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3. Multi-persistence for immune cell arrangements

Q: How can one characterize the geometric arrangement of cells of a given
cell type in a way that is robust to cell type misclassifications?
Indeed, cell types are often obtained by integration with scRNA-seq and prone to errors...

A: Combine Rips filtration with density estimation to create an outlier-robust
analogue of persistence diagrams with 2-parameter PH.

Loop structure No loop structure
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Instability of Rips persistence

Rips persistence diagrams are known to be sensitive to outliers.

Hence, it seems natural to use density functions to prevent outliers from
destroying topological structures.
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2-parameter Persistent Homology

Pb: persistence diagrams are not well-defined for more than 1 parameter.
(no decomposition theorem)
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n-parameter Persistent Homology

A: Get back to the 1-parameter case by slicing + matching.

[Loiseaux et al. - 2022 - Fast, stable and ef-
ficient approximation of multi-parameter persis-
tence modules with MMA]

[Loiseaux et al. - 2023 - Stable vectoriza-
tion of multiparameter persistent homology us-
ing signed barcodes as measures]

Thm: ∥µf − µg∥K1 ≤ ∥f − g∥1

Representation with measure (of mass 0)

Thm: ∥K ∗ µf −K ∗ µg∥2 ≤ ∥µf − µg∥K2
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Application to cell arrangements
Method:
1. Extract local point clouds and cell types corresponding to several measurement spots.

2. Compute their multi-parameter persistence landscapes (MPLs) in dimension 1.

3. Visualize and predict cell types with MPLs.

4. Perform biological inference from additional cell annotations.

MPLs were also used recently for studying immune responses in kidney glomeruli from mice
with renal disease: a high MPL norm (in dimension 1) was shown to indicate high immune
activity, exhibiting ring structures as spatial patterns.

[Benjamin et al. - 2022 - Multiscale topology classifies and
quantifies cell types in subcellular spatial transcriptomics]
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Process (Spot in R2, Cell Type) pairs

Limitation: 2-parameter PH is robust to outliers, but
(a) Outliers are less and less likely to happen due to progress in integration techniques, thus
density could end up removing accurate cells.
(b) What about cells for which integration method is unsure (low confidence in the predicted
cell types)? This could even happen systematically in some regions with high density.
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Process (Spot in R2, Cell Type) pairs

To handle these, one could use the integration method confidence to process
(Spot in R2, Cell Type Probabilities) pairs with TDA!

Moreover, descriptors from n-parameter PH (approximate decompositions of
persistence modules, signed barcodes, multivariate Mappers) could be used.
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Other recent (August 2023) directions on synthetic data:

[Stolz et al. - 2023 - Relational persistent homology for multi-
species data with application to the tumor microenvironment]

[Yang et al. - 2023 - Topological classification of tumour-
immune interactions and dynamics]

Characterize time-dependent
spatial transcriptomics with
Zigzag and Vineyard Rips PH



Other Topics: Differentiating PDs

Define gradient of persistence with
∀p = (f(x+), f(x−)), ∇p = [∇f(x+),∇f(x−)]

https://github.com/GUDHI/TDA-tutorial/blob/master/Tuto-GUDHI-optimization.ipynb



Other Topics: Exploratory Data Analysis with Mapper

cell =

DNA

DNA
cell cycle

Count matrices of physically
close DNA fragments

Mapper (and other cover complexes) allow to
represent and visualize datasets

Hi-C datasets =

https://github.com/GUDHI/TDA-tutorial/blob/master/Tuto-GUDHI-cover-complex.ipynb



Thank you!


