
1. ToMATo for colocalizing cell types

2. Rips persistence for marker gene correlations

3. Multi-persistence for immune cell arrangements

4. Future research directions

Plan of the course

[Bae et al. - 2022 - STopover captures spatial colocalization and interaction in the
tumor microenvironment using topological analysis in spatial transcriptomics data]

[Alsaleh et al. - 2022 - Spatial transcriptomic analysis reveals associations
between genes and cellular topology in breast and prostate cancers]

[Vipond et al. - 2021 - Multiparameter persistent homology
landscapes identify immune cell spatial patterns in tumors]

[Benjamin et al. - 2022 - Multiscale topology classifies and
quantifies cell types in subcellular spatial transcriptomics]
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2. Rips persistence for marker gene correlations

Q:What are the relations and correlations between spatial features and marker
genes? Can one influence the other?

...

marker gene 1

marker gene 2

marker gene 3

marker gene n

0.2

0.4

0.5

0.1Local point cloud

P = {p1, . . . , pm} ⊂ R2

correlation?

A: Use Pearson correlation between
marker gene expression and Rips persis-
tence of local point clouds.
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Čech and (Vietoris)-Rips complexes

Def: Given a point cloud P = {P1, . . . , Pn} ⊂ Rd, its Čech complex of radius
r > 0 is the abstract simplicial complex C(P, r) s.t. vert(C(P, r)) = P and

σ = [Pi0 , Pi1 , . . . , Pik ] ∈ C(P, r) iif ∩k
j=0 B(Pij , r) ̸= ∅.
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Čech and (Vietoris)-Rips complexes

Def: Given a point cloud P = {P1, . . . , Pn} ⊂ Rd, its Čech complex of radius
r > 0 is the abstract simplicial complex C(P, r) s.t. vert(C(P, r)) = P and

σ = [Pi0 , Pi1 , . . . , Pik ] ∈ C(P, r) iif ∩k
j=0 B(Pij , r) ̸= ∅.
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Def: Given a point cloud P = {P1, . . . , Pn} ⊂ Rd, its Rips complex of radius
r > 0 is the abstract simplicial complex R(P, r) s.t. vert(R(P, r)) = P and

σ = [Pi0 , Pi1 , . . . , Pik ] ∈ R(P, r) iif ∥Pij − Pij′ ∥ ≤ 2r, ∀1 ≤ j, j′ ≤ k.

Remark: The 1-skeleton Skel1(R(P, r)) of a Rips complex of radius r is also
called the r-neighborhood graph of P .
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Čech and (Vietoris)-Rips complexes

Def: Given a point cloud P = {P1, . . . , Pn} ⊂ Rd, its Čech complex of radius
r > 0 is the abstract simplicial complex C(P, r) s.t. vert(C(P, r)) = P and

σ = [Pi0 , Pi1 , . . . , Pik ] ∈ C(P, r) iif ∩k
j=0 B(Pij , r) ̸= ∅.

Pbm: Čech complexes can be quite hard to compute.

Def: Given a point cloud P = {P1, . . . , Pn} ⊂ Rd, its Rips complex of radius
r > 0 is the abstract simplicial complex R(P, r) s.t. vert(R(P, r)) = P and

σ = [Pi0 , Pi1 , . . . , Pik ] ∈ R(P, r) iif ∥Pij − Pij′ ∥ ≤ 2r, ∀1 ≤ j, j′ ≤ k.

Good news is that Rips and Čech complexes are related:

Prop: R(P, r/2) ⊆ C(P, r) ⊆ R(P, r).



Stability properties for point clouds

Def: The Hausdorff distance between two subspacesX,Y of a common metric
space (Z, d) is:

dH(X,Y ) = max{supy∈Y d(y,X), supx∈Xd(x, Y )}
= max{supy∈Y infx∈Xd(y, x), supx∈X infy∈Y d(x, y)}

dH(X,Y ) = max{a, b}
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Ex: Given a sampling X̂n ⊆ X, dH(X̂n, X) is a measure of sampling quality.
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Def: The Hausdorff distance between two subspacesX,Y of a common metric
space (Z, d) is:

dH(X,Y ) = max{supy∈Y d(y,X), supx∈Xd(x, Y )}
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Stability properties for point clouds

Def: The Gromov-Hausdorff distance between metric spaces (X, dX), (Y, dY )
is metric distortion of the best correspondence:

dGH((X, dX), (Y, dY )) = infC sup(x,y),(x′,y′)∈C |dX(x, x′)− dY (y, y
′)|,

where C ⊆ X × Y s.t. ∀x, ∃yx ∈ Y s.t. (x, yx) ∈ C (and vice-versa).

Def: The Hausdorff distance between two subspacesX,Y of a common metric
space (Z, d) is:

dH(X,Y ) = max{supy∈Y d(y,X), supx∈Xd(x, Y )}
= max{supy∈Y infx∈Xd(y, x), supx∈X infy∈Y d(x, y)}

Thm: If X and Y are common subspaces of a common metric space (Z, d),
then db(DCech(X), DCech(Y )) ≤ dH(X,Y ).



Stability properties for point clouds

Thm: If X and Y are pre-compact metric spaces, then

Rem: This result also holds for Čech and other families of filtrations (particular
case of a more general theorem).

[Persistence stability for geometric
complexes, Chazal, de Silva, Oudot,
Geom. Dedicata, 2013].

db(DRips(X), DRips(Y )) ≤ dGH(X,Y ).



Representations of Persistence Diagrams



Representations of Persistence Diagrams

Q: Persistence diagrams are not Euclidean vectors? How can one compute
Pearson correlation between marker gene expression and persistence diagrams?



Representations of Persistence Diagrams

Q: Persistence diagrams are not Euclidean vectors? How can one compute
Pearson correlation between marker gene expression and persistence diagrams?

A: Use representations, which are mappings Φ : D → H from the space of
persistence diagrams to Hilbert spaces.



Persistence image [Persistence Images: A Stable Vector
Representation of Persistent Homol-
ogy, Adams et al., JMLR, 2017]

Compute PD Rotate PD DiscretizationPixelate
+ concatenate into vector



Persistence image [Persistence Images: A Stable Vector
Representation of Persistent Homol-
ogy, Adams et al., JMLR, 2017]

Compute PD Rotate PD DiscretizationDiscretization

Discretize plane into a grid:

For each grid pixel P , compute I(P ) =
∑

p∈D

∫ ∫
P
w(p) · ϕp.

Concatenate all I(P ) into a single vector PI(D).

Pixelate
+ concatenate into vector

Ex: ϕp = N (p, σ).



Persistence image [Persistence Images: A Stable Vector
Representation of Persistent Homol-
ogy, Adams et al., JMLR, 2017]

Compute PD Rotate PD Discretization

Weight functions that preserve stability
must satisfy w(p) → 0 when d(p,∆) → 0. 1

t
y

Pixelate
+ concatenate into vector

wt(x, y)

[Understanding the topology and the
geometry of the persistence diagram
space via optimal partial transport,
Divol, Lacombe, JACT, 2020]



Persistence image [Persistence Images: A Stable Vector
Representation of Persistent Homol-
ogy, Adams et al., JMLR, 2017]

Compute PD Rotate PD Discretization

Prop: The following inequalities hold:

• ∥PI(D)− PI(D′)∥∞ ≤ C(w, ϕp) d1(D,D′).

• ∥PI(D)− PI(D′)∥2 ≤
√
d · C(w, ϕp) d1(D,D′).

Pixelate
+ concatenate into vector
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Rotate PD
Compute rank function

Rank function is defined as λ(x, y) = rank ιyx

ιyx : H(f−1(−∞, x)) → H(f−1(−∞, y)) induced linear map

x ≤ y =⇒ f−1(−∞, x) ⊆ f−1(−∞, y)



Persistence landscape

[Statistical Topological Data Analysis using
Persistence Landscapes, Bubenik, JMLR, 2015]

Rotate PD
Compute rank function

Use boundaries of
rank function
Use boundaries of
rank function

Landscape Λ : R2 → R is defined as: Λ(i, t) = λ⌊i⌋(t)

Boundaries of rank function: λi(t) = sup{s ≥ 0 : λ(t− s, t+ s) ≥ i}

They can equivalently be defined as: Λ(i, t) = i-th max{λj(t)}



Persistence landscape

[Statistical Topological Data Analysis using
Persistence Landscapes, Bubenik, JMLR, 2015]

Rotate PD
Compute rank function

Use boundaries of
rank function

Prop: The following inequalities hold:

• ∥Λ(D)− Λ(D′)∥∞ ≤ db(D,D′).

• min{1, C(D,D′)∥Λ(D)− Λ(D′)∥2} ≤ d2(D,D′).
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of finite dimensional vectors

Input: {x1, ..., xn} ⊂ Rd instead of x ∈ Rd
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Deep Set is a novel neural net architecture that is able to handle sets instead
of finite dimensional vectors

Input: {x1, ..., xn} ⊂ Rd instead of x ∈ Rd

Network is permutation invariant: F (X) = ρ (
∑

i ϕ(xi))

x1
x2
x3

xn

x1
x2
x3 ...

...

sum

X

⇒ F ({x1, ..., xn}) = F ({xσ(1), ..., xσ(n)}), ∀σ

ϕ

In practice:

ρ

ϕ(xi) = W · xi + b

The Deep Set architecture [Deep Sets, Zaheer, Kottur, Ravanbakhsh, Poc-
zos, Salakhutdinov, Smola, NeurIPS, 2017]



Deep Set is a novel neural net architecture that is able to handle sets instead
of finite dimensional vectors

Input: {x1, ..., xn} ⊂ Rd instead of x ∈ Rd

Network is permutation invariant: F (X) = ρ (
∑

i ϕ(xi))

Universality theorem

Thm: A function f is permutation invariant iif f(X) = ρ (
∑

i ϕ(xi))
for some ρ and ϕ, whenever X is included in a countable space.

The Deep Set architecture [Deep Sets, Zaheer, Kottur, Ravanbakhsh, Poc-
zos, Salakhutdinov, Smola, NeurIPS, 2017]
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Permutation invariant layers generalize several TDA approaches

→ persistence images → landscapes

But not all of them since R2 is not countable

Using any permutation invariant operation (such as max, min, kth largest
value) allows to generalize other TDA approaches

→ Betti curves

PersLay(D) = ρ (op{w(p) · ϕ(p)}p∈D)
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Permutation invariant layers generalize several TDA approaches

→ persistence images → landscapes

But not all of them since R2 is not countable

Using any permutation invariant operation (such as max, min, kth largest
value) allows to generalize other TDA approaches

→ Betti curves

Weight function

PersLay(D) = ρ (op{w(p) · ϕ(p)}p∈D)

Permutation-invariant
operation

Application to PDs [PersLay: A Neural Network Layer for Persis-
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Umeda, AISTATS, 2019]
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Permutation invariant layers generalize several TDA approaches

→ persistence images → landscapes

But not all of them since R2 is not countable

Using any permutation invariant operation (such as max, min, kth largest
value) allows to generalize other TDA approaches

→ Betti curves

Weight function

Point transformation

PersLay(D) = ρ (op{w(p) · ϕ(p)}p∈D)

Permutation-invariant
operation

Application to PDs [PersLay: A Neural Network Layer for Persis-
tence Diagrams and New Graph Topological
Signatures, C., Chazal, Ike, Lacombe, Royer,
Umeda, AISTATS, 2019]

[Time Series Classifica-
tion via Topological Data
Analysis, Umeda, Trans.
Jap. Soc. for AI, 2017]



Λp1

Λp2

Λp3

p1

p2

p3

p4

ϕΛ : p 7→


Λp(t1)
Λp(t2)

...
Λp(tq)


Parameters t1, · · · , tq ∈ R

w(p) = 1 op = top-k

Application to PDs [PersLay: A Neural Network Layer for Persis-
tence Diagrams and New Graph Topological
Signatures, C., Chazal, Ike, Lacombe, Royer,
Umeda, AISTATS, 2019]



Γp1

Γp2

Γp3

Γp4

ϕΓ : p 7→


Γp(t1)
Γp(t2)

...
Γp(tq)


Parameters t1, · · · , tq ∈ R2

w(p) = wt((x, y)) op = sum

Application to PDs [PersLay: A Neural Network Layer for Persis-
tence Diagrams and New Graph Topological
Signatures, C., Chazal, Ike, Lacombe, Royer,
Umeda, AISTATS, 2019]



features

w(·)ϕ(·) op

op

op
ρ

w(·)ϕ(·)

w(·)ϕ(·)

opw(·)ϕ(·)

data

Application to PDs [PersLay: A Neural Network Layer for Persis-
tence Diagrams and New Graph Topological
Signatures, C., Chazal, Ike, Lacombe, Royer,
Umeda, AISTATS, 2019]
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Application to graph classification [PersLay: A Neural Network Layer for Persis-
tence Diagrams and New Graph Topological
Signatures, C., Chazal, Ike, Lacombe, Royer,
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Application to graph classification [PersLay: A Neural Network Layer for Persis-
tence Diagrams and New Graph Topological
Signatures, C., Chazal, Ike, Lacombe, Royer,
Umeda, AISTATS, 2019]



Application to graph classification

Weight function learnt

(after training on the
MUTAG dataset)

[PersLay: A Neural Network Layer for Persis-
tence Diagrams and New Graph Topological
Signatures, C., Chazal, Ike, Lacombe, Royer,
Umeda, AISTATS, 2019]
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Application to Pearson correlation
Method:
1. Extract local point clouds corresponding to several measurement spots.

2. Compute persistence images (PIMs) associated to Rips PDs of local point clouds.

3. Cluster Image Topological Features (ITFs), i.e., PIM pixels, and marker genes, and
compute all pairwise correlations.

4. Retrieve marker genes with highest correlations and match these topologically associated
genes (TAGs) against gene ontology.

5. Predict TAG expression from ITFs only.


