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Lecture 2 : Manifold Learning

Towards a sampling theory for geometric objects
Topological and geometric models

Distance functions and homotopic reconstruction
Interlude : molecules and affine diagrams

Reconstruction of submanifolds of RY



Reconstructing surfaces from point clouds

One can reconstruct a surface from 108 points within 1mn [CGAL]



Geometric data analysis
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Geometrisation : Data = points + distances between points

Manifold Hypothesis : Data lie close to a structure of “small” intrinsic dimension

Problem : Infer the structure from the data



Towards a sampling theory for geometric objects

» What spaces ?

» Sampling conditions

> Quality criteria »> Reconstruction algorithms



Topological and geometric models



Topological equivalence

Homeomorphism
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Deformation retraction

LTI

fi:X > ACX, te0,1 st

1. (x,t) — fi(x) is continuous
2. fo(X)=id

3. H(X)=A

4. f|A= Aforall t

A special case of a homotopy



Homotopy equivalence

homotopy equiv.

>

not homm Py equiv.

homotopy equiv.

Intuitively, two spaces X and Y are homotopy equivalent if they can be
transformed into one another

by bending, shrinking and expanding operations

but not by cutting or tearing



Homotopy equivalence

homotopy equiv.

>

not homm Py equiv.

homotopy equiv.

Intuitively, two spaces X and Y are homotopy equivalent if they can be
transformed into one another

by bending, shrinking and expanding operations

but not by cutting or tearing

X is contractible if it is homotopy equivalent to a point



Homotopy and homotopy equivalence

Homotopy : a family of functions f; : X — Y t€[0,1] st (x,t) — f(x) is
continuous

Twomapsf, g: X — Y arehomotopic, noted f ~ g,

if there exists a homotopy joining them

Two spaces X, Y are homotopy equivalent, noted X ~ Y

if there exists maps f: X - Yandg: Y — X st fg~id and gf ~id

If X deformation retracts onto Y,then X ~ Y



Submanifolds of R

A submanifold of dimension k is a subset of R that looks locally like (is homeomorphic
to) an open set of an affine space of dimension k
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A curve a 1-dimensional submanifold

A surface is a 2-dimensional submanifold



Combinatorial (PL) manifolds

Definition

A pure simplicial complex S is a PL manifold of dimension k iff the link of each vertex is
PL-homeomorphic to of a topological sphere of dimension k — 1

- link (p)

The underlying space of a PL manifold is a topological manifold



Geometric approximation of shapes

1. Hausdorff distance / Fréchet distance

dH(M’ MI) = max (SUPXGM infy e lIx — X/”’ SUPxem infy em lIx — X/H)

=inf{r: M C M'*" and M’ C M*"}

dp

| an




Geometric approximation of shapes

2. Tangent spaces approximation




Reach

Captures curvature and bottlenecks

S medial axis

H. Federer

Local feature size
Vx € S, Ifs(x) = d(x, axis(S)) (1-Lipschitz : |f(x) — f(¥)| < lIx = yIl)

rch(8) = infxes Ifs(x)



Sampling conditions and e-nets

S medial axis

(e,7)-netof S

1. Covering: P CS,VxeS, dx,P) < elfs(x)
2. Packing: vp,q € P, lp—qll > 7e min(Ifs(p),1fs(q))



Distance functions and homotopic reconstruction



Reconstruction of geometric shapes
Union of balls and distance functions

Sample P

Union of balls Pt



Reconstruction theorems

Union of balls and distance functions

Niyogi, Smale, Weinberger [2008]

If M is a submanifold of positive reach 7,
P an e-dense sample of M,
then, foralla € [~ e,~ 7], P** ~ M

Chazal, Cohen-Steiner, Lieutier [2009]

Extension to general compact sets

Chazal, Cohen-Steiner, Mérigot [2011]
Extension to points sets with outliers



Shape reconstruction

Discrete approximation of continuous spaces

|Object|—>|SampIe| — e |Simplicial complex




Two issues

Curse of dimensionality: The Cech and the alpha-complex are big (O(n?) and O(n9/2))
and difficult to compute in high dimensions

Quality of approximation : Both complexes are not (in general) homeomorphic to X

The manifold hypothesis: In many applications, the intrinsic dimension k is much
smaller than the dimension d of the ambient space

» Can we bound the combinatorial complexity as a function of the intrinsic
dimension ?

»> Can we reconstruct a simplicial complex homeomorphic to the manifold,
i.e. a triangulation of the manifold?



Interlude : molecules and affine diagrams



Power of a point wrt to a ball

Power of x wrt b : D(x, b) = (x — p)? — r?
<7\

x€intb <= D(x,b) <0
Xx€odb <= D(x,b)=0
x¢b <= D(x,b)>0

Remarks

»> D is not a true distance
» We can consider r? as the weight of p and don’t require it to be > 0



Radical hyperplane

> The set of points that have a same power wrt two balls by (p1, r1) and ba(p2, r2)
is a hyperplane

D(x,b1) = D(x,by) <= (x—p1)2—1r2 =(x—po)2—r2 %2

=  —2piX+pE—r? = —2pox+pi— 12
= 2p2—p)x+ (B )~ (P3—15)=0

OCP (@)




Radical hyperplane

> The set of points that have a same power wrt two balls by (p1, r1) and ba(p2, r2)
is a hyperplane

D(x,b1) = D(x,by) <= (x—p1)2—1r2 =(x—po)2—r2 %2

=  —2piX+pE—r? = —2pox+pi— 12
= 2p2—p)x+ (B )~ (P3—15)=0

OCP (@)

> The radical hyperplane is the set of centres x of the balls B(x, rx) that are
orthogonal to by and by




Radical centre




Voronoi diagrams of balls (or weighted points)

B={bi,...,bn} D(x,b) = (x — p)2 — r2

Voronoi cell : V(b;) = {x : D(x, b;) < D(x, b;)Vj}

Voronoi diagram of B : Vor(B) = { set of cells V(b;), b; € B}



Delaunay triangulations of balls (or weighted points)

Vor(B) Del(B) is the nerve of Vor(B)

Theorem
If the balls are in general position, then Del(B) is a triangulation of a subset P’ C P of
the points



Correspondence between structures

hp, = X1 = 2p; - X — PE + 17

bi = (pi,p? —r7) = h}

V(B)=hi n...nh

duality
Vorono dlagla 0]} B

D(B) = conv=({b, ..., bn})
Iﬂg

1
Delaunay triang. of B

[m]

The diagram commutes if B is in general position

=



Affine diagrams

Sites + distance functions s.t. the bisectors are hyperplanes

Theorem [Aurenhammer]

Any affine diagram of R? is the Voronoi diagram of a set of balls of R?



Intersection of a Voronoi diagram with a k-flat H of RY

Ix = pil® < Ix = pilI?

& lx = PP = llpi = p{I* < lIx = piIIZ — llos — P12

Let B={b; = (0}, —|lpi — P}I12)} (weighted points in H)

> Vor(P)NH = Vor(B) (a weighted Voronoi diagram in H)

» Can be computed in time O(n“zﬁJ)
(while the full diagram has complexity @(nL%J) )



Restriction of a Delaunay triangulation to H
Definition: Del|4(7P) is the nerve of Vor(P) N H

Equivalently, Del|(7) is the subcomplex of Del(7) consisting of the simplices that can
be circumscribed by an empty ball centered on H

Deljy(P) <=5 Del(B)



Voronoi diagram of order k

Each cell is the set of points that have the same k nearest sites



Voronoi diagrams of order k are weighted Voronoi
diagrams

S1, So, . .. the subsets of k points of P

68) = g (- pF

PES;
2 2 1 2
- Zp-erE d>op
PES; PES;
= D(b,‘,X)

where b; is the ball centered at ¢; = % ZpeS,- P

i 2 _c2_1 2
ofradius 7 =¢; — ¢ X pcs P

X € VOl”k(S,') <~ 5(X, S,) < (5(X, S/) Vj'



Delaunay triangulation restricted to a molecule

Del|y(B) is the nerve of the cover of U by the cells of Vor(B)



Reconstruction of submanifolds of RY



Triangulation of manifolds by star stitching

T\{‘/ﬁ-ﬁ
N

1. Construct local Delaunay triangulations (stars)
2. Insure that the local triangulations are consistent
i.e. a simplex appears in the stars of all its vertices

3. Stitch the stars



The tangential Delaunay complex

/

Local triangulations
VpeP:  Tp(P) = star(p,Del|7,))

Tangential complex ,77 }
Delry(P) = {To(P), p € P}



Nice properties of the tangential Delaunay complex

> Subcomplex of Del(P) :
Delry (P) C Del(P)
Dely;(P) is embedded in RY

» Dimension : The dimension of Delry(P) is the dimension k of the submanifold M
(under general position)

» Complexity :

Delry(P) can be computed without computing Del(P)

If P is an e-sample of M, its complexity is O(24|P|)  (linear in |P|)
and does not depend on d



Construction of Delry(P)

1. project P in Tp and weight the points accordingly — Bp (in time O(dn) )
2. construct star(p;, Del(Bp)) C Tp, (in time O(nL*")y)

3. star(py, Delyy(P)) 4= star(py, Del(Bp))

Complexity : linear in d, exponential in k



Inconsistencies

A simplex might not appear in the stars of all its vertices

= Delry(P) is not necessarily a PL manifold



Inconsistency triggers

€ aff(Vor(r))

M

1. 7 estar(p)) = B(cp(t)NP =10
2. 7 ¢star(p) = B(eg(T)NP=C#0

3. 3peC: ¢=r7x*péeDel(P)
(dim(p) = k + 1)




Inconsistency triggers

€ aff(Vor(r))

M

1. 7 estar(p) = B(cp(r)NP =0
2. 7 & star(p;) = B(Cp/-(T) NP=C#0

3. 3peC: ¢=r7x*péeDel(P)
(dim(¢) =k +1)

if the diameter of 7 is small and thick
= cetgareclose & aff(r) = Tp =~ Ty
= Ja(k+ 1)-simplex ¢ which is not well “protected”

Such simplices can be removed by slightly perturbing the data



Further results

> Topological correctness
» Control on the Hausdorff distance

» Control on the angles between the simplices and the tangent spaces

Details in B., Chazal, Yvinec. Geometric and Topological Inference



Reconstruction of Rieman surfaces of R®

Data provided by A. Alvarez



Triangulation of the space of conformations of CgHie
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