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coordinate system so no need to have data with coordinates, or to embed
data in spaces with coordinates... but the metric (distance/similarity between
data points) is important.

Introduction: what is TDA?

• Deformation invariance: topological features are invariant under homeo-
morphism and reparameterization.

• Compressed representation: topology offers a set of tools to summarize
the data in compact ways while preserving its topological structure.



Problem: how to define the
topology of a data set?

Cons of topology:

• No direct access to topological/geometric information: need of intermediate
constructions built on top of the data.

• Distinguish topological “signal” from noise.

• Topological information may be multiscale.

• Statistical analysis of topological information.

Introduction: what is TDA?



Introduction: spatial transcriptomics data

Spatial transcriptomics data measures two things:

• the position (x and y coordinates) of each cell in a tissue,

• the expression of every gene of each cell in a tissue.
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2. Rips persistence for marker gene correlations

3. Multi-persistence for immune cell arrangements

4. Future research directions
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A: Compute the Jaccard similarity between stable spatial clusters computed
from marker gene expression as a colocalization quantifier.

1. ToMATo for colocalizing cell types

Q: How to characterize and encode the interactions between cell types and
markers using their spatial locations, i.e., their colocalizations?

−→ 0-dimensional persistent homology with ToMATo

Tumor

T lymphocytes

Overlap
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Motivation: the (in)stability of dendrograms

Small perturbations on the input data can induce wide changes in the structure
of the output dendrograms. However, the merging times (height of dendro-
gram nodes) remain stable.

Moreover, single linkage clustering keeps track of the evolution of the con-
nected components of the distance function to the data (for Euclidean data).
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Motivation: the (in)stability of dendrograms

However, building a hierarchy based on spatial proximity is still not a great idea
when there are outliers, since there is no stability of merging times anymore.

Another way to build a hierarchy is with the sublevel sets of a filter function.
For instance, using density as filter is at the core of mode-seeking algorithms.

δδ
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Given a continuous function f : X → R, we will consider the superlevel-set
filtration f−1([t,+∞)) for t from +∞ to −∞, and track the appearance
and merging of connected components / clusters in the process.

α

β

−∞

+∞

0-dimensional PH of function

Persistence barcode Persistence diagram

Df

requires some sort of connectivity,
e.g., neighborhood graph
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Moreover, 0-dimensional PH also remembers the connected components /
clusters that were merged together during the filtration process and builds a
hierarchy out of this information.

Building a hierarchy of clusters
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Moreover, 0-dimensional PH also remembers the connected components /
clusters that were merged together during the filtration process and builds a
hierarchy out of this information.

This means that, given a fixed threshold τ ≥ 0, one can even retrieve the
connected components / clusters associated to all the bars of length > τ !

0 ≤ τ ≤ α− β

Building a hierarchy of clusters

C1 C2 C3

Topological Mode Analysis Tool
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Moreover, 0-dimensional PH also remembers the connected components /
clusters that were merged together during the filtration process and builds a
hierarchy out of this information.

This means that, given a fixed threshold τ ≥ 0, one can even retrieve the
connected components / clusters associated to all the bars of length > τ !
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Moreover, 0-dimensional PH also remembers the connected components /
clusters that were merged together during the filtration process and builds a
hierarchy out of this information.

This means that, given a fixed threshold τ ≥ 0, one can even retrieve the
connected components / clusters associated to all the bars of length > τ !

γ − δ < τ ≤ +∞

p

q

s

Building a hierarchy of clusters
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Topological Mode Analysis Tool
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1. Define an order on the point cloud with filter f̂ (e.g., density estimator).

(sort data points by decreasing estimated filter values)
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ToMATo: Topological Mode Analysis Tool
[Persistence-Based Clustering
in Riemannian Manifolds,
Chazal, Oudot, Skraba,
Guibas, J. ACM, 2013]

→ Running time: O(n log n+ (n+m)α(n))

Given a neighborhood graph with n vertices and m edges:

→ Space complexity: O(n+m)

→ Main memory usage: O(n)

1. the algorithm sorts the vertices by decreasing density values,

2. and then makes a single pass through the vertex set, merging clusters
on the fly using a union-find data structure.



1. Define an order on the point cloud with a density estimator f̂ .

(sort data points by decreasing estimated density values)

2. Extend order to the graph edges (i.e., compute the upper-star filtration).

(f̂([u, v]) = min{f̂(u), f̂(v)})
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db(Df , Df̂ ) ≤ ∥f − f̂∥∞.

This seminal TDA result ensures that, given an underlying ground-truth func-
tion f : X → R, and an estimator f̂ : X → R of it, one has:

The Stability Theorem

−→ ToMATo uses hierarchies of clusters in a stable way
(contrary to dendrograms in traditional hierarchical clustering).
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Given a partial matching M : D ↔ D′:

a
bz
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∆(2)

Def: p-th diagram distance (extended metric):

dp(D,D′) := inf
M :D↔D′

cp(M)

Def: bottleneck distance:

db(D,D′) = d∞(D,D′) := lim
p→∞

dp(D,D′)

Distance between persistence diagrams
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Application to colocalization

Method:
1. Compute clusters associated to several gene markers with ToMATo and
compute pairwise Jaccard similarities:

0 ≤ J(C,C ′) := #{C∩C′}
#{C∪C′} ≤ 1

2. Retrieve the marker genes / ligand receptor pairs with highest Jaccard
similarities and match against gene ontology.

connectivity given by
adjacency between spots

One can also play the same game by using higher-dimensional homology, and
then predict phenotypes solely from the corresponding persistence diagrams.

[Aukerman et al. - 2022 - Persistent homology
based characterization of the breast cancer im-
mune microenvironment: a feasibility study]

τ chosen with
persistence gap


