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A few words on the scientific landscape

I D. Barbolosi, A. Iliadis, F. Hubert... (Marseille): tumor
growth, chemiotherapy, toxicity

I Th. Colin (Bordeaux) team MONC, start-up Nenuphar:
image analysis and prediction of tumor growth

I J. Clairambault, M. Doumic, D. Drasdo & B. Perthame, team
MAMBA (Paris): chronotherapy, tumor growth

I GDR MaMoVi, T. Lepoutre
I CEMRACS 2018, Biological and medical applications
I French American Innovation Day : Math & Medicine,

Houston, March 2018
with Marc Garbey

http://smf.emath.fr/content/barbolosi-dominique-de-la-petite-v%C3%A9role-au-xvii%C3%A8me-si%C3%A8cle-au-cancer-aujourdhui-ce-que-peuven
https://www.youtube.com/watch?v=ddfsUkq6oPk
https://who.rocq.inria.fr/Jean.Clairambault/JC4JMBCantheorems2012.pdf
http://gdr-mamovi.math.cnrs.fr/spip/spip.php?rubrique2
http://smai.emath.fr/cemracs/cemracs18/
https://scholars.houstonmethodist.org/en/persons/marc-garbey(00cdb466-4ba9-440c-b3d3-4aba177693c5).html


Objectives of the mathematical modeling: why could it be
useful ?

I To reproduce the evolution of tumors
(with equations and simulations...)

I To anticipate the evolution of tumors
I To anticipate the action of drugs or therapies
I To optimize the action of drugs or therapies

For instance: after resection of a primary tumor, why is a
preventative chemiotherapy useful ?
Difficulties for imaging techniques to detect micro-metastases :
can we predict in silico the growth of residual tumors ?



Basic ODE models

N(t): number of individuals (cells...) in a population, at time t.
Variations due to gain (birth) and loss (death)

d

dt N(t) = (λ− µ)N(t).

The solution is N(t) = e(λ−µ)tN0:
exponential growth if λ > µ, exponential extinction if λ < µ
(cf. Malthus, end of XVIIIth century).



The discrete viewpoint

Xn+1︸ ︷︷ ︸
pop. at time tn+1

= Xn︸︷︷︸
pop. at time tn

+ (λ− µ) h Xn︸ ︷︷ ︸
Variations due to gain/loss

h=time interval of observation=tn+1 − tn.

Here the rate of variation τn =
Xn+1 − Xn

Xn
is constant.

We can rewrite Xn = (1 + (λ− µ)h)n X0; with t = nh, h→ 0... it
yields the exponential law.
This is also the approach of Numerical Schemes with the
“Stability” issue :

the condition h ≤ (µ− λ)−1 enforces positivity when µ > λ.



(Slightly) more complex models
I Verhulst: the more important the population, the stronger

the loss rate/the lesser the gain rate

d

dt X (t) = a
(

1−X (t)

K

)
X (t), Xn+1 = Xn+ha

(
1−Xn

K

)
Xn.

The population grows when X < K , decays when X > K .
I Gompertz: the growth rate itself obeys the exponential law:

τ(t) =
X ′(t)

X (t)
=

d

dt ln
(X (t)

b

)
satisfies

d

dt τ = −aτ.

It yields d

dt X (t) = aX (t) ln
( b

X (t)

)
or

Xn+1 = Xn + haXn ln(b/Xn).



ODE models
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To incorporate the action of drugs

d

dt X (t) = X (t)R(X (t))︸ ︷︷ ︸
your favorite ODE model

−X (t)c(t)︸ ︷︷ ︸
acts against the growth

Take into account toxicity (pharmaco-kinetic/dynamic)
I c(t) = G(t, u) with u=given dose.
I Admissible set K = {u s. t. F (t, u)︸ ︷︷ ︸

action on healthy cells

≤ C}.

I Optimize min
u∈K︸︷︷︸

keeps the patient alive

{
min

0≤t≤T
Xu(t)

}
.



Bolus

d

dt X (t) = X (t)
[
R(X (t))− c(t)

]
Question: How can we find t 7→ c(t) that minimizes X (T )
with T =a certain degradation time... under a constraint on the
dose ∫ T

0
c(s)ds ≤ CM .

I Bang-bang strategy: to give CM at time T Go1

I In fact cε(t) =
CM
ε

1T−ε≤t≤T , with 0 < ε� 1.

I As ε→ 0: d

dt X̄ (t) = X̄ (t)R(X̄ (t)) and
X (T +) = X (T−)e−CM .



A multi-dimensional model: Leslie’s system, population
structured by age

xj=# of individuals with age j ∈ {1, ...,N}
fj > 0 fertility rate, tj+1,j transition rate j → j + 1.

L =



f1 f2 fn

t2,1 0 0

0 t3,2

0 0 tn,n−1 0


The model says: Le

X (k+1) = LX (k)

with X (k) = (x (k)
1 , ..., x (k)

n )



Leslie’s system ctn’d
λ ∈ C is an eigenvalue iff there exists x 6= 0 such that Lx = λx .

Here L has a very specific property: Ln has strictly positive entries
(primitive matrix).

Perron-Frobenius theorem: µ = max{|λ|, λ eigenvalue of L} is
an eigenvalue, it can be associated to a vector X̄ with non negative
components.
It governs the asymptotic behavior

X (k) ∼
k→∞

µk C(X (0)) X̄ .

Similar conclusion for the differential system d

dt X = (L− I)X :
blow up of the population if µ > 1, extinction of µ < 1.



What did we learn ?

Large time asymptotics often corresponds to observable behaviors.

We can try to exhibit structure properties (here L is a primitive
matrix) that govern this behavior.

We have efficient numerical procedures to compute directly the
leading eigenpair, and thus to have direct access to the asymptotic
state.



Towards PDE models: diffusion
Diffusion ∂tu = ∂2

xxu
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I the solution is spread
I the solution becomes instantaneously smooth



Towards PDE models: transport
Diffusion ∂tu + ∂x (cu) = 0 (here c > 0 constant)
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I the solution is... transported (finite speed)
I the solution keeps its regularity (singularities)

Note: numerical schemes solve instead ∂tu + ∂x (cu) = ε∂2
xxu,

0 < ε� 1,
hence regularization effect of numerical nature.



K. Iwata, K. Kawasaki, N. Shigesada’s model for tumor
growth

A Dynamical Model for the Growth and Size Distribution of Multiple Metastatic Tumor,
Journal of Theoretical Biology, 2000.

I Population of tumors structured by their size x∫ b
a ρ(t, x) dx = # of cells with size in [a, b] at time t.

I The growth rate depends on the size according to governed by
Gompertz’ law g(x)

I Each tumor produces new (small) cells with a rate β(x).
I McKendrick–Von Foerster type equation:

∂tρ+ ∂x (g(x)ρ) = 0, for t ≥ 0 and 1 < x < b,
ρ(0, x) = δx=1,

g(1)ρ(t, 1) =

∫ b

1
β(x)ρ(t, x) dx+β(xp(t)).

g(x) = ax ln
(

b
x

)
, β(x) = mxα, (typiquement α = 2/3)



we have a formula for the solution...
By using Laplace’s transform

ρ(t, x) =
a

mbα ln b
1
x

∞∑
k=1

eλk t
(

1− ln x
ln b

)λk/a−1 1
c(λk)

,

where the λk ’s are the roots of

a
mλk = F (1, λk

a + 1;α ln b) =
∞∑

n=0

1
(λk

a + 1) . . . (λk
a + n)

(α ln b)n,

and

c(λk) =
∞∑

n=0

(−α ln b)n

n!(λk
a + n)2

.



Eigenvalue problem



∂

∂x (g(x)N(x)) + λN(x) = 0,

g(1)N(1) =

∫ b

1
β(y)N(y)dy ,

−g(x)
∂

∂x Φ(x) + λΦ(x) = Φ(1)β(x),

λ > 0, N(x) ≥ 0, Φ(x) ≥ 0,
∫ b

1
NΦ = 1,

∫ b

1
N = 1.

There exists a unique triple (N, λ0,Φ) solution of this problem,
with N(x) > 0, Φ(x) > 0

An infinite-dimensional version of the Perron-Frabenius theorem...



Consequences

1. A conservation law:∫ b

1
Φ(x)ρ(x , t)e−λ0tdx =

∫ b

1
Φ(x)ρ0(x)dx

2. Estimates in L∞ : if cN(x) ≤ ρ0(x) ≤ CN(x) then
cN(x) ≤ ρ(t, x)e−λt ≤ CN(x)

3. and in Lp(Φ(x)N(x)dx).
4. The asymptotic behavior is driven by the leading eigenpair

ρ(t, x) ∼
t→∞

C eλtN(x).



Simulation (A. Devys’ Phd thesis)

Difficulties:
I the growth rate g vanishes at x = b,
I b � 1,
I the source at x = 1 is “large”.

For t ≥ 2000 jours ' 5.5 years the asymptotic profile is a fair
approximation of the solution.

Comparison with Tubbiana’s experimental data and incoroporation
of the action of treatments by the research group in Marseille



AABG model for tumor growth

Interacting populations, structuration in size and space
I size-structured tumor concentration (t, z) 7→ T (t, z).

The mass of the tumor changes due to
natural growth + cell division.

I a bath of passive cells that become either immune
((t, x) 7→ E (t, x)) or “collaborative” ((t, x) 7→ B(t, x)).

The model involves two distinct length scales; it assumes “scale
separation: z � x”.

It also means that we neglect some fine scale phenomena...



AABG model: evolution of tumor cells

∂tT + ∂z(VT )︸ ︷︷ ︸
“transport”=growth

= Q(T )−m(E ,T )︸ ︷︷ ︸
cell division - destruction by immune cells

Q(T )(t, z) = 4K (2z)T (2z)− K (z)T (z) (binary division)

The operator Q increases the number of tumoral cells
µ0(t) =

∫ ∞
0

f (t, z) dz , but does not change the total mass of

the tumor µ1(t) =

∫ ∞
0

zf (t, z) dz .

If m(E ,T ) = 0, we get
d

dt µ0(t) =

∫ ∞
0

K (z)T (t, z)dz ≥ 0,

d

dt µ1(t) = Vµ0(t) ≥ 0.



AABG model: motion of the immune cells
I a natural space diffusion,
I a natural death,
I a convection guiding the cells towards the tumor,
I conversion rates from the background passive cells, which are

activated by the presence of the tumor.

We are thus led to the following PDE

∂tE − d∆xE −∇x · (E∇x Φf) = −γfE + pfµ0S,

∂tB − d∆xB −∇x · (B∇x Φcoll) = −γcollB + pcollµ0S,

coupled with a “chemotactic-like” effect

∆x Φf = µ0σf , ∆Φcoll = µ0σcoll.



AABG model: interaction terms

I Coupling term m(E ,T ): immune response modeled by
Michaelis-Menten kinetics

m(E ,T )(t) =

∫
Ω

a(y)E (t, y)dy × T
α + T .

I The collaborative cells promote cell divisions: multiply the
division operator by

1 +

∫
Ω

b(y)
B(t, y)

1 + B(t, y)
dy .



Qualitative features

Numerically, we observe “extinction” or “explosion” depending on
the parameters.

0 5 10 15 20 25 30

t

0

0.5

1

1.5

2

2.5

3

1

Mass of tumor cells

0 5 10 15 20 25 30 35 40

t

2

2.5

3

3.5

4

4.5

5

5.5

6

1

Mass of tumor cells

An important difficulty (in any application in biology): how should
be fixed the parameters of the model ?



Qualitative features: residual distribution
In fact, one may reach a stable state with residual tumors... again
characterized by means of an eigenvalue problem.
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Possible mechanism...
Simplified problem

∂tT + V ∂zT = Q(T )− T
∫

Ω
a(x)E (t, x) dx , T (t, 0) = 0,

Q(T )(z) = 4`T (2z)− `T (z),

∂tE − d∆xE −∇x · (E∇x Φf) = −γfE + pfµ0S,

∆x Φf = µ0σf .

It yields1

d

dt µ0 = µ0

(
`−

∫
Ω

a(x)E (t, x)dx
)
,

and
d

dt µ1 = Vµ0 − µ1

∫
Ω

a(x)E (t, x) dx .

1µ0(t) =
∫

T (t, z) dz and µ1(t) =
∫

z T (t, z)dz



Possible mechanism...: stationary solutions

With ∂t → 0, we get the constraints

` =

∫
Ω

a(x)E (t, x)dx , Vµ0 = µ1`

and the stationary equations

V ∂zT = Q(T )− ` T = 0 eigenvalue pb. !

−d∆xE − µ0∇x · (E∇x Φ0) = −γfE + pfµ0S,

∆x Φ0 = σf .

It defines µ0 as a function of `...



Workplan

I Are the numerically observed behaviors qualitatively
relevant... or do we miss some important features ?

I Can we understand theoretically these behaviors: parameters
thresholds, large time asymptotics... ? What are the hidden
structure properties of the PDE system ? Can we relate them
to biological interpretation ?

I Analyse and improve the numerical tool (multi-D, parameter
investigation, stability issues...).

I Identify the parameters: some are known/observable from
experiments, reduce as far as possible the blind parameters.
What are the relevant units ? What should be produced by
numerics ? Compare to experimental data.

I Incorporate actions of drugs and therapy...



Bolus Bk1

I First X (t) ≤ X̄ (t), for 0 ≤ t < T :
Set U = ln(X ), G(U) = R(X ) = R(eU), so that

(U−Ū)′(t) = G(U(t))−G(Ū(t))−c(t) ≤
∫ U(t)

Ū(t)
G ′(σ) dσ ≤ C |U−Ū|(t).

It implies ([U − Ū]2+)′(t) ≤ 2C [U − Ū]2+.
I Second since R ′ ≤ 0, and thus G ′ ≤ 0, we have

(U − Ū)′(t) ≥ −c(t)

which yields U(T )− Ū(T−) ≥ 0−
∫ T

0
c(s)ds ≥ −CM ; thus

U(T )−Ū(T +) = U(T )−Ū(T−)+Ū(T−)−Ū(T +) ≥ −CM+CM = 0.



Leslie model Bk2

X (k+1)
1 = f1X (k)

1 + f2X (k)
2 + ...+ fnX (k)

n ,

X (k+1)
2 = t2,1 X (k)

1 ,

X (k+1)
3 = t3,2 X (k)

2 ,

...

X (k+1)
n = tn,n−1 X (k)

n−1




