract :
In this paper, we present an automatic building extraction method from Digital Elevation Models based on an object approach.
First, a rough approximation of the building footprints is realized by a method based on marked point processes: the building
footprints are modeled by rectangle layouts. Then, these rectangular footprints are regularized by improving the connection
between the neighboring rectangles and detecting the roof height discontinuities. The obtained building footprints are structured
footprints: each element represents a specific part of an urban structure. Results are finally applied to a 3D-city modeling process. |
|
34 - Gap Filling of 3-D Microvascular Networs by Tensor Voting. L. Risser and F. Plouraboue and X. Descombes. IEEE Trans. Medical Imaging, 27(5): pages 674-687, May 2008. Copyright :
@ARTICLE{xavTMI3,
|
author |
= |
{Risser, L. and Plouraboue, F. and Descombes, X.}, |
title |
= |
{Gap Filling of 3-D Microvascular Networs by Tensor Voting}, |
year |
= |
{2008}, |
month |
= |
{May}, |
journal |
= |
{IEEE Trans. Medical Imaging}, |
volume |
= |
{27}, |
number |
= |
{5}, |
pages |
= |
{674-687}, |
pdf |
= |
{http://ieeexplore.ieee.org/iel5/42/4497376/04389807.pdf?isnumber=4497376&prod=JNL&arnumber=4389807&arSt=674&ared=687&arAuthor=Risser%2C+L.%3B+Plouraboue%2C+F.%3B+Descombes%2C+X.}, |
keyword |
= |
{} |
} |
|
35 - A marked point process of rectangles and segments for automatic analysis of Digital Elevation Models.. M. Ortner and X. Descombes and J. Zerubia. IEEE Trans. Pattern Analysis and Machine Intelligence, 2008. Keywords : Image procressing, Poisson point process, Stochastic geometry, Dense urban area, Digital Elevation Model, land register. Copyright :
@ARTICLE{ortner08,
|
author |
= |
{Ortner, M. and Descombes, X. and Zerubia, J.}, |
title |
= |
{A marked point process of rectangles and segments for automatic analysis of Digital Elevation Models.}, |
year |
= |
{2008}, |
journal |
= |
{IEEE Trans. Pattern Analysis and Machine Intelligence}, |
pdf |
= |
{http://hal.inria.fr/docs/00/27/88/82/PDF/ortner08.pdf}, |
keyword |
= |
{Image procressing, Poisson point process, Stochastic geometry, Dense urban area, Digital Elevation Model, land register} |
} |
|
36 - The Gibbs fields approach and related dynamics in image processing. X. Descombes and E. Zhizhina. Condensed Matter Physics, 11(2(54)): pages 293-312, 2008. Copyright : Institute for Condensed Matter
@ARTICLE{LNA08,
|
author |
= |
{Descombes, X. and Zhizhina, E.}, |
title |
= |
{The Gibbs fields approach and related dynamics in image processing}, |
year |
= |
{2008}, |
journal |
= |
{Condensed Matter Physics}, |
volume |
= |
{11}, |
number |
= |
{2(54)}, |
pages |
= |
{293-312}, |
keyword |
= |
{} |
} |
|
37 - Higher-Order Active Contour Energies for Gap Closure. M. Rochery and I. H. Jermyn and J. Zerubia. Journal of Mathematical Imaging and Vision, 29(1): pages 1-20, September 2007. Keywords : Gap closure, Higher-order, Active contour, Shape, Prior, Road network.
@ARTICLE{Rochery07,
|
author |
= |
{Rochery, M. and Jermyn, I. H. and Zerubia, J.}, |
title |
= |
{Higher-Order Active Contour Energies for Gap Closure}, |
year |
= |
{2007}, |
month |
= |
{September}, |
journal |
= |
{Journal of Mathematical Imaging and Vision}, |
volume |
= |
{29}, |
number |
= |
{1}, |
pages |
= |
{1-20}, |
url |
= |
{http://dx.doi.org/10.1007/s10851-007-0021-x}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/2007_Rochery07.pdf}, |
keyword |
= |
{Gap closure, Higher-order, Active contour, Shape, Prior, Road network} |
} |
Abstract :
One of the main difficulties in extracting line networks from images, and in particular road networks from remote sensing images, is the existence of interruptions in the data caused, for example, by occlusions. These can lead to gaps in the extracted network that do not correspond to gaps in the real network. In this paper, we describe a higher-order active contour energy that in addition to favouring network-like regions, includes a prior term penalizing networks containing ‘nearby opposing extremities’, thereby making gaps in the extracted network less likely. The new energy term causes such extremities to attract one another during gradient descent. They thus move towards one another and join, closing the gap. To minimize the energy, we develop specific techniques to handle the high-order derivatives that appear in the gradient descent equation. We present the results of automatic extraction of networks from real remote-sensing images, showing the ability of the model to overcome interruptions. |
|
38 - Gaussian approximations of fluorescence microscope point-spread function models. B. Zhang and J. Zerubia and J.C. Olivo-Marin. Applied Optics, 46(10): pages 1819-1829, April 2007. Copyright : © 2007 Optical Society of America
@ARTICLE{jz_applied_photo,
|
author |
= |
{Zhang, B. and Zerubia, J. and Olivo-Marin, J.C.}, |
title |
= |
{Gaussian approximations of fluorescence microscope point-spread function models}, |
year |
= |
{2007}, |
month |
= |
{April}, |
journal |
= |
{Applied Optics}, |
volume |
= |
{46}, |
number |
= |
{10}, |
pages |
= |
{1819-1829}, |
keyword |
= |
{} |
} |
Abstract :
We comprehensively study the least-squares Gaussian approximations of the diffraction-limited 2D-3D paraxial-nonparaxial point-spread functions (PSFs) of the wide field fluorescence microscope (WFFM), the laser scanning confocal microscope (LSCM), and the disk scanning confocal microscope (DSCM). The PSFs are expressed using the Debye integral. Under an L∞ constraint imposing peak matching, optimal and near-optimal Gaussian parameters are derived for the PSFs. With an L1 constraint imposing energy conservation, an optimal Gaussian parameter is derived for the 2D paraxial WFFM PSF. We found that (1) the 2D approximations are all very accurate; (2) no accurate Gaussian approximation exists for 3D WFFM PSFs; and (3) with typical pinhole sizes, the 3D approximations are accurate for the DSCM and nearly perfect for the LSCM. All the Gaussian parameters derived in this study are in explicit analytical form, allowing their direct use in practical applications. |
|
39 - Building Outline Extraction from Digital Elevation Models using Marked Point Processes. M. Ortner and X. Descombes and J. Zerubia. International Journal of Computer Vision, 72(2): pages 107-132, April 2007. Keywords : RJMCMC, Buildings, Stochastic geometry, Marked point process, Digital Elevation Model (DEM).
@ARTICLE{ortner_ijcv_05,
|
author |
= |
{Ortner, M. and Descombes, X. and Zerubia, J.}, |
title |
= |
{Building Outline Extraction from Digital Elevation Models using Marked Point Processes}, |
year |
= |
{2007}, |
month |
= |
{April}, |
journal |
= |
{International Journal of Computer Vision}, |
volume |
= |
{72}, |
number |
= |
{2}, |
pages |
= |
{107-132}, |
url |
= |
{http://www.springerlink.com/content/d563v16957427102/?p=873bd324c7c14049a45cc1f2905b5a86&pi=0}, |
keyword |
= |
{RJMCMC, Buildings, Stochastic geometry, Marked point process, Digital Elevation Model (DEM)} |
} |
|
40 - ant colony optimization for image regularization based on a non-stationary Markov modeling. S. Le Hegarat-Mascle and A. Kallel and X. Descombes. IEEE Trans. on Image Processing, 16(3): pages 865-878, March 2007. Keywords : Markov Random Fields, Ants colonization.
@ARTICLE{Ants07,
|
author |
= |
{Le Hegarat-Mascle, S. and Kallel, A. and Descombes, X.}, |
title |
= |
{ant colony optimization for image regularization based on a non-stationary Markov modeling}, |
year |
= |
{2007}, |
month |
= |
{March}, |
journal |
= |
{IEEE Trans. on Image Processing}, |
volume |
= |
{16}, |
number |
= |
{3}, |
pages |
= |
{865-878}, |
keyword |
= |
{Markov Random Fields, Ants colonization} |
} |
Abstract :
Ant colony optimization (ACO) has been proposed as a promising tool for regularization in image classification. The algorithm is applied here in a different way than the classical transposition of the graph color affectation problem. The ants collect information through the image, from one pixel to the others. The choice of the path is a function of the pixel label, favoring paths within the same image segment. We show that this corresponds to an automatic adaptation of the neighborhood to the segment form, and that it outperforms the fixed-form neighborhood used in classical Markov random field regularization techniques. The performance of this new approach is illustrated on a simulated image and on actual remote sensing images |
|
top of the page
These pages were generated by
|