
Topological Data Analysis and
Spatial Transcriptomics

Instructor:
Mathieu Carrière

Centre Inria d’Université Côte d’Azur
firstname.lastname@inria.fr

Introduction: what is TDA?

Roughly speaking, TDA allows to build features and descriptors from data
sets using topology (i.e., the presence of holes in arbitrary dimensions)...

Introduction: what is TDA?

Roughly speaking, TDA allows to build features and descriptors from data
sets using topology (i.e., the presence of holes in arbitrary dimensions)...

...but why is that interesting?

• Coordinate invariance: topological features/invariants do not rely on any
coordinate system so no need to have data with coordinates, or to embed
data in spaces with coordinates... but the metric (distance/similarity between
data points) is important.

Introduction: what is TDA?

• Coordinate invariance: topological features/invariants do not rely on any
coordinate system so no need to have data with coordinates, or to embed
data in spaces with coordinates... but the metric (distance/similarity between
data points) is important.

Introduction: what is TDA?

• Deformation invariance: topological features are invariant under homeo-
morphism and reparameterization.

• Coordinate invariance: topological features/invariants do not rely on any
coordinate system so no need to have data with coordinates, or to embed
data in spaces with coordinates... but the metric (distance/similarity between
data points) is important.

Introduction: what is TDA?

• Deformation invariance: topological features are invariant under homeo-
morphism and reparameterization.

• Compressed representation: topology offers a set of tools to summarize
the data in compact ways while preserving its topological structure.

Problem: how to define the
topology of a data set?

Cons of topology:

• No direct access to topological/geometric information: need of intermediate
constructions built on top of the data.

• Distinguish topological “signal” from noise.

• Topological information may be multiscale.

• Statistical analysis of topological information.

Introduction: what is TDA?

Introduction: spatial transcriptomics data

Spatial transcriptomics data measures two things:

• the position (x and y coordinates) of each cell in a tissue,

• the expression of every gene of each cell in a tissue.

1. ToMATo for colocalizing cell types

2. Rips persistence for marker gene correlations

3. Multi-persistence for immune cell arrangements

4. Future research directions

Plan of the course

1. ToMATo for colocalizing cell types

2. Rips persistence for marker gene correlations

3. Multi-persistence for immune cell arrangements

4. Future research directions

Plan of the course

[Bae et al. - 2022 - STopover captures spatial colocalization and interaction in the
tumor microenvironment using topological analysis in spatial transcriptomics data]

[Alsaleh et al. - 2022 - Spatial transcriptomic analysis reveals associations
between genes and cellular topology in breast and prostate cancers]

[Vipond et al. - 2021 - Multiparameter persistent homology
landscapes identify immune cell spatial patterns in tumors]

1. ToMATo for colocalizing cell types

2. Rips persistence for marker gene correlations

3. Multi-persistence for immune cell arrangements

4. Future research directions

Plan of the talk

[Bae et al. - 2022 - STopover captures spatial colocalization and interaction in the
tumor microenvironment using topological analysis in spatial transcriptomics data]

[Alsaleh et al. - 2022 - Spatial transcriptomic analysis reveals associations
between genes and cellular topology in breast and prostate cancers]

[Vipond et al. - 2021 - Multiparameter persistent homology
landscapes identify immune cell spatial patterns in tumors]

1. ToMATo for colocalizing cell types

1. ToMATo for colocalizing cell types

Q: How to characterize and encode the interactions between cell types and
markers using their spatial locations, i.e., their colocalizations?

Tumor

T lymphocytes

Overlap

1. ToMATo for colocalizing cell types

Q: How to characterize and encode the interactions between cell types and
markers using their spatial locations, i.e., their colocalizations?

A: Compute the Jaccard similarity between spatial clusters computed from
marker gene expression as a colocalization quantifier.

Tumor

T lymphocytes

Overlap

A: Compute the Jaccard similarity between stable spatial clusters computed
from marker gene expression as a colocalization quantifier.

1. ToMATo for colocalizing cell types

Q: How to characterize and encode the interactions between cell types and
markers using their spatial locations, i.e., their colocalizations?

−→ 0-dimensional persistent homology with ToMATo

Tumor

T lymphocytes

Overlap

Input: A set Xn = {x1, . . . , xn} in a metric space (X, d) (or just a matrix
of pairwise dissimilarities ((di,j))i,j).

Given two clusters C,C ′ ⊆ Xn let d(C,C ′) = infx∈C,x′∈C′ d(x, x′).

Motivation: the (in)stability of dendrograms

Input: A set Xn = {x1, . . . , xn} in a metric space (X, d) (or just a matrix
of pairwise dissimilarities ((di,j))i,j).

Given two clusters C,C ′ ⊆ Xn let d(C,C ′) = infx∈C,x′∈C′ d(x, x′).

1. Start with a clustering where
each xi is a cluster.

2. At each step, merge the two clos-
est clusters until it remains a single
cluster (containing all data points).

Output: the resulting dendrogram.

Agglomerative (bottom-up)

Motivation: the (in)stability of dendrograms

Input: A set Xn = {x1, . . . , xn} in a metric space (X, d) (or just a matrix
of pairwise dissimilarities ((di,j))i,j).

Given two clusters C,C ′ ⊆ Xn let d(C,C ′) = infx∈C,x′∈C′ d(x, x′).

1. Start with a clustering where
each xi is a cluster.

2. At each step, merge the two clos-
est clusters until it remains a single
cluster (containing all data points).

Output: the resulting dendrogram.

sup: complete linkage
1

|C|·|C′|
∑

: average linkageAgglomerative (bottom-up)

Motivation: the (in)stability of dendrograms

Input: A set Xn = {x1, . . . , xn} in a metric space (X, d) (or just a matrix
of pairwise dissimilarities ((di,j))i,j).

Given two clusters C,C ′ ⊆ Xn let d(C,C ′) = infx∈C,x′∈C′ d(x, x′).

1. Start with a clustering where
each xi is a cluster.

2. At each step, merge the two clos-
est clusters until it remains a single
cluster (containing all data points).

Output: the resulting dendrogram.

Agglomerative (bottom-up)

Motivation: the (in)stability of dendrograms

Input: A set Xn = {x1, . . . , xn} in a metric space (X, d) (or just a matrix
of pairwise dissimilarities ((di,j))i,j).

Given two clusters C,C ′ ⊆ Xn let d(C,C ′) = infx∈C,x′∈C′ d(x, x′).

1. Start with a clustering where
each xi is a cluster.

2. At each step, merge the two clos-
est clusters until it remains a single
cluster (containing all data points).

Output: the resulting dendrogram.

Agglomerative (bottom-up)

Motivation: the (in)stability of dendrograms

Input: A set Xn = {x1, . . . , xn} in a metric space (X, d) (or just a matrix
of pairwise dissimilarities ((di,j))i,j).

Given two clusters C,C ′ ⊆ Xn let d(C,C ′) = infx∈C,x′∈C′ d(x, x′).

1. Start with a clustering where
each xi is a cluster.

2. At each step, merge the two clos-
est clusters until it remains a single
cluster (containing all data points).

Output: the resulting dendrogram.

Agglomerative (bottom-up)

Motivation: the (in)stability of dendrograms

Input: A set Xn = {x1, . . . , xn} in a metric space (X, d) (or just a matrix
of pairwise dissimilarities ((di,j))i,j).

Given two clusters C,C ′ ⊆ Xn let d(C,C ′) = infx∈C,x′∈C′ d(x, x′).

1. Start with a clustering where
each xi is a cluster.

2. At each step, merge the two clos-
est clusters until it remains a single
cluster (containing all data points).

Output: the resulting dendrogram.

Agglomerative (bottom-up)

Motivation: the (in)stability of dendrograms

Input: A set Xn = {x1, . . . , xn} in a metric space (X, d) (or just a matrix
of pairwise dissimilarities ((di,j))i,j).

Given two clusters C,C ′ ⊆ Xn let d(C,C ′) = infx∈C,x′∈C′ d(x, x′).

1. Start with a clustering where
each xi is a cluster.

2. At each step, merge the two clos-
est clusters until it remains a single
cluster (containing all data points).

Output: the resulting dendrogram.

Agglomerative (bottom-up)

Motivation: the (in)stability of dendrograms

Input: A set Xn = {x1, . . . , xn} in a metric space (X, d) (or just a matrix
of pairwise dissimilarities ((di,j))i,j).

Given two clusters C,C ′ ⊆ Xn let d(C,C ′) = infx∈C,x′∈C′ d(x, x′).

1. Start with a clustering where
each xi is a cluster.

2. At each step, merge the two clos-
est clusters until it remains a single
cluster (containing all data points).

Output: the resulting dendrogram.

Agglomerative (bottom-up)

Motivation: the (in)stability of dendrograms

Motivation: the (in)stability of dendrograms

Motivation: the (in)stability of dendrograms

Motivation: the (in)stability of dendrograms

Motivation: the (in)stability of dendrograms

Motivation: the (in)stability of dendrograms

Motivation: the (in)stability of dendrograms

Motivation: the (in)stability of dendrograms

Motivation: the (in)stability of dendrograms

Small perturbations on the input data can induce wide changes in the structure
of the output dendrograms. However, the merging times (height of dendro-
gram nodes) remain stable.

Motivation: the (in)stability of dendrograms

Small perturbations on the input data can induce wide changes in the structure
of the output dendrograms. However, the merging times (height of dendro-
gram nodes) remain stable.

Moreover, single linkage clustering keeps track of the evolution of the con-
nected components of the distance function to the data (for Euclidean data).

Motivation: the (in)stability of dendrograms

However, building a hierarchy based on spatial proximity is still not a great idea
when there are outliers, since there is no stability of merging times anymore.

Motivation: the (in)stability of dendrograms

However, building a hierarchy based on spatial proximity is still not a great idea
when there are outliers, since there is no stability of merging times anymore.

Motivation: the (in)stability of dendrograms

However, building a hierarchy based on spatial proximity is still not a great idea
when there are outliers, since there is no stability of merging times anymore.

δδ

Motivation: the (in)stability of dendrograms

However, building a hierarchy based on spatial proximity is still not a great idea
when there are outliers, since there is no stability of merging times anymore.

Another way to build a hierarchy is with the sublevel sets of a filter function.
For instance, using density as filter is at the core of mode-seeking algorithms.

δδ

X

R
t

Given a continuous function f : X → R, we will consider the superlevel-set
filtration f−1([t,+∞)) for t from +∞ to −∞, and track the appearance
and merging of connected components / clusters in the process.

0-dimensional PH of function

X

R

Given a continuous function f : X → R, we will consider the superlevel-set
filtration f−1([t,+∞)) for t from +∞ to −∞, and track the appearance
and merging of connected components / clusters in the process.

0-dimensional PH of function

X

R

Given a continuous function f : X → R, we will consider the superlevel-set
filtration f−1([t,+∞)) for t from +∞ to −∞, and track the appearance
and merging of connected components / clusters in the process.

0-dimensional PH of function

X

R

Given a continuous function f : X → R, we will consider the superlevel-set
filtration f−1([t,+∞)) for t from +∞ to −∞, and track the appearance
and merging of connected components / clusters in the process.

0-dimensional PH of function

X

R

Given a continuous function f : X → R, we will consider the superlevel-set
filtration f−1([t,+∞)) for t from +∞ to −∞, and track the appearance
and merging of connected components / clusters in the process.

0-dimensional PH of function

X

R

Given a continuous function f : X → R, we will consider the superlevel-set
filtration f−1([t,+∞)) for t from +∞ to −∞, and track the appearance
and merging of connected components / clusters in the process.

0-dimensional PH of function

X

R

Given a continuous function f : X → R, we will consider the superlevel-set
filtration f−1([t,+∞)) for t from +∞ to −∞, and track the appearance
and merging of connected components / clusters in the process.

0-dimensional PH of function

X

R

Given a continuous function f : X → R, we will consider the superlevel-set
filtration f−1([t,+∞)) for t from +∞ to −∞, and track the appearance
and merging of connected components / clusters in the process.

0-dimensional PH of function

X

R

α

β

Given a continuous function f : X → R, we will consider the superlevel-set
filtration f−1([t,+∞)) for t from +∞ to −∞, and track the appearance
and merging of connected components / clusters in the process.

α

β

−∞

+∞

0-dimensional PH of function

Persistence barcode Persistence diagram

Df

X

R

α

β

Given a continuous function f : X → R, we will consider the superlevel-set
filtration f−1([t,+∞)) for t from +∞ to −∞, and track the appearance
and merging of connected components / clusters in the process.

α

β

−∞

+∞

0-dimensional PH of function

Persistence barcode Persistence diagram

Df

requires some sort of connectivity,
e.g., neighborhood graph

X

R p

q

s

α

β

γ

δ

Moreover, 0-dimensional PH also remembers the connected components /
clusters that were merged together during the filtration process and builds a
hierarchy out of this information.

Building a hierarchy of clusters

X

R p

q

s

α

β

γ

δ

Moreover, 0-dimensional PH also remembers the connected components /
clusters that were merged together during the filtration process and builds a
hierarchy out of this information.

This means that, given a fixed threshold τ ≥ 0, one can even retrieve the
connected components / clusters associated to all the bars of length > τ !

0 ≤ τ ≤ α− β

Building a hierarchy of clusters

C1 C2 C3

Topological Mode Analysis Tool

X

R

α

β

γ

δ

Moreover, 0-dimensional PH also remembers the connected components /
clusters that were merged together during the filtration process and builds a
hierarchy out of this information.

This means that, given a fixed threshold τ ≥ 0, one can even retrieve the
connected components / clusters associated to all the bars of length > τ !

α− β < τ ≤ γ − δ

p

q

s

Building a hierarchy of clusters

C1 C2

Topological Mode Analysis Tool

X

R

α

β

γ

δ

Moreover, 0-dimensional PH also remembers the connected components /
clusters that were merged together during the filtration process and builds a
hierarchy out of this information.

This means that, given a fixed threshold τ ≥ 0, one can even retrieve the
connected components / clusters associated to all the bars of length > τ !

γ − δ < τ ≤ +∞

p

q

s

Building a hierarchy of clusters

C1

Topological Mode Analysis Tool

ToMATo: Topological Mode Analysis Tool
[Persistence-Based Clustering
in Riemannian Manifolds,
Chazal, Oudot, Skraba,
Guibas, J. ACM, 2013]

1. Define an order on the point cloud with filter f̂ (e.g., density estimator).

(sort data points by decreasing estimated filter values)

ToMATo: Topological Mode Analysis Tool
[Persistence-Based Clustering
in Riemannian Manifolds,
Chazal, Oudot, Skraba,
Guibas, J. ACM, 2013]

1. Define an order on the point cloud with filter f̂ (e.g., density estimator).

(sort data points by decreasing estimated filter values)

2. Extend order to the graph edges (i.e., compute the upper-star filtration).

(f̂([u, v]) = min{f̂(u), f̂(v)})

ToMATo: Topological Mode Analysis Tool
[Persistence-Based Clustering
in Riemannian Manifolds,
Chazal, Oudot, Skraba,
Guibas, J. ACM, 2013]

1. Define an order on the point cloud with filter f̂ (e.g., density estimator).

(sort data points by decreasing estimated filter values)

2. Extend order to the graph edges (i.e., compute the upper-star filtration).

(f̂([u, v]) = min{f̂(u), f̂(v)})

3. Compute the 0-dimensional persistence diagram of this filtration.

(apply 0-dimensional persistence algorithm → union-find data structure)

ToMATo: Topological Mode Analysis Tool
[Persistence-Based Clustering
in Riemannian Manifolds,
Chazal, Oudot, Skraba,
Guibas, J. ACM, 2013]

→ Running time: O(n log n+ (n+m)α(n))

Given a neighborhood graph with n vertices and m edges:

→ Space complexity: O(n+m)

→ Main memory usage: O(n)

1. the algorithm sorts the vertices by decreasing density values,

2. and then makes a single pass through the vertex set, merging clusters
on the fly using a union-find data structure.

1. Define an order on the point cloud with a density estimator f̂ .

(sort data points by decreasing estimated density values)

2. Extend order to the graph edges (i.e., compute the upper-star filtration).

(f̂([u, v]) = min{f̂(u), f̂(v)})

3. Compute the 0-dimensional persistence diagram of this filtration.

(apply 0-dimensional persistence algorithm → union-find data structure)

Estimating the correct number of clusters

topological

noise

1. Define an order on the point cloud with a density estimator f̂ .

(sort data points by decreasing estimated density values)

2. Extend order to the graph edges (i.e., compute the upper-star filtration).

(f̂([u, v]) = min{f̂(u), f̂(v)})

3. Compute the 0-dimensional persistence diagram of this filtration.

(apply 0-dimensional persistence algorithm → union-find data structure)

Estimating the correct number of clusters

background noise

1. Define an order on the point cloud with a density estimator f̂ .

(sort data points by decreasing estimated density values)

2. Extend order to the graph edges (i.e., compute the upper-star filtration).

(f̂([u, v]) = min{f̂(u), f̂(v)})

3. Compute the 0-dimensional persistence diagram of this filtration.

(apply 0-dimensional persistence algorithm → union-find data structure)

Estimating the correct number of clusters

6 prominent
peaks

1. Define an order on the point cloud with a density estimator f̂ .

(sort data points by decreasing estimated density values)

2. Extend order to the graph edges (i.e., compute the upper-star filtration).

(f̂([u, v]) = min{f̂(u), f̂(v)})

3. Compute the 0-dimensional persistence diagram of this filtration.

(apply 0-dimensional persistence algorithm → union-find data structure)

Estimating the correct number of clusters

τ

pr
om
in
en
ce
ga
p

1. Define an order on the point cloud with a density estimator f̂ .

(sort data points by decreasing estimated density values)

2. Extend order to the graph edges (i.e., compute the upper-star filtration).

(f̂([u, v]) = min{f̂(u), f̂(v)})

3. Compute the 0-dimensional persistence diagram of this filtration.

(apply 0-dimensional persistence algorithm → union-find data structure)

Estimating the correct number of clusters

X

R

db(Df , Df̂) ≤ ∥f − f̂∥∞.

This seminal TDA result ensures that, given an underlying ground-truth func-
tion f : X → R, and an estimator f̂ : X → R of it, one has:

The Stability Theorem

X

R

db(Df , Df̂) ≤ ∥f − f̂∥∞.

This seminal TDA result ensures that, given an underlying ground-truth func-
tion f : X → R, and an estimator f̂ : X → R of it, one has:

The Stability Theorem

−→ ToMATo uses hierarchies of clusters in a stable way
(contrary to dendrograms in traditional hierarchical clustering).

Persistence diagram ≡ finite multiset in the open half-plane ∆× R>0.

∆(2)

(1) (1)

Distance between persistence diagrams

Persistence diagram ≡ finite multiset in the open half-plane ∆× R>0.

- cost of a matched pair (a, b) ∈ M : cp(a, b) := ∥a− b∥p∞,

- cost of an unmatched point c ∈ D ⊔D′: cp(c) := ∥c− c̄∥p∞,

- cost of M :

cp(M) :=

(∑
(a, b) matched

cp(a, b) +
∑

c unmatched

cp(c)

)1/p

Given a partial matching M : D ↔ D′:

a
bz

z̄

∆(2)

Distance between persistence diagrams

Persistence diagram ≡ finite multiset in the open half-plane ∆× R>0.

- cost of a matched pair (a, b) ∈ M : cp(a, b) := ∥a− b∥p∞,

- cost of an unmatched point c ∈ D ⊔D′: cp(c) := ∥c− c̄∥p∞,

- cost of M :

cp(M) :=

(∑
(a, b) matched

cp(a, b) +
∑

c unmatched

cp(c)

)1/p

Given a partial matching M : D ↔ D′:

a
bz

z̄

∆(2)

Def: p-th diagram distance (extended metric):

dp(D,D′) := inf
M :D↔D′

cp(M)

Def: bottleneck distance:

db(D,D′) = d∞(D,D′) := lim
p→∞

dp(D,D′)

Distance between persistence diagrams

Application to colocalization

Method:
1. Compute clusters associated to several gene markers with ToMATo and
compute pairwise Jaccard similarities:

0 ≤ J(C,C ′) := #{C∩C′}
#{C∪C′} ≤ 1

Application to colocalization

Method:
1. Compute clusters associated to several gene markers with ToMATo and
compute pairwise Jaccard similarities:

0 ≤ J(C,C ′) := #{C∩C′}
#{C∪C′} ≤ 1

connectivity given by
adjacency between spots

τ chosen with
persistence gap

Application to colocalization

Method:
1. Compute clusters associated to several gene markers with ToMATo and
compute pairwise Jaccard similarities:

0 ≤ J(C,C ′) := #{C∩C′}
#{C∪C′} ≤ 1

2. Retrieve the marker genes / ligand receptor pairs with highest Jaccard
similarities and match against gene ontology.

connectivity given by
adjacency between spots

τ chosen with
persistence gap

Application to colocalization

Method:
1. Compute clusters associated to several gene markers with ToMATo and
compute pairwise Jaccard similarities:

0 ≤ J(C,C ′) := #{C∩C′}
#{C∪C′} ≤ 1

2. Retrieve the marker genes / ligand receptor pairs with highest Jaccard
similarities and match against gene ontology.

connectivity given by
adjacency between spots

One can also play the same game by using higher-dimensional homology, and
then predict phenotypes solely from the corresponding persistence diagrams.

[Aukerman et al. - 2022 - Persistent homology
based characterization of the breast cancer im-
mune microenvironment: a feasibility study]

τ chosen with
persistence gap

