# Foundations of Geometric Methods in Data Science 

Jean-Daniel Boissonnat<br>Mathieu Carrière

Frédéric Cazals
INRIA

Master Science des Données et Intelligence Artificielle 2023

## Lecture 2 : Manifold Learning

Towards a sampling theory for geometric objects

Topological and geometric models

Distance functions and homotopic reconstruction

Interlude : molecules and affine diagrams

Reconstruction of submanifolds of $\mathbb{R}^{d}$

## Reconstructing surfaces from point clouds



One can reconstruct a surface from $10^{6}$ points within 1 mn

## Geometric data analysis



Geometrisation: Data $=$ points + distances between points
Manifold Hypothesis : Data lie close to a structure of "small" intrinsic dimension
Problem: Infer the structure from the data

## Towards a sampling theory for geometric objects



- What spaces ?
- Quality criteria

- Sampling conditions
- Reconstruction algorithms


# Towards a sampling theory for geometric objects 

Topological and geometric models

Distance functions and homotopic reconstruction

Interlude : molecules and affine diagrams

Reconstruction of submanifolds of $\mathbb{R}^{d}$

## Topological equivalence

Homeomorphism
$f: X \rightarrow Y$ is a continuous bijective mapping whose inverse is continuous

$$
X \approx Y
$$



## Deformation retraction



$$
f_{t}: X \rightarrow A \subseteq X, \quad t \in[0,1] \quad \text { s.t. }
$$

1. $(x, t) \rightarrow f_{t}(x)$ is continuous
2. $f_{0}(X)=i d$
3. $f_{1}(X)=A$
4. $f_{t} \mid A=A$ for all $t$

A special case of a homotopy

## Homotopy equivalence



Intuitively, two spaces X and Y are homotopy equivalent if they can be transformed into one another
by bending, shrinking and expanding operations
but not by cutting or tearing

## Homotopy equivalence



Intuitively, two spaces X and Y are homotopy equivalent if they can be transformed into one another
by bending, shrinking and expanding operations
but not by cutting or tearing
$X$ is contractible if it is homotopy equivalent to a point

## Homotopy and homotopy equivalence

Homotopy: a family of functions $f_{t}: X \rightarrow Y t \in[0,1]$ s.t. $(x, t) \rightarrow f_{t}(x)$ is continuous

Two maps $f, g: X \rightarrow Y$ are homotopic, noted $f \simeq g$,
if there exists a homotopy joining them
Two spaces $X, Y$ are homotopy equivalent, noted $X \simeq Y$
if there exists maps $f: X \rightarrow Y$ and $g: Y \rightarrow X$ s.t. $f g \simeq i d$ and $g f \simeq i d$

## Submanifolds of $\mathbb{R}^{d}$

A submanifold of dimension $k$ is a subset of $\mathbb{R}^{d}$ that looks locally like (is homeomorphic to) an open set of an affine space of dimension $k$


A curve a 1-dimensional submanifold
A surface is a 2-dimensional submanifold

## Combinatorial (PL) manifolds

## Definition

A pure simplicial complex $\hat{\mathcal{S}}$ is a PL manifold of dimension $k$ iff the link of each vertex is PL-homeomorphic to of a topological sphere of dimension $k-1$


The underlying space of a PL manifold is a topological manifold

## Geometric approximation of shapes

## 1. Hausdorff distance / Fréchet distance



$$
\begin{aligned}
d_{H}\left(M, M^{\prime}\right) & =\max \left(\sup _{x \in M} \inf _{x^{\prime} \in M^{\prime}}\left\|x-x^{\prime}\right\|, \sup _{x \in M} \inf _{x^{\prime} \in M^{\prime}}\left\|x-x^{\prime}\right\|\right) \\
& =\inf \left\{r: M \subset M^{\prime+r} \text { and } M^{\prime} \subset M^{+r}\right\}
\end{aligned}
$$



## Geometric approximation of shapes

2. Tangent spaces approximation


## Reach

Captures curvature and bottlenecks


H. Federer

Local feature size

$$
\forall x \in \mathcal{S}, \quad \operatorname{lfs}(x)=d(x, \operatorname{axis}(\mathcal{S}))
$$

(1-Lipschitz: $|f(x)-f(y)| \leq\|x-y\|)$
$\operatorname{rch}(\mathcal{S})=\inf _{x \in \mathcal{S}} \operatorname{lfs}(x)$

## Sampling conditions and $\varepsilon$-nets


$(\epsilon, \bar{\eta})$-net of $\mathcal{S}$

1. Covering: $\quad \mathcal{P} \subset \mathcal{S}, \forall x \in \mathcal{S}, \quad d(x, \mathcal{P}) \leq \epsilon \operatorname{lfs}(x)$
2. Packing: $\forall p, q \in \mathcal{P}$,
$\|p-q\| \geq \bar{\eta} \varepsilon \min (\operatorname{lfs}(p), \operatorname{lfs}(q))$

# Towards a sampling theory for geometric objects 

## Topological and geometric models

Distance functions and homotopic reconstruction

Interlude : molecules and affine diagrams

Reconstruction of submanifolds of $\mathbb{R}^{d}$

## Reconstruction of geometric shapes

Union of balls and distance functions


Sample $P$


Union of balls $P^{+\alpha}$

## Reconstruction theorems

Union of balls and distance functions

Niyogi, Smale, Weinberger [2008]


If $\mathbb{M}$ is a submanifold of positive reach $\tau$, $P$ an $\varepsilon$-dense sample of $\mathbb{M}$, then, for all $\alpha \in[\sim \varepsilon, \sim \tau], P^{+\alpha} \simeq \mathbb{M}$

Chazal, Cohen-Steiner, Lieutier [2009]
Extension to general compact sets

Chazal, Cohen-Steiner, Mérigot [2011]


Extension to points sets with outliers

## Shape reconstruction

Discrete approximation of continuous spaces


Object $\rightarrow$ Sample $\rightarrow$ Union of balls $\xrightarrow{\text { nerve }} \quad$ Simplicial complex

## Two issues

Curse of dimensionality: The Čech and the alpha-complex are big ( $O\left(n^{d}\right)$ and $O\left(n^{d / 2}\right)$ ) and difficult to compute in high dimensions

Quality of approximation : Both complexes are not (in general) homeomorphic to $X$


The manifold hypothesis: In many applications, the intrinsic dimension $k$ is much smaller than the dimension $d$ of the ambient space

- Can we bound the combinatorial complexity as a function of the intrinsic dimension?
- Can we reconstruct a simplicial complex homeomorphic to the manifold, i.e. a triangulation of the manifold?


# Towards a sampling theory for geometric objects 

## Topological and geometric models

Distance functions and homotopic reconstruction

Interlude : molecules and affine diagrams

Reconstruction of submanifolds of $\mathbb{R}^{d}$

## Power of a point wrt to a ball

Power of $x$ wrt $b: D(x, b)=(x-p)^{2}-r^{2}$


$$
\begin{aligned}
x \in \operatorname{int} b & \Longleftrightarrow D(x, b)<0 \\
x \in \partial b & \Longleftrightarrow D(x, b)=0 \\
x \notin b & \Longleftrightarrow D(x, b)>0
\end{aligned}
$$

Remarks

- $D$ is not a true distance
- We can consider $r^{2}$ as the weight of $p$ and don't require it to be $>0$


## Radical hyperplane

- The set of points that have a same power wrt two balls $b_{1}\left(p_{1}, r_{1}\right)$ and $b_{2}\left(p_{2}, r_{2}\right)$ is a hyperplane

$$
\begin{aligned}
D\left(x, b_{1}\right)=D\left(x, b_{2}\right) & \Longleftrightarrow\left(x-p_{1}\right)^{2}-r_{1}^{2}=\left(x-p_{2}\right)^{2}-r_{2}^{2} \stackrel{\text { def }}{=} r_{x}^{2} \\
& \Longleftrightarrow-2 p_{1} x+p_{1}^{2}-r_{1}^{2}=-2 p_{2} x+p_{2}^{2}-r_{2}^{2} \\
& \Longleftrightarrow 2\left(p_{2}-p_{1}\right) x+\left(p_{1}^{2}-r_{1}^{2}\right)-\left(p_{2}^{2}-r_{2}^{2}\right)=0
\end{aligned}
$$



## Radical hyperplane

- The set of points that have a same power wrt two balls $b_{1}\left(p_{1}, r_{1}\right)$ and $b_{2}\left(p_{2}, r_{2}\right)$ is a hyperplane

$$
\begin{aligned}
D\left(x, b_{1}\right)=D\left(x, b_{2}\right) & \Longleftrightarrow\left(x-p_{1}\right)^{2}-r_{1}^{2}=\left(x-p_{2}\right)^{2}-r_{2}^{2} \stackrel{\text { def }}{=} r_{x}^{2} \\
& \Longleftrightarrow-2 p_{1} x+p_{1}^{2}-r_{1}^{2}=-2 p_{2} x+p_{2}^{2}-r_{2}^{2} \\
& \Longleftrightarrow 2\left(p_{2}-p_{1}\right) x+\left(p_{1}^{2}-r_{1}^{2}\right)-\left(p_{2}^{2}-r_{2}^{2}\right)=0
\end{aligned}
$$



- The radical hyperplane is the set of centres $x$ of the balls $B\left(x, r_{x}\right)$ that are orthogonal to $b_{1}$ and $b_{2}$


## Radical centre



[^0]
## Voronoi diagrams of balls (or weighted points)

$$
B=\left\{b_{1}, \ldots, b_{n}\right\}
$$

$$
D(x, b)=(x-p)^{2}-r^{2}
$$



Voronoi cell : $V\left(b_{i}\right)=\left\{x: D\left(x, b_{i}\right) \leq D\left(x, b_{j}\right) \forall j\right\}$

Voronoi diagram of $B: \operatorname{Vor}(B)=\left\{\right.$ set of cells $\left.V\left(b_{i}\right), \quad b_{i} \in B\right\}$

## Delaunay triangulations of balls (or weighted points)


$\operatorname{Vor}(B)$


## Theorem

If the balls are in general position, then $\operatorname{Del}(B)$ is a triangulation of a subset $\mathcal{P}^{\prime} \subseteq \mathcal{P}$ of the points

## Correspondence between structures

$$
h_{b_{i}}: x_{d+1}=2 p_{i} \cdot x-p_{i}^{2}+r_{i}^{2}
$$

$$
\hat{b}_{i}=\left(p_{i}, p_{i}^{2}-r_{i}^{2}\right)=h_{b_{i}}^{*}
$$

$$
\mathcal{V}(B)=h_{b_{1}}^{+} \cap \ldots \cap h_{b_{n}}^{+}
$$

Voronoi diagram of $B$

$\xrightarrow{\text { duality }}$
$\mathcal{D}(B)=\operatorname{conv}^{-}\left(\left\{\hat{b}_{1}, \ldots, \hat{b}_{n}\right\}\right)$
Delaunay triang. of $B$

The diagram commutes if $B$ is in general position

## Affine diagrams

Sites + distance functions s.t. the bisectors are hyperplanes

Theorem [Aurenhammer]
Any affine diagram of $\mathbb{R}^{d}$ is the Voronoi diagram of a set of balls of $\mathbb{R}^{d}$

## Intersection of a Voronoi diagram with a $k$-flat $H$ of $\mathbb{R}^{d}$



$$
\begin{aligned}
& \left\|x-p_{i}\right\|^{2} \leq\left\|x-p_{j}\right\|^{2} \\
& \Leftrightarrow\left\|x-p_{i}^{\prime}\right\|^{2}-\left\|p_{i}-p_{i}^{\prime}\right\|^{2} \leq\left\|x-p_{i}^{\prime}\right\|^{2}-\left\|p_{j}-p_{j}^{\prime}\right\|^{2}
\end{aligned}
$$

Let $B=\left\{b_{i}=\left(p_{i}^{\prime},-\left\|p_{i}-p_{i}^{\prime}\right\|^{2}\right)\right\}$ (weighted points in $H$ )

- $\operatorname{Vor}(\mathcal{P}) \cap H=\operatorname{Vor}(B)$
(a weighted Voronoi diagram in $H$ )
- Can be computed in time $O\left(n^{\left\lfloor\frac{k+1}{2}\right\rfloor}\right)$
(while the full diagram has complexity $\Theta\left(n^{\left\lfloor\frac{d+1}{2}\right\rfloor}\right)$ )


## Restriction of a Delaunay triangulation to H

Definition: $\operatorname{Del}_{\mid H}(\mathcal{P})$ is the nerve of $\operatorname{Vor}(P) \cap H$
Equivalently, $\operatorname{Del}_{\mid H}(\mathcal{P})$ is the subcomplex of $\operatorname{Del}(\mathcal{P})$ consisting of the simplices that can be circumscribed by an empty ball centered on $H$


$$
\operatorname{Del}_{\mid H}(\mathcal{P}) \stackrel{1-1}{\longleftrightarrow} \operatorname{Del}(B)
$$

## Voronoi diagram of order $k$



Each cell is the set of points that have the same $k$ nearest sites

## Voronoi diagrams of order $k$ are weighted Voronoi diagrams

$S_{1}, S_{2}, \ldots$ the subsets of $k$ points of $\mathcal{P}$

$$
\begin{aligned}
\delta\left(x, S_{i}\right) & =\frac{1}{k} \sum_{p \in S_{i}}(x-p)^{2} \\
& =x^{2}-\frac{2}{k} \sum_{p \in S_{i}} p \cdot x+\frac{1}{k} \sum_{p \in S_{i}} p^{2} \\
& =D\left(b_{i}, x\right)
\end{aligned}
$$

where $b_{i}$ is the ball centered at $c_{i}=\frac{1}{k} \sum_{p \in S_{i}} p$

$$
\text { of radius } r_{i}^{2}=c_{i}^{2}-\frac{1}{k} \sum_{p \in S_{i}} p^{2}
$$

$$
x \in \operatorname{Vor}_{k}\left(S_{i}\right) \quad \Leftrightarrow \quad \delta\left(x, S_{i}\right) \leq \delta\left(x, S_{j}\right) \forall j
$$

## Delaunay triangulation restricted to a molecule

$$
U=\bigcup b_{i}, i=1, \ldots, n
$$


$\operatorname{Del}_{\mid U}(B)$ is the nerve of the cover of $U$ by the cells of $\operatorname{Vor}(B)$

# Towards a sampling theory for geometric objects 

## Topological and geometric models

Distance functions and homotopic reconstruction

Interlude : molecules and affine diagrams

Reconstruction of submanifolds of $\mathbb{R}^{d}$

## Triangulation of manifolds by star stitching



1. Construct local Delaunay triangulations
(stars)
2. Insure that the local triangulations are consistent
i.e. a simplex appears in the stars of all its vertices
3. Stitch the stars

## The tangential Delaunay complex



Local triangulations
$\left.\forall p \in \mathcal{P}: \quad T_{p}(\mathcal{P})=\operatorname{star}\left(p, \operatorname{Del}_{\mid T_{p}}\right)\right)$

Tangential complex
$\operatorname{Del}_{T \mathbb{M}}(\mathcal{P})=\left\{T_{p}(\mathcal{P}), p \in \mathcal{P}\right\}$


## Nice properties of the tangential Delaunay complex

- Subcomplex of $\operatorname{Del}(\mathcal{P}):$
$\operatorname{Del}_{T \mathbb{M}}(\mathcal{P}) \subseteq \operatorname{Del}(\mathcal{P})$
$\operatorname{Del}_{T M}(\mathcal{P})$ is embedded in $\mathbb{R}^{d}$
- Dimension : The dimension of $\operatorname{Del}_{T \mathbb{M}}(\mathcal{P})$ is the dimension $k$ of the submanifold $\mathbb{M}$ (under general position)
- Complexity :
$\operatorname{Del}_{T \mathbb{M}}(\mathcal{P})$ can be computed without computing $\operatorname{Del}(\mathcal{P})$
If $\mathcal{P}$ is an $\varepsilon$-sample of $\mathbb{M}$, its complexity is $O\left(2^{k}|\mathcal{P}|\right) \quad$ (linear in $\left.|\mathcal{P}|\right)$
and does not depend on $d$


## Construction of $\operatorname{Del}_{T \mathbb{M}}(\mathcal{P})$

1. project $\mathcal{P}$ in $T_{p}$ and weight the points accordingly $\rightarrow B_{p} \quad$ (in time $O(d n)$ )
2. construct $\operatorname{star}\left(p_{i}, \operatorname{Del}\left(B_{p}\right)\right) \subset T_{p_{i}}$ (in time $O\left(n^{\left\lfloor\frac{k+1}{2}\right\rfloor}\right)$ )
3. $\operatorname{star}\left(p_{i}, \operatorname{Del}_{T \mathrm{M}}(\mathcal{P})\right) \stackrel{1-1}{\longleftrightarrow} \operatorname{star}\left(p_{i}, \operatorname{Del}\left(B_{p}\right)\right)$

Complexity : linear in $d$, exponential in $k$

## Inconsistencies



A simplex might not appear in the stars of all its vertices

$$
\Rightarrow \operatorname{Del}_{T \mathbb{M}}(\mathcal{P}) \text { is not necessarily a PL manifold }
$$

## Inconsistency triggers

1. $\tau \in \operatorname{star}\left(p_{i}\right) \Rightarrow B\left(c_{p_{i}}(\tau) \cap \mathcal{P}=\emptyset\right.$
2. $\tau \notin \operatorname{star}\left(p_{j}\right) \Rightarrow B\left(c_{p_{j}}(\tau) \cap \mathcal{P}=\mathcal{C} \neq \emptyset\right.$
3. $\exists p \in \mathcal{C}: \quad \phi=\tau * p \in \operatorname{Del}(\mathcal{P})$

$$
(\operatorname{dim}(\phi)=k+1)
$$



## Inconsistency triggers

1. $\tau \in \operatorname{star}\left(p_{i}\right) \Rightarrow B\left(c_{p_{i}}(\tau) \cap \mathcal{P}=\emptyset\right.$
2. $\tau \notin \operatorname{star}\left(p_{j}\right) \Rightarrow B\left(c_{p_{j}}(\tau) \cap \mathcal{P}=\mathcal{C} \neq \emptyset\right.$
3. $\exists p \in \mathcal{C}: \quad \phi=\tau * p \in \operatorname{Del}(\mathcal{P})$

$$
(\operatorname{dim}(\phi)=k+1)
$$


if the diameter of $\tau$ is small and thick
$\Rightarrow \quad c_{i}$ et $c_{j}$ are close \& $\operatorname{aff}(\tau) \approx T_{p_{i}} \approx T_{p_{j}}$
$\Rightarrow \quad \exists \mathrm{a}(k+1)$-simplex $\phi$ which is not well "protected"
Such simplices can be removed by slightly perturbing the data

## Further results

- Topological correctness
- Control on the Hausdorff distance
- Control on the angles between the simplices and the tangent spaces

Details in B., Chazal, Yvinec. Geometric and Topological Inference

## Reconstruction of Rieman surfaces of $\mathbb{R}^{8}$



Data provided by A. Alvarez

Triangulation of the space of conformations of $C_{8} H_{16}$



[^0]:    

