Plan of the course

1. ToMATo for colocalizing cell types

[Bae et al. - 2022 - *STopover captures spatial colocalization and interaction in the tumor microenvironment using topological analysis in spatial transcriptomics data*]

2. Rips persistence for marker gene correlations

[Alsaleh et al. - 2022 - Spatial transcriptomic analysis reveals associations between genes and cellular topology in breast and prostate cancers]

3. Multi-persistence for immune cell arrangements

[Vipond et al. - 2021 - Multiparameter persistent homology landscapes identify immune cell spatial patterns in tumors] [Benjamin et al. - 2022 - *Multiscale topology classifies and quantifies cell types in subcellular spatial transcriptomics*]

4. Future research directions

Q: What are the relations and correlations between *spatial features* and *marker genes*? Can one influence the other?

Local point cloud $P = \{p_1, \dots, p_m\} \subset \mathbb{R}^2$

Q: What are the relations and correlations between *spatial features* and *marker genes*? Can one influence the other?

Q: What are the relations and correlations between *spatial features* and *marker genes*? Can one influence the other?

Q: What are the relations and correlations between *spatial features* and *marker genes*? Can one influence the other?

Def: Given a point cloud $P = \{P_1, \ldots, P_n\} \subset \mathbb{R}^d$, its Čech complex of radius r > 0 is the abstract simplicial complex C(P, r) s.t. vert(C(P, r)) = P and

 $\sigma = [P_{i_0}, P_{i_1}, \dots, P_{i_k}] \in C(P, r) \quad \text{iif} \quad \cap_{j=0}^k B(P_{i_j}, r) \neq \emptyset.$

Def: Given a point cloud $P = \{P_1, \ldots, P_n\} \subset \mathbb{R}^d$, its Čech complex of radius r > 0 is the abstract simplicial complex C(P, r) s.t. vert(C(P, r)) = P and

 $\sigma = [P_{i_0}, P_{i_1}, \dots, P_{i_k}] \in C(P, r) \quad \text{iif} \quad \bigcap_{j=0}^k B(P_{i_j}, r) \neq \emptyset.$

Def: Given a point cloud $P = \{P_1, \ldots, P_n\} \subset \mathbb{R}^d$, its Čech complex of radius r > 0 is the abstract simplicial complex C(P, r) s.t. vert(C(P, r)) = P and

$$\sigma = [P_{i_0}, P_{i_1}, \dots, P_{i_k}] \in C(P, r) \text{ iif } \cap_{j=0}^k B(P_{i_j}, r) \neq \emptyset.$$

Pbm: Čech complexes can be quite hard to compute.

Def: Given a point cloud $P = \{P_1, \ldots, P_n\} \subset \mathbb{R}^d$, its Čech complex of radius r > 0 is the abstract simplicial complex C(P, r) s.t. vert(C(P, r)) = P and

$$\sigma = [P_{i_0}, P_{i_1}, \dots, P_{i_k}] \in C(P, r) \quad \text{iif} \quad \bigcap_{j=0}^k B(P_{i_j}, r) \neq \emptyset.$$

Pbm: Čech complexes can be quite hard to compute.

Def: Given a point cloud $P = \{P_1, \ldots, P_n\} \subset \mathbb{R}^d$, its Rips complex of radius r > 0 is the abstract simplicial complex R(P, r) s.t. vert(R(P, r)) = P and

$$\sigma = [P_{i_0}, P_{i_1}, \dots, P_{i_k}] \in R(P, r) \text{ iif } ||P_{i_j} - P_{i_{j'}}|| \le 2r, \forall 1 \le j, j' \le k.$$

Def: Given a point cloud $P = \{P_1, \ldots, P_n\} \subset \mathbb{R}^d$, its Čech complex of radius r > 0 is the abstract simplicial complex C(P, r) s.t. vert(C(P, r)) = P and

$$\sigma = [P_{i_0}, P_{i_1}, \dots, P_{i_k}] \in C(P, r) \quad \text{iif} \quad \bigcap_{j=0}^k B(P_{i_j}, r) \neq \emptyset.$$

Pbm: Čech complexes can be quite hard to compute.

Def: Given a point cloud $P = \{P_1, \ldots, P_n\} \subset \mathbb{R}^d$, its Rips complex of radius r > 0 is the abstract simplicial complex R(P, r) s.t. vert(R(P, r)) = P and $\sigma = [P_{i_0}, P_{i_1}, \ldots, P_{i_k}] \in R(P, r)$ iif $||P_{i_j} - P_{i_{j'}}|| \le 2r, \forall 1 \le j, j' \le k$.

Remark: The 1-skeleton $\text{Skel}_1(R(P, r))$ of a Rips complex of radius r is also called the *r*-neighborhood graph of P.

Def: Given a point cloud $P = \{P_1, \ldots, P_n\} \subset \mathbb{R}^d$, its Čech complex of radius r > 0 is the abstract simplicial complex C(P, r) s.t. vert(C(P, r)) = P and

 $\sigma = [P_{i_0}, P_{i_1}, \dots, P_{i_k}] \in C(P, r) \quad \text{iif} \quad \cap_{j=0}^k B(P_{i_j}, r) \neq \emptyset.$

Def: Given a point cloud $P = \{P_1, \ldots, P_n\} \subset \mathbb{R}^d$, its Čech complex of radius r > 0 is the abstract simplicial complex C(P, r) s.t. vert(C(P, r)) = P and

$$\sigma = [P_{i_0}, P_{i_1}, \dots, P_{i_k}] \in C(P, r) \quad \text{iif} \quad \bigcap_{j=0}^k B(P_{i_j}, r) \neq \emptyset.$$

Pbm: Čech complexes can be quite hard to compute.

Def: Given a point cloud $P = \{P_1, \ldots, P_n\} \subset \mathbb{R}^d$, its Rips complex of radius r > 0 is the abstract simplicial complex R(P, r) s.t. vert(R(P, r)) = P and

$$\sigma = [P_{i_0}, P_{i_1}, \dots, P_{i_k}] \in R(P, r) \text{ iif } \|P_{i_j} - P_{i_{j'}}\| \le 2r, \forall 1 \le j, j' \le k.$$

Good news is that Rips and Čech complexes are related:

Def: Given a point cloud $P = \{P_1, \ldots, P_n\} \subset \mathbb{R}^d$, its Čech complex of radius r > 0 is the abstract simplicial complex C(P, r) s.t. vert(C(P, r)) = P and

$$\sigma = [P_{i_0}, P_{i_1}, \dots, P_{i_k}] \in C(P, r) \quad \text{iif} \quad \bigcap_{j=0}^k B(P_{i_j}, r) \neq \emptyset.$$

Pbm: Čech complexes can be quite hard to compute.

Def: Given a point cloud $P = \{P_1, \ldots, P_n\} \subset \mathbb{R}^d$, its Rips complex of radius r > 0 is the abstract simplicial complex R(P, r) s.t. vert(R(P, r)) = P and

$$\sigma = [P_{i_0}, P_{i_1}, \dots, P_{i_k}] \in R(P, r) \text{ if } ||P_{i_j} - P_{i_{j'}}|| \le 2r, \forall 1 \le j, j' \le k.$$

Good news is that Rips and Čech complexes are related:

Prop: $R(P, r/2) \subseteq C(P, r) \subseteq R(P, r)$.

Def: The Hausdorff distance between two subspaces X, Y of a common metric space (Z, d) is: $d_H(X, Y) = \max\{\sup_{y \in Y} d(y, X), \sup_{x \in X} d(x, Y)\}$ $= \max\{\sup_{y \in Y} \inf_{x \in X} d(y, x), \sup_{x \in X} \inf_{y \in Y} d(x, y)\}$

Def: The Hausdorff distance between two subspaces X, Y of a common metric space (Z, d) is: $d_H(X, Y) = \max\{\sup_{y \in Y} d(y, X), \sup_{x \in X} d(x, Y)\}$ $= \max\{\sup_{y \in Y} \inf_{x \in X} d(y, x), \sup_{x \in X} \inf_{y \in Y} d(x, y)\}$

Ex: Given a sampling $\hat{X}_n \subseteq X$, $d_H(\hat{X}_n, X)$ is a measure of sampling quality.

Def: The Hausdorff distance between two subspaces X, Y of a common metric space (Z, d) is: $d_H(X, Y) = \max\{\sup_{y \in Y} d(y, X), \sup_{x \in X} d(x, Y)\}$ $= \max\{\sup_{y \in Y} \inf_{x \in X} d(y, x), \sup_{x \in X} \inf_{y \in Y} d(x, y)\}$

Def: The Gromov-Hausdorff distance between metric spaces $(X, d_X), (Y, d_Y)$ is the Hausdorff distance of the best common isometric embedding: $d_{GH}((X, d_X), (Y, d_Y)) = \inf_{\gamma} d_H(\gamma(X), \gamma(Y)),$ where $d(\gamma(x), \gamma(x')) = d_X(x, x')$ and $d(\gamma(y), \gamma(y')) = d_X(y, y').$

Def: The Hausdorff distance between two subspaces X, Y of a common metric space (Z, d) is: $d_H(X, Y) = \max\{\sup_{y \in Y} d(y, X), \sup_{x \in X} d(x, Y)\}$ $= \max\{\sup_{y \in Y} \inf_{x \in X} d(y, x), \sup_{x \in X} \inf_{y \in Y} d(x, y)\}$

Def: The Gromov-Hausdorff distance between metric spaces $(X, d_X), (Y, d_Y)$ is metric distortion of the best correspondence: $d_{GH}((X, d_X), (Y, d_Y)) = \inf_{\mathcal{C}} \sup_{(x,y), (x',y') \in \mathcal{C}} |d_X(x, x') - d_Y(y, y')|,$ where $\mathcal{C} \subseteq X \times Y$ s.t. $\forall x, \exists y_x \in Y$ s.t. $(x, y_x) \in \mathcal{C}$ (and vice-versa).

Def: The Hausdorff distance between two subspaces X, Y of a common metric space (Z, d) is: $d_H(X, Y) = \max\{\sup_{y \in Y} d(y, X), \sup_{x \in X} d(x, Y)\}$ $= \max\{\sup_{y \in Y} \inf_{x \in X} d(y, x), \sup_{x \in X} \inf_{y \in Y} d(x, y)\}$

Def: The Gromov-Hausdorff distance between metric spaces $(X, d_X), (Y, d_Y)$ is metric distortion of the best correspondence: $d_{GH}((X, d_X), (Y, d_Y)) = \inf_{\mathcal{C}} \sup_{(x,y), (x',y') \in \mathcal{C}} |d_X(x, x') - d_Y(y, y')|,$ where $\mathcal{C} \subseteq X \times Y$ s.t. $\forall x, \exists y_x \in Y$ s.t. $(x, y_x) \in \mathcal{C}$ (and vice-versa).

Thm: If X and Y are common subspaces of a common metric space (Z, d), then $d_b(D_{Cech}(X), D_{Cech}(Y)) \le d_H(X, Y).$

[*Persistence stability for geometric complexes*, Chazal, de Silva, Oudot, Geom. Dedicata, 2013].

Thm: If X and Y are pre-compact metric spaces, then $d_b(D_{\text{Rips}}(X), D_{\text{Rips}}(Y)) \leq d_{GH}(X, Y).$

Rem: This result also holds for Čech and other families of filtrations (particular case of a more general theorem).

Representations of Persistence Diagrams

Representations of Persistence Diagrams

Q: Persistence diagrams are **not** Euclidean vectors? How can one compute Pearson correlation between marker gene expression and persistence diagrams?

Representations of Persistence Diagrams

Q: Persistence diagrams are **not** Euclidean vectors? How can one compute Pearson correlation between marker gene expression and persistence diagrams?

A: Use **representations**, which are mappings $\Phi : \mathcal{D} \to \mathcal{H}$ from the space of persistence diagrams to Hilbert spaces.

[Persistence Images: A Stable Vector Representation of Persistent Homology, Adams et al., JMLR, 2017]

[Persistence Images: A Stable Vector Representation of Persistent Homology, Adams et al., JMLR, 2017]

[Persistence Images: A Stable Vector Representation of Persistent Homology, Adams et al., JMLR, 2017]

[Persistence Images: A Stable Vector Representation of Persistent Homology, Adams et al., JMLR, 2017]

Prop: The following inequalities hold:

- $\|\operatorname{PI}(D) \operatorname{PI}(D')\|_{\infty} \leq C(w, \phi_p) d_1(D, D').$
- $\|\operatorname{PI}(D) \operatorname{PI}(D')\|_2 \le \sqrt{d} \cdot C(w, \phi_p) d_1(D, D').$

Rank function is defined as $\lambda(x, y) = \operatorname{rank} \iota_x^y$

Boundaries of rank function: $\lambda_i(t) = \sup\{s \ge 0 : \lambda(t - s, t + s) \ge i\}$ Landscape $\Lambda : \mathbb{R}^2 \to \mathbb{R}$ is defined as: $\Lambda(i, t) = \lambda_{\lfloor i \rfloor}(t)$ They can equivalently be defined as: $\Lambda(i, t) = i$ -th $\max\{\lambda_j(t)\}$

Prop: The following inequalities hold:

- $\|\Lambda(D) \Lambda(D')\|_{\infty} \leq d_b(D, D').$
- $\min\{1, C(D, D') \| \Lambda(D) \Lambda(D') \|_2\} \le d_2(D, D').$

The Deep Set architecture

Deep Set is a novel neural net architecture that is able to handle sets instead of finite dimensional vectors

Input: $\{x_1, ..., x_n\} \subset \mathbb{R}^d$ instead of $x \in \mathbb{R}^d$

The Deep Set architecture

Deep Set is a novel neural net architecture that is able to handle sets instead of finite dimensional vectors

Input: $\{x_1, ..., x_n\} \subset \mathbb{R}^d$ instead of $x \in \mathbb{R}^d$

Network is *permutation invariant*: $F(X) = \rho(\sum_{i} \phi(x_i))$

In practice: $\phi(x_i) = W \cdot x_i + b$

The Deep Set architecture

Deep Set is a novel neural net architecture that is able to handle sets instead of finite dimensional vectors

Input: $\{x_1, ..., x_n\} \subset \mathbb{R}^d$ instead of $x \in \mathbb{R}^d$

Network is *permutation invariant*: $F(X) = \rho(\sum_{i} \phi(x_i))$

Universality theorem

Thm: A function f is permutation invariant if $f(X) = \rho(\sum_i \phi(x_i))$ for some ρ and ϕ , whenever X is included in a *countable* space.

Permutation invariant layers generalize several TDA approaches

Permutation invariant layers generalize several TDA approaches

 \rightarrow persistence images

Permutation invariant layers generalize several TDA approaches

 \rightarrow persistence images \rightarrow landscapes

Permutation invariant layers generalize several TDA approaches

 \rightarrow persistence images \rightarrow landscapes \rightarrow Betti curves

[*Time Series Classification via Topological Data Analysis*, Umeda, Trans. Jap. Soc. for AI, 2017]

Permutation invariant layers generalize several TDA approaches

 \rightarrow persistence images \rightarrow landscapes \rightarrow Betti curves $A_{J_{a}}^{[7]}$

But not all of them since \mathbb{R}^2 is not countable

[*Time Series Classification via Topological Data Analysis*, Umeda, Trans. Jap. Soc. for AI, 2017]

Permutation invariant layers generalize several TDA approaches

 \rightarrow persistence images \rightarrow landscapes \rightarrow Betti curves [Time Series Classification via Topological Data Analysis, Umeda, Trans. Jap. Soc. for AI, 2017]

But not all of them since \mathbb{R}^2 is not countable

[PersLay: A Neural Network Layer for Persistence Diagrams and New Graph Topological Signatures, C., Chazal, Ike, Lacombe, Royer, Umeda, AISTATS, 2019]

Permutation invariant layers generalize several TDA approaches

 \rightarrow persistence images \rightarrow landscapes \rightarrow Betti curves $\frac{l}{d}$

[*Time Series Classification via Topological Data Analysis*, Umeda, Trans. Jap. Soc. for AI, 2017]

But not all of them since \mathbb{R}^2 is not countable

$$\operatorname{PersLay}(D) = \rho\left(\operatorname{op}\{w(p) \cdot \phi(p)\}_{p \in D}\right)$$

[PersLay: A Neural Network Layer for Persistence Diagrams and New Graph Topological Signatures, C., Chazal, Ike, Lacombe, Royer, Umeda, AISTATS, 2019]

Permutation invariant layers generalize several TDA approaches

 \rightarrow persistence images \rightarrow landscapes \rightarrow Betti curves $\frac{l}{d}$

[*Time Series Classification via Topological Data Analysis*, Umeda, Trans. Jap. Soc. for AI, 2017]

But not all of them since \mathbb{R}^2 is not countable

[PersLay: A Neural Network Layer for Persistence Diagrams and New Graph Topological Signatures, C., Chazal, Ike, Lacombe, Royer, Umeda, AISTATS, 2019]

Permutation invariant layers generalize several TDA approaches

 \rightarrow persistence images \rightarrow landscapes \rightarrow Betti curves \int_{t}^{t}

[*Time Series Classification via Topological Data Analysis*, Umeda, Trans. Jap. Soc. for AI, 2017]

But not all of them since \mathbb{R}^2 is not countable

[PersLay: A Neural Network Layer for Persistence Diagrams and New Graph Topological Signatures, C., Chazal, Ike, Lacombe, Royer, Umeda, AISTATS, 2019]

Permutation invariant layers generalize several TDA approaches

 \rightarrow persistence images \rightarrow landscapes \rightarrow Betti curves $\begin{bmatrix} t \\ t \end{bmatrix}$

[*Time Series Classification via Topological Data Analysis*, Umeda, Trans. Jap. Soc. for AI, 2017]

But not all of them since \mathbb{R}^2 is not countable

[PersLay: A Neural Network Layer for Persistence Diagrams and New Graph Topological Signatures, C., Chazal, Ike, Lacombe, Royer, Umeda, AISTATS, 2019]

Let G = (V, E) be a graph, A its adjacency matrix D its degree matrix

and $L_w(G) = I - D^{-1/2}AD^{-1/2}$ its normalized Laplacian.

[PersLay: A Neural Network Layer for Persistence Diagrams and New Graph Topological Signatures, C., Chazal, Ike, Lacombe, Royer, Umeda, AISTATS, 2019]

Let G = (V, E) be a graph, A its adjacency matrix D its degree matrix and $L_w(G) = I - D^{-1/2}AD^{-1/2}$ its normalized Laplacian. $L_w(G)$ decomposes on a orthonormal basis $\phi_1 \dots \phi_n$ with eigenvalues $0 \le \lambda_1 \le \dots \le \lambda_n \le 2$

[PersLay: A Neural Network Layer for Persistence Diagrams and New Graph Topological Signatures, C., Chazal, Ike, Lacombe, Royer, Umeda, AISTATS, 2019]

Let G = (V, E) be a graph, A its adjacency matrix D its degree matrix and $L_w(G) = I - D^{-1/2}AD^{-1/2}$ its normalized Laplacian. $L_w(G)$ decomposes on a orthonormal basis $\phi_1 \dots \phi_n$ with eigenvalues $0 \le \lambda_1 \le \dots \le \lambda_n \le 2$

[PersLay: A Neural Network Layer for Persistence Diagrams and New Graph Topological Signatures, C., Chazal, Ike, Lacombe, Royer, Umeda, AISTATS, 2019]

[PersLay: A Neural Network Layer for Persistence Diagrams and New Graph Topological Signatures, C., Chazal, Ike, Lacombe, Royer, Umeda, AISTATS, 2019]

[PersLay: A Neural Network Layer for Persistence Diagrams and New Graph Topological Signatures, C., Chazal, Ike, Lacombe, Royer, Umeda, AISTATS, 2019]

[PersLay: A Neural Network Layer for Persistence Diagrams and New Graph Topological Signatures, C., Chazal, Ike, Lacombe, Royer, Umeda, AISTATS, 2019]

[PersLay: A Neural Network Layer for Persistence Diagrams and New Graph Topological Signatures, C., Chazal, Ike, Lacombe, Royer, Umeda, AISTATS, 2019]

Method:

1. Extract local point clouds corresponding to several measurement spots.

Method:

- 1. Extract local point clouds corresponding to several measurement spots.
- 2. Compute persistence images (PIMs) associated to Rips PDs of local point clouds.

Method:

- 1. Extract local point clouds corresponding to several measurement spots.
- 2. Compute persistence images (PIMs) associated to Rips PDs of local point clouds.
- 3. Cluster Image Topological Features (ITFs), i.e., PIM pixels, and marker genes, and compute all pairwise correlations.

Method:

- 1. Extract local point clouds corresponding to several measurement spots.
- 2. Compute persistence images (PIMs) associated to Rips PDs of local point clouds.
- 3. Cluster Image Topological Features (ITFs), i.e., PIM pixels, and marker genes, and compute all pairwise correlations.

4. Retrieve marker genes with highest correlations and match these *topologically associated* genes (TAGs) against gene ontology.

Term ID	Term name	Adjusted p-value
GO:0005615	Extracellular space	5.57×10 ⁻⁵
GO:0070062	Extracellular exosome	1.27×10 ⁻³
GO:1903561	Extracellular vescicle	1.41×10 ⁻³
GO:0043230	Extracellular organelle	1.41×10^{-3}

Method:

- 1. Extract local point clouds corresponding to several measurement spots.
- 2. Compute persistence images (PIMs) associated to Rips PDs of local point clouds.
- 3. Cluster Image Topological Features (ITFs), i.e., PIM pixels, and marker genes, and compute all pairwise correlations.
- 4. Retrieve marker genes with highest correlations and match these *topologically associated* genes (TAGs) against gene ontology.
- 5. Predict TAG expression from ITFs only.

