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Lecture 2 : Manifold Learning

Towards a sampling theory for geometric objects

Topological and geometric models

Distance functions and homotopic reconstruction

Interlude : molecules and affine diagrams

Reconstruction of submanifolds of Rd



Reconstructing surfaces from point clouds

One can reconstruct a surface from 106 points within 1mn [CGAL]



Geometric data analysis

 

Figure 1.  Conformation Space of Cyclo-Octane.  The set of conformations of cyclo-octane can 
be represented as a surface in a high dimensional space.  On the left, we show various 
conformations of cyclo-octane.  In the center, these conformations are represented by the 3D 
coordinates of their atoms.  On the right, a dimension reduction algorithm is used to obtain a 
lower dimensional visualization of the data. 

 

 

Figure 2. Decomposing Cyclo-Octane.  The cyclo-octane conformation space has an interesting 
decomposition.  The local geometry of a self-intersection consists of a cylinder (top left) and a 
Mobius strip (top right), while the self-intersection is a ring traversing the middle of each object 
(shown in red).  Globally, cyclo-octane conformations can be separated into a sphere (bottom 
left) and a Klein bottle (bottom right). 
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Geometrisation : Data = points + distances between points

Manifold Hypothesis : Data lie close to a structure of “small” intrinsic dimension

Problem : Infer the structure from the data



Towards a sampling theory for geometric objects

I What spaces ?

I Quality criteria

I Sampling conditions

I Reconstruction algorithms
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Topological equivalence
Homeomorphism

f : X → Y is a continuous bijective mapping
whose inverse is continuous

X ≈ Y



Deformation retraction

ft : X → A ⊆ X , t ∈ [0, 1] s.t.

1. (x , t) → ft (x) is continuous

2. f0(X) = id

3. f1(X) = A

4. ft |A = A for all t

A special case of a homotopy



Homotopy equivalence

24 CHAPTER 1. TOPOLOGICAL SPACES

equivalence between spaces called homotopy equivalence.

Given two topological spaces X and Y , two maps f0, f1 : X ! Y are
homotopic if there exists a continuous map H : [0, 1]⇥X ! Y such that for
all x 2 X, H(0, x) = f0(x) and H(1, x) = f1(x). Homotopy equivalence is
defined in the following way.

Definition 1.9 (Homotopy equivalence) Two topological spaces X and
Y have the same homotopy type (or are homotopy equivalent) if there exist
two continuous maps f : X ! Y and g : Y ! X such that g�f is homotopic
to the identity map in X and f � g is homotopic to the identity map in Y .

As an example, the unit ball in an Euclidean space and a point are homo-
topy equivalent but not homeomorphic. A circle and an annulus are also
homotopy equivalent - see Figure 1.2 and Exercises 1.8.

f0(x) = x

ft(x) = (1� t)x

f1(x) = 0

homotopy equiv.

homotopy equiv.

not homotopy equiv.

Figure 1.2: An example of two maps that are homotopic (left) and examples
of spaces that are homotopy equivalent, but not homeomorphic (right).

Definition 1.10 (Contractible space) A contractible space is a space that
has the same homotopy type as a single point.

For example, a segment, or more generally any ball in an Euclidean space
Rd is contractible - see Exercise 1.7.

It is often di�cult to prove homotopy equivalence directly from the defini-
tion. When Y is a subset of X, the following criterion reveals useful to prove
homotopy equivalence between X and Y .

Proposition 1.11 If Y ⇢ X and if there exists a continuous map H :
[0, 1]⇥X ! X such that:

Intuitively, two spaces X and Y are homotopy equivalent if they can be
transformed into one another

by bending, shrinking and expanding operations

but not by cutting or tearing

X is contractible if it is homotopy equivalent to a point
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Homotopy and homotopy equivalence

Homotopy : a family of functions ft : X → Y t ∈ [0, 1] s.t. (x , t) → ft (x) is
continuous

Two maps f , g : X → Y are homotopic, noted f ' g,

if there exists a homotopy joining them

Two spaces X ,Y are homotopy equivalent, noted X ' Y

if there exists maps f : X → Y and g : Y → X s.t. fg ' id and gf ' id

If X deformation retracts onto Y , then X ' Y



Submanifolds of Rd

A submanifold of dimension k is a subset of Rd that looks locally like (is homeomorphic
to) an open set of an affine space of dimension k

W

U
Rm

φ

RN

M

A curve a 1-dimensional submanifold

A surface is a 2-dimensional submanifold



Combinatorial (PL) manifolds

Definition

A pure simplicial complex Ŝ is a PL manifold of dimension k iff the link of each vertex is
PL-homeomorphic to of a topological sphere of dimension k − 1

star (p)
link (p)

p

The underlying space of a PL manifold is a topological manifold



Geometric approximation of shapes
1. Hausdorff distance / Fréchet distanceThe Hausdor↵ distance

The distance function to a compact M ⇢ Rd, dM : Rd ! R+ is defined by

dM (x) = inf
p2M

kx � pk

The Hausdorf distance between two compact sets M, M 0 ⇢ Rd:

dH(M, M 0) = sup
x2Rd

|dM (x) � dM 0(x)|

dH(M, M 0)

M

M 0

dH (M,M′) = max
(
supx∈M infx′∈M′ ‖x − x ′‖, supx∈M infx′∈M′ ‖x − x ′‖

)
= inf{r : M ⊂ M′+r and M′ ⊂ M+r}

dF

dH



Geometric approximation of shapes
2. Tangent spaces approximation



Reach
Captures curvature and bottlenecks

H. Federer
medial axis

reach

S

Local feature size

∀x ∈ S, lfs(x) = d(x , axis(S)) (1-Lipschitz : |f (x)− f (y)| ≤ ‖x − y‖)

rch(S) = infx∈S lfs(x)



Sampling conditions and ε-nets

medial axis

reach

S

(ε, η̄)-net of S

1. Covering: P ⊂ S, ∀x ∈ S, d(x ,P) ≤ ε lfs(x)

2. Packing: ∀p, q ∈ P, ‖p − q‖ ≥ η̄ε min(lfs(p), lfs(q))
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Reconstruction of geometric shapes
Union of balls and distance functions

Sample P Union of balls P+α



Reconstruction theorems
Union of balls and distance functions

Niyogi, Smale, Weinberger [2008]

If M is a submanifold of positive reach τ ,
P an ε-dense sample of M,
then, for all α ∈ [∼ ε,∼ τ ], P+α ' M

Chazal, Cohen-Steiner, Lieutier [2009]

Extension to general compact sets

Chazal, Cohen-Steiner, Mérigot [2011]

Extension to points sets with outliers

/VTVSVN`�0UMLYLUJL�7YVISLT

z }| {

H1(K1) H1(K5)H1(K2) H1(K3) H1(K4)�! �! �! �!

barecode

,! ,! ,! ,!

scale:

' ' ' ' '

,! ,! ,! ,!

�



Shape reconstruction
Discrete approximation of continuous spaces

Object → Sample → Union of balls nerve→ Simplicial complex



Two issues
Curse of dimensionality: The C̆ech and the alpha-complex are big (O(nd ) and O(nd/2))
and difficult to compute in high dimensions

Quality of approximation : Both complexes are not (in general) homeomorphic to X

The manifold hypothesis: In many applications, the intrinsic dimension k is much
smaller than the dimension d of the ambient space

I Can we bound the combinatorial complexity as a function of the intrinsic
dimension ?

I Can we reconstruct a simplicial complex homeomorphic to the manifold,
i.e. a triangulation of the manifold?
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Power of a point wrt to a ball

Power of x wrt b : D(x , b) = (x − p)2 − r2

Power of a point wrt to a ball
Power of x wrt b : D(x, b) = (x � p)2 � r2

Z : D is not a distance

x r

p

x 2 intb () D(x, b) < 0
x 2 @b () D(x, b) = 0

x 62 b () D(x, b) > 0
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x ∈ intb ⇐⇒ D(x , b) < 0

x ∈ ∂b ⇐⇒ D(x , b) = 0

x 6∈ b ⇐⇒ D(x , b) > 0

Remarks

I D is not a true distance
I We can consider r2 as the weight of p and don’t require it to be > 0



Radical hyperplane

I The set of points that have a same power wrt two balls b1(p1, r1) and b2(p2, r2)
is a hyperplane

D(x , b1) = D(x , b2) ⇐⇒ (x − p1)2 − r2
1 = (x − p2)2 − r2

2
def
= r2

x

⇐⇒ −2p1x + p2
1 − r2

1 = −2p2x + p2
2 − r2

2

⇐⇒ 2(p2 − p1)x + (p2
1 − r2

1 )− (p2
2 − r2

2 ) = 0

I The radical hyperplane is the set of centres x of the balls B(x , rx ) that are
orthogonal to b1 and b2
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Radical centre

Radical centre

There exists a unique point with a same power wrt d + 1 balls b0, ..., bd

of Rd

this point is the centre of the unique ball that is orthogonal to b0, ..., bd

Set of balls B in general position : no ball is orthogonal to d + 2 balls of
B
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There exists a unique point with a same power wrt d + 1 balls b0, ..., bd of Rd

this point is the centre of the unique ball that is orthogonal to b0, ..., bd

Set of balls B in general position : no ball is orthogonal to d + 2 balls of B



Voronoi diagrams of balls (or weighted points)

B = {b1, ..., bn} D(x , b) = (x − p)2 − r2

Voronoi cell : V (bi ) = {x : D(x , bi ) ≤ D(x , bj )∀j}

Voronoi diagram of B : Vor(B) = { set of cells V (bi ), bi ∈ B}



Delaunay triangulations of balls (or weighted points)

Vor(B) Del(B) is the nerve of Vor(B)

Theorem
If the balls are in general position, then Del(B) is a triangulation of a subset P ′ ⊆ P of
the points



Correspondence between structures
hbi

: xd+1 = 2pi · x − p2
i + r2

i b̂i = (pi , p2
i − r2

i ) = h∗bi

V(B) = h+
b1
∩ . . . ∩ h+

bn

duality−→ D(B) = conv−({b̂1, . . . , b̂n})
↑ ↓

Voronoi diagram of B nerve−→ Delaunay triang. of B

The diagram commutes if B is in general position



Affine diagrams

Sites + distance functions s.t. the bisectors are hyperplanes

Theorem [Aurenhammer]

Any affine diagram of Rd is the Voronoi diagram of a set of balls of Rd



Intersection of a Voronoi diagram with a k -flat H of Rd

pi

pj

x

p′i

p′j

H

‖x − pi‖2 ≤ ‖x − pj‖2

⇔ ‖x − p′i ‖2 − ‖pi − p′i ‖2 ≤ ‖x − p′i ‖2 − ‖pj − p′j ‖2

Let B = {bi = (p′i ,−‖pi − p′i ‖2)} (weighted points in H)

I Vor(P) ∩ H = Vor(B) (a weighted Voronoi diagram in H)

I Can be computed in time O(nb
k+1

2 c)

(while the full diagram has complexity Θ(nb
d+1

2 c) )



Restriction of a Delaunay triangulation to H
Definition: Del|H (P) is the nerve of Vor(P) ∩ H

Equivalently, Del|H (P) is the subcomplex of Del(P) consisting of the simplices that can
be circumscribed by an empty ball centered on H

Del|H (P)
1−1←→ Del(B)



Voronoi diagram of order k

Each cell is the set of points that have the same k nearest sites



Voronoi diagrams of order k are weighted Voronoi
diagrams

S1,S2, . . . the subsets of k points of P

δ(x ,Si ) =
1
k

∑
p∈Si

(x − p)2

= x2 − 2
k

∑
p∈Si

p · x +
1
k

∑
p∈Si

p2

= D(bi , x)

where bi is the ball centered at ci = 1
k
∑

p∈Si
p

of radius r2
i = c2

i − 1
k
∑

p∈Si
p2

x ∈ Vork (Si ) ⇔ δ(x ,Si ) ≤ δ(x ,Sj ) ∀j



Delaunay triangulation restricted to a molecule
U =

⋃
bi , i = 1, ..., n

Del|U (B) is the nerve of the cover of U by the cells of Vor(B)



Towards a sampling theory for geometric objects

Topological and geometric models

Distance functions and homotopic reconstruction

Interlude : molecules and affine diagrams

Reconstruction of submanifolds of Rd



Triangulation of manifolds by star stitching

v

Figure 3. A two-dimensional link triangulation, represented as a collec-
tion of two-dimensional stars.

Star flipping is a variant of star splaying that adds two more

ideas. First, the representation and the algorithm are recursive on

the dimensionality. For example, in a three-dimensional triangula-

tion, the star of a vertex v is represented by v’s link, which is a two-

dimensional triangulation. This two-dimensional triangulation is

represented by a set of two-dimensional stars, as illustrated in Fig-

ure 3. These stars are not required to agree with each other either.

Each two-dimensional star is represented by a one-dimensional link

triangulation (recall Figure 2). The one-dimensional triangulations

are called link rings, and unlike their higher-dimensional counter-

parts, they are always internally consistent.

Second, the workhorse of star flipping is the classic flip algo-

rithm, at every level of the recursion. To make a star locally con-

vex, star flipping tries to apply classic flipping within the link trian-

gulation. Only if classic flipping gets stuck before restoring local

convexity to a star does star flipping call itself recursively.

Star flipping, described in Section 5, seems likely to run faster

than star splaying if the input triangulation is close to Delaunay,

because it takes better advantage of the input triangulation.

3 Stars, Rays, and Cones

Star splaying is founded on several observations about the relation-

ships between stars, rays, polyhedral cones, convex hulls, and De-

launay triangulations.

Consider the convex hull H of a set V of vertices in Ed+1. (Com-

puting H is a standard way to compute a Delaunay triangulation in

Ed; see below.) Suppose that V is generic: no d + 2 points of V lie

on a common hyperplane. Then H is a simplicial polytope—every

facet of H is a d-simplex. Let ∂H denote the boundary triangula-

tion of H. For consistency, facets are d-simplices and ridges are

(d − 1)-simplices throughout this paper, whether in Ed+1 or in Ed.

Imagine wishing to compute not all of H, but just the star of one

vertex v of H—specifically, v’s star in ∂H, leaving out H proper.

See Figure 4(a). Define the set of rays that originate at v and pass

through other vertices of V , namely R = {v⃗w : w ∈ V\{v}}. Let Hv

be the convex hull of the rays R, illustrated in Figure 4(b). Hv is

a polyhedral cone with vertex v and H ⊂ Hv. The star of v wraps

around the tip of Hv like a paper shell around an ice cream cone.

The star is combinatorially equivalent to the cone’s boundary: the

face lattice for the proper faces of Hv is isomorphic to the face lat-

tice for the star of v. In the isomorphism, the rays on the boundary

of Hv are in one-to-one correspondence with the edges in v’s star

and the vertices in v’s link.

Let h be a hyperplane that separates v from all the other vertices

in V , illustrated in Figure 4(c). The cross-section P = Hv∩h = H∩h
is a d-polytope, namely the convex hull of the intersection points

{⃗r ∩ h : r ∈ R}. The face lattice of P’s boundary is isomorphic to
the face lattice of v’s link.

The central observation is that these three problems are essen-

tially equivalent: computing the star or link of v in the boundary

of the (d + 1)-dimensional convex hull H, computing the (d + 1)-

v

H

v

Hv

(a) (b)

Hv

v

h

P

(c)

Figure 4. (a) The star of v in a convex polyhedron H. (b) The convex
hull Hv of rays, a polyhedral cone whose boundary is combinatorially
equivalent to v’s star. (c) A cross-section of the cone is the convex hull
of the points where the rays intersect the cross-sectional hyperplane.

dimensional convex hull Hv of rays, and computing the d-dimen-

sional convex hull P of points. The wealth of ideas computational

geometers employ for the last problem apply immediately to the

first problem.

One way to compute H is to use a d-dimensional convex hull

algorithm to compute the star of each vertex in V individually.

Naively applied, this method is strikingly slow—its best-case run-

ning time is in Θ(n2), where n is the number of vertices in V . But

if the candidates for inclusion in the link of each vertex could be

pruned to a small number—say, a constant number of vertices in

each link—then the method becomes strikingly attractive, as it en-

tails just a linear number of constant-time convex hull computa-

tions.

At first glance, one inconvenience of this method appears to be

finding a corner-cutting hyperplane h. This step is not only unnec-

essary; it is unwise, because computing the intersections of the rays

in R with h introduces avoidable roundoff errors. Many algorithms

for computing convex hulls of point sets in Ed can be adapted to

compute convex hulls of rays originating at a common point v in

Ed+1, simply by replacing the orientation tests on d+1 points in Ed

with orientation tests on d + 2 points in Ed+1 (wherein v is always

one of those points).

The standard incremental insertion method for updating a convex

hull is the beneath-beyond method of Kallay [17], which adds one

new vertex (or ray) at a time and maintains after each addition the

convex hull of the vertices (or rays) processed so far. Let C be the

convex hull at a fixed moment in time between vertex insertions.

Let f be a facet of C. A point p is said to be beyond f if p and C

lie on opposite sides of the affine hull of f . The beneath-beyond

algorithm adds a vertex w and transforms C into conv(C ∪ w) by
finding and deleting every facet ofC that w is beyond, then creating

new facets that attach w to every ridge ofC that adjoins exactly one

surviving facet.

This idea works whether C is a convex hull of points or a convex

hull of rays with a common origin v. The latter circumstance is il-

lustrated in Figure 5. There is one important algorithmic difference

between these two circumstances: a ray can lie beyond every facet

of the cone C, meaning that the convex hull of the rays is Ed+1.

v
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surviving facet.

This idea works whether C is a convex hull of points or a convex

hull of rays with a common origin v. The latter circumstance is il-

lustrated in Figure 5. There is one important algorithmic difference

between these two circumstances: a ray can lie beyond every facet

of the cone C, meaning that the convex hull of the rays is Ed+1.
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Figure 3. A two-dimensional link triangulation, represented as a collec-
tion of two-dimensional stars.

Star flipping is a variant of star splaying that adds two more

ideas. First, the representation and the algorithm are recursive on

the dimensionality. For example, in a three-dimensional triangula-

tion, the star of a vertex v is represented by v’s link, which is a two-

dimensional triangulation. This two-dimensional triangulation is

represented by a set of two-dimensional stars, as illustrated in Fig-

ure 3. These stars are not required to agree with each other either.

Each two-dimensional star is represented by a one-dimensional link

triangulation (recall Figure 2). The one-dimensional triangulations

are called link rings, and unlike their higher-dimensional counter-

parts, they are always internally consistent.

Second, the workhorse of star flipping is the classic flip algo-

rithm, at every level of the recursion. To make a star locally con-

vex, star flipping tries to apply classic flipping within the link trian-

gulation. Only if classic flipping gets stuck before restoring local

convexity to a star does star flipping call itself recursively.

Star flipping, described in Section 5, seems likely to run faster

than star splaying if the input triangulation is close to Delaunay,

because it takes better advantage of the input triangulation.

3 Stars, Rays, and Cones

Star splaying is founded on several observations about the relation-

ships between stars, rays, polyhedral cones, convex hulls, and De-

launay triangulations.

Consider the convex hull H of a set V of vertices in Ed+1. (Com-

puting H is a standard way to compute a Delaunay triangulation in

Ed; see below.) Suppose that V is generic: no d + 2 points of V lie

on a common hyperplane. Then H is a simplicial polytope—every

facet of H is a d-simplex. Let ∂H denote the boundary triangula-

tion of H. For consistency, facets are d-simplices and ridges are

(d − 1)-simplices throughout this paper, whether in Ed+1 or in Ed.

Imagine wishing to compute not all of H, but just the star of one

vertex v of H—specifically, v’s star in ∂H, leaving out H proper.

See Figure 4(a). Define the set of rays that originate at v and pass

through other vertices of V , namely R = { "vw : w ∈ V\{v}}. Let Hv

be the convex hull of the rays R, illustrated in Figure 4(b). Hv is

a polyhedral cone with vertex v and H ⊂ Hv. The star of v wraps

around the tip of Hv like a paper shell around an ice cream cone.

The star is combinatorially equivalent to the cone’s boundary: the

face lattice for the proper faces of Hv is isomorphic to the face lat-

tice for the star of v. In the isomorphism, the rays on the boundary

of Hv are in one-to-one correspondence with the edges in v’s star

and the vertices in v’s link.

Let h be a hyperplane that separates v from all the other vertices

in V , illustrated in Figure 4(c). The cross-section P = Hv∩h = H∩h
is a d-polytope, namely the convex hull of the intersection points

{"r ∩ h : r ∈ R}. The face lattice of P’s boundary is isomorphic to
the face lattice of v’s link.

The central observation is that these three problems are essen-

tially equivalent: computing the star or link of v in the boundary

of the (d + 1)-dimensional convex hull H, computing the (d + 1)-
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Figure 4. (a) The star of v in a convex polyhedron H. (b) The convex
hull Hv of rays, a polyhedral cone whose boundary is combinatorially
equivalent to v’s star. (c) A cross-section of the cone is the convex hull
of the points where the rays intersect the cross-sectional hyperplane.

dimensional convex hull Hv of rays, and computing the d-dimen-

sional convex hull P of points. The wealth of ideas computational

geometers employ for the last problem apply immediately to the

first problem.

One way to compute H is to use a d-dimensional convex hull

algorithm to compute the star of each vertex in V individually.

Naively applied, this method is strikingly slow—its best-case run-

ning time is in Θ(n2), where n is the number of vertices in V . But

if the candidates for inclusion in the link of each vertex could be

pruned to a small number—say, a constant number of vertices in

each link—then the method becomes strikingly attractive, as it en-

tails just a linear number of constant-time convex hull computa-

tions.

At first glance, one inconvenience of this method appears to be

finding a corner-cutting hyperplane h. This step is not only unnec-

essary; it is unwise, because computing the intersections of the rays

in R with h introduces avoidable roundoff errors. Many algorithms

for computing convex hulls of point sets in Ed can be adapted to

compute convex hulls of rays originating at a common point v in

Ed+1, simply by replacing the orientation tests on d+1 points in Ed

with orientation tests on d + 2 points in Ed+1 (wherein v is always

one of those points).

The standard incremental insertion method for updating a convex

hull is the beneath-beyond method of Kallay [17], which adds one

new vertex (or ray) at a time and maintains after each addition the

convex hull of the vertices (or rays) processed so far. Let C be the

convex hull at a fixed moment in time between vertex insertions.

Let f be a facet of C. A point p is said to be beyond f if p and C

lie on opposite sides of the affine hull of f . The beneath-beyond

algorithm adds a vertex w and transforms C into conv(C ∪ w) by
finding and deleting every facet ofC that w is beyond, then creating

new facets that attach w to every ridge ofC that adjoins exactly one

surviving facet.

This idea works whether C is a convex hull of points or a convex

hull of rays with a common origin v. The latter circumstance is il-

lustrated in Figure 5. There is one important algorithmic difference

between these two circumstances: a ray can lie beyond every facet

of the cone C, meaning that the convex hull of the rays is Ed+1.

1. Construct local Delaunay triangulations (stars)

2. Insure that the local triangulations are consistent

i.e. a simplex appears in the stars of all its vertices

3. Stitch the stars



The tangential Delaunay complex

Local triangulations

∀p ∈ P : Tp(P) = star(p,Del|Tp ))

Tangential complex

DelTM(P) = {Tp(P), p ∈ P}



Nice properties of the tangential Delaunay complex

I Subcomplex of Del(P) :

DelTM(P) ⊆ Del(P)

DelTM(P) is embedded in Rd

I Dimension : The dimension of DelTM(P) is the dimension k of the submanifold M
(under general position)

I Complexity :

DelTM(P) can be computed without computing Del(P)

If P is an ε-sample of M, its complexity is O(2k |P|) (linear in |P|)
and does not depend on d



Construction of DelTM(P)

1. project P in Tp and weight the points accordingly→ Bp (in time O(dn) )

2. construct star(pi ,Del(Bp)) ⊂ Tpi (in time O(nb
k+1

2 c))

3. star(pi ,DelTM(P))
1−1←→ star(pi ,Del(Bp))

Complexity : linear in d , exponential in k



Inconsistencies

(a) DelTM(P) (b) C(P)

p

q

r

p
q

r

s
t

s

t

A simplex might not appear in the stars of all its vertices

⇒ DelTM(P) is not necessarily a PL manifold



Inconsistency triggers

1. τ ∈ star(pi )⇒ B(cpi (τ) ∩ P = ∅

2. τ 6∈ star(pj )⇒ B(cpj (τ) ∩ P = C 6= ∅

3. ∃p ∈ C : φ = τ ∗ p ∈ Del(P)
(dim(φ) = k + 1)

Inconsistent simplex

τ is said to be inconsistent iff
∃pi , pj ∈ τ s. t. Vor(τ) ∩ Tpi �= ∅ and Vor(τ) ∩ Tpj = ∅

pi

pj
τ

Bpj(τ )

Bpi(τ )

p

Tpi

∈ Vor(τ )

∈ aff(Vor(τ ))

cpi(τ )

Tpj

cpj(τ )

M

iφ

Arijit Ghosh PhD defense

if the diameter of τ is small and thick
⇒ ci et cj are close & aff(τ) ≈ Tpi ≈ Tpj

⇒ ∃ a (k + 1)-simplex φ which is not well “protected”

Such simplices can be removed by slightly perturbing the data
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Further results

I Topological correctness

I Control on the Hausdorff distance

I Control on the angles between the simplices and the tangent spaces

Details in B., Chazal, Yvinec. Geometric and Topological Inference



Reconstruction of Rieman surfaces of R8

Data provided by A. Alvarez



Triangulation of the space of conformations of C8H16


	Towards a sampling theory for geometric objects
	Topological and geometric models
	Distance functions and homotopic reconstruction
	Interlude : molecules and affine diagrams
	Reconstruction of submanifolds of Rd

