Foundations of Geometric Methods in Data Science

Jean-Daniel Boissonnat Mathieu Carrière Frédéric Cazals INRIA

Master Science des Données et Intelligence Artificielle 2023

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Lecture 2 : Manifold Learning

Towards a sampling theory for geometric objects

Topological and geometric models

Distance functions and homotopic reconstruction

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Interlude : molecules and affine diagrams

Reconstruction of submanifolds of \mathbb{R}^d

Reconstructing surfaces from point clouds

One can reconstruct a surface from 10⁶ points within 1mn

[CGAL]

(日)

Geometric data analysis

Geometrisation : Data = points + distances between points

Manifold Hypothesis : Data lie close to a structure of "small" intrinsic dimension

Problem : Infer the structure from the data

Towards a sampling theory for geometric objects

- What spaces ?
- Quality criteria

- Sampling conditions
- Reconstruction algorithms

・ロット (雪) (日) (日)

- 3

Towards a sampling theory for geometric objects

Topological and geometric models

Distance functions and homotopic reconstruction

Interlude : molecules and affine diagrams

Reconstruction of submanifolds of \mathbb{R}^d

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ●

Topological equivalence

Homeomorphism

 $f: X \rightarrow Y$ is a continuous bijective mapping whose inverse is continuous

 $X \approx Y$

Deformation retraction

$$f_t: X \rightarrow A \subseteq X, t \in [0, 1]$$
 s.t.

1.
$$(x, t) \rightarrow f_t(x)$$
 is continuous
2. $f_0(X) = id$
3. $f_1(X) = A$
4. $f_t|A = A$ for all t

A special case of a homotopy

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Homotopy equivalence

Intuitively, two spaces X and Y are homotopy equivalent if they can be transformed into one another

▲□▶▲□▶▲□▶▲□▶ □ のQ@

by bending, shrinking and expanding operations

but not by cutting or tearing

Homotopy equivalence

Intuitively, two spaces X and Y are homotopy equivalent if they can be transformed into one another

▲□▶▲□▶▲□▶▲□▶ □ のQ@

by bending, shrinking and expanding operations

but not by cutting or tearing

X is contractible if it is homotopy equivalent to a point

Homotopy and homotopy equivalence

Homotopy : a family of functions $f_t : X \rightarrow Y$ $t \in [0, 1]$ s.t. $(x, t) \rightarrow f_t(x)$ is continuous

Two maps $f, g: X \rightarrow Y$ are homotopic, noted $f \simeq g$,

if there exists a homotopy joining them

Two spaces X, Y are homotopy equivalent, noted $X \simeq Y$ if there exists maps $f : X \to Y$ and $g : Y \to X$ s.t. $fg \simeq id$ and $gf \simeq id$

If X deformation retracts onto Y, then $X \simeq Y$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Submanifolds of \mathbb{R}^d

A submanifold of dimension k is a subset of \mathbb{R}^d that looks locally like (is homeomorphic to) an open set of an affine space of dimension k

▲□▶▲□▶▲□▶▲□▶ □ のQ@

A curve a 1-dimensional submanifold

A surface is a 2-dimensional submanifold

Combinatorial (PL) manifolds

Definition

A pure simplicial complex \hat{S} is a PL manifold of dimension k iff the link of each vertex is PL-homeomorphic to of a topological sphere of dimension k - 1

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

The underlying space of a PL manifold is a topological manifold

Geometric approximation of shapes

1. Hausdorff distance / Fréchet distance

 $\begin{aligned} d_H(M,M') &= \max\left(\sup_{x \in M} \inf_{x' \in M'} \|x - x'\|, \ \sup_{x \in M} \inf_{x' \in M'} \|x - x'\|\right) \\ &= \inf\{r : M \subset M'^{+r} \text{ and } M' \subset M^{+r}\} \end{aligned}$

Geometric approximation of shapes

2. Tangent spaces approximation

Reach

Captures curvature and bottlenecks

H. Federer

Local feature size

$$\forall x \in \mathcal{S}, \ \operatorname{lfs}(x) = d(x, \operatorname{axis}(\mathcal{S})) \qquad (1-\operatorname{Lipschitz}: \ |f(x) - f(y)| \le ||x - y||$$

 $\operatorname{rch}(\mathcal{S}) = \inf_{x \in \mathcal{S}} \operatorname{lfs}(x)$

Sampling conditions and ε -nets

 $(\epsilon, \bar{\eta})$ -net of \mathcal{S}

- 1. Covering: $\mathcal{P} \subset \mathcal{S}, \forall x \in \mathcal{S}, d(x, \mathcal{P}) \leq \epsilon \operatorname{lfs}(x)$
- 2. Packing: $\forall p, q \in \mathcal{P}$, $\|p q\| \geq \bar{\eta}\varepsilon \min(\mathrm{lfs}(p), \mathrm{lfs}(q))$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Towards a sampling theory for geometric objects

Topological and geometric models

Distance functions and homotopic reconstruction

Interlude : molecules and affine diagrams

Reconstruction of submanifolds of \mathbb{R}^d

▲□▶▲圖▶▲≣▶▲≣▶ ▲■ のへ⊙

Reconstruction of geometric shapes

Union of balls and distance functions

Union of balls $P^{+\alpha}$

Reconstruction theorems

Union of balls and distance functions

Niyogi, Smale, Weinberger [2008]

If \mathbb{M} is a submanifold of positive reach τ , P an ε -dense sample of \mathbb{M} , then, for all $\alpha \in [\sim \varepsilon, \sim \tau]$, $P^{+\alpha} \simeq \mathbb{M}$

Chazal, Cohen-Steiner, Lieutier [2009]

Extension to general compact sets

Chazal, Cohen-Steiner, Mérigot [2011] Extension to points sets with outliers

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Shape reconstruction

Discrete approximation of continuous spaces

▲日 ▶ ▲圖 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ●

Two issues

Curse of dimensionality: The Čech and the alpha-complex are big $(O(n^d)$ and $O(n^{d/2}))$ and difficult to compute in high dimensions

Quality of approximation : Both complexes are not (in general) homeomorphic to X

The manifold hypothesis: In many applications, the intrinsic dimension k is much smaller than the dimension d of the ambient space

- Can we bound the combinatorial complexity as a function of the intrinsic dimension ?
- Can we reconstruct a simplicial complex homeomorphic to the manifold, i.e. a triangulation of the manifold?

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Towards a sampling theory for geometric objects

Topological and geometric models

Distance functions and homotopic reconstruction

Interlude : molecules and affine diagrams

Reconstruction of submanifolds of \mathbb{R}^d

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Power of a point wrt to a ball

Power of *x* wrt *b* : $D(x, b) = (x - p)^2 - r^2$

$x \in intb$	\iff	D(x,b) < 0
$x \in \partial b$	\iff	D(x,b)=0
<i>x</i> ∉ <i>b</i>	\iff	D(x, b) > 0

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Remarks

- D is not a true distance
- We can consider r² as the weight of p and don't require it to be > 0

Radical hyperplane

• The set of points that have a same power wrt two balls $b_1(p_1, r_1)$ and $b_2(p_2, r_2)$ is a hyperplane

$$D(x, b_1) = D(x, b_2) \iff (x - p_1)^2 - r_1^2 = (x - p_2)^2 - r_2^2 \stackrel{\text{def}}{=} r_x^2$$

$$\iff -2p_1 x + p_1^2 - r_1^2 = -2p_2 x + p_2^2 - r_2^2$$

$$\iff 2(p_2 - p_1)x + (p_1^2 - r_1^2) - (p_2^2 - r_2^2) = 0$$

Radical hyperplane

• The set of points that have a same power wrt two balls $b_1(p_1, r_1)$ and $b_2(p_2, r_2)$ is a hyperplane

$$D(x, b_1) = D(x, b_2) \iff (x - p_1)^2 - r_1^2 = (x - p_2)^2 - r_2^2 \stackrel{\text{def}}{=} r_x^2$$

$$\iff -2p_1 x + p_1^2 - r_1^2 = -2p_2 x + p_2^2 - r_2^2$$

$$\iff 2(p_2 - p_1)x + (p_1^2 - r_1^2) - (p_2^2 - r_2^2) = 0$$

The radical hyperplane is the set of centres x of the balls B(x, rx) that are orthogonal to b₁ and b₂

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Radical centre

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Voronoi diagrams of balls (or weighted points)

$$B = \{b_1, ..., b_n\} \qquad \qquad D(x, b) = (x - p)^2 - r^2$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Voronoi cell : $V(b_i) = \{x : D(x, b_i) \le D(x, b_j) \forall j\}$

Voronoi diagram of B: Vor $(B) = \{$ set of cells $V(b_i), b_i \in B \}$

Delaunay triangulations of balls (or weighted points)

Vor(B)

Del(B) is the nerve of Vor(B)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Theorem

If the balls are in general position, then $\mathrm{Del}(\mathcal{B})$ is a triangulation of a subset $\mathcal{P}'\subseteq \mathcal{P}$ of the points

Correspondence between structures

$$h_{b_i}: x_{d+1} = 2p_i \cdot x - p_i^2 + r_i^2$$
 $\hat{b}_i = (p_i, p_i^2 - r_i^2) = h_b^*$

The diagram commutes if B is in general position

(ロ) (型) (主) (主) (主) の(で)

Affine diagrams

Sites + distance functions s.t. the bisectors are hyperplanes

Theorem [Aurenhammer]

Any affine diagram of \mathbb{R}^d is the Voronoi diagram of a set of balls of \mathbb{R}^d

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Intersection of a Voronoi diagram with a k-flat H of \mathbb{R}^d

$$\|x - p_i\|^2 \le \|x - p_j\|^2$$

$$\Leftrightarrow \|x - p_i'\|^2 - \|p_i - p_i'\|^2 \le \|x - p_i'\|^2 - \|p_j - p_j'\|^2$$

Let
$$B = \{b_i = (p'_i, -\|p_i - p'_i\|^2)\}$$

(weighted points in H)

► $Vor(\mathcal{P}) \cap H = Vor(B)$ (a weighted Voronoi diagram in H)

Can be computed in time O(n^{⌊ k±1}) (while the full diagram has complexity Θ(n^{⌊ d+1} 2)</sup>)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Restriction of a Delaunay triangulation to H

Definition: $\text{Del}_{|H}(\mathcal{P})$ is the nerve of $\text{Vor}(P) \cap H$

Equivalently, $\text{Del}_{|H}(\mathcal{P})$ is the subcomplex of $\text{Del}(\mathcal{P})$ consisting of the simplices that can be circumscribed by an empty ball centered on H

(ロ) (同) (三) (三) (三) (○) (○)

Voronoi diagram of order k

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Each cell is the set of points that have the same k nearest sites

Voronoi diagrams of order *k* are weighted Voronoi diagrams

 S_1, S_2, \ldots the subsets of *k* points of \mathcal{P}

$$\begin{split} \delta(x,S_i) &= \frac{1}{k} \sum_{p \in S_i} (x-p)^2 \\ &= x^2 - \frac{2}{k} \sum_{p \in S_i} p \cdot x + \frac{1}{k} \sum_{p \in S_i} p^2 \\ &= D(b_i,x) \end{split}$$

where b_i is the ball centered at $c_i = \frac{1}{k} \sum_{p \in S_i} p$

of radius
$$r_i^2 = c_i^2 - \frac{1}{k} \sum_{p \in S_i} p^2$$

 $x \in \operatorname{Vor}_k(S_i) \quad \Leftrightarrow \quad \delta(x, S_i) \leq \delta(x, S_j) \quad \forall j$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Delaunay triangulation restricted to a molecule

 $U = \bigcup b_i, i = 1, ..., n$

 $Del_{|U}(B)$ is the nerve of the cover of U by the cells of Vor(B)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ つへぐ

Towards a sampling theory for geometric objects

Topological and geometric models

Distance functions and homotopic reconstruction

Interlude : molecules and affine diagrams

Reconstruction of submanifolds of \mathbb{R}^d

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ●

Triangulation of manifolds by star stitching

- 1. Construct local Delaunay triangulations (stars)
- 2. Insure that the local triangulations are consistent

i.e. a simplex appears in the stars of all its vertices

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

3. Stitch the stars

The tangential Delaunay complex

Local triangulations

 $\forall p \in \mathcal{P} : T_p(\mathcal{P}) = \operatorname{star}(p, \operatorname{Del}_{|T_p}))$

Tangential complex

 $\operatorname{Del}_{T\mathbb{M}}(\mathcal{P}) = \{T_{p}(\mathcal{P}), p \in \mathcal{P}\}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Nice properties of the tangential Delaunay complex

Subcomplex of $Del(\mathcal{P})$:

 $\mathrm{Del}_{\mathcal{T}\mathbb{M}}(\mathcal{P}) \subseteq \mathrm{Del}(\mathcal{P})$ $\mathrm{Del}_{\mathcal{T}\mathbb{M}}(\mathcal{P})$ is embedded in \mathbb{R}^d

Dimension : The dimension of Del_{TM}(P) is the dimension k of the submanifold M (under general position)

Complexity :

 $\operatorname{Del}_{\mathcal{T}\mathbb{M}}(\mathcal{P})$ can be computed without computing $\operatorname{Del}(\mathcal{P})$ If \mathcal{P} is an ε -sample of \mathbb{M} , its complexity is $O(2^k |\mathcal{P}|)$ (linear in $|\mathcal{P}|$) and does not depend on d

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Construction of $\text{Del}_{TM}(\mathcal{P})$

- 1. project \mathcal{P} in T_{ρ} and weight the points accordingly $\rightarrow B_{\rho}$ (in time O(dn))
- 2. construct star(p_i , Del(B_p)) $\subset T_{p_i}$

(in time $O(n^{\lfloor \frac{k+1}{2} \rfloor})$)

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

3. $\operatorname{star}(p_i, \operatorname{Del}_{T\mathbb{M}}(\mathcal{P})) \stackrel{1-1}{\longleftrightarrow} \operatorname{star}(p_i, \operatorname{Del}(B_p))$

Complexity : linear in d, exponential in k

Inconsistencies

A simplex might not appear in the stars of all its vertices

 $\Rightarrow \operatorname{Del}_{\mathcal{TM}}(\mathcal{P})$ is not necessarily a PL manifold

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Inconsistency triggers

1.
$$\tau \in \operatorname{star}(p_i) \Rightarrow B(c_{p_i}(\tau) \cap \mathcal{P} = \emptyset$$

2.
$$\tau \notin \operatorname{star}(p_j) \Rightarrow B(c_{p_j}(\tau) \cap \mathcal{P} = \mathcal{C} \neq \emptyset$$

3.
$$\exists p \in C$$
: $\phi = \tau * p \in \text{Del}(\mathcal{P})$
 $(\dim(\phi) = k + 1)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Inconsistency triggers

1.
$$\tau \in \operatorname{star}(p_i) \Rightarrow B(c_{p_i}(\tau) \cap \mathcal{P} = \emptyset$$

2. $\tau \notin \operatorname{star}(p_j) \Rightarrow B(c_{p_j}(\tau) \cap \mathcal{P} = \mathcal{C} \neq \emptyset$
3. $\exists p \in \mathcal{C} : \phi = \tau * p \in \operatorname{Del}(\mathcal{P})$
 $(\dim(\phi) = k + 1)$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

if the diameter of τ is small and thick

- \Rightarrow c_i et c_j are close & $\operatorname{aff}(\tau) \approx T_{p_i} \approx T_{p_j}$
- $\Rightarrow \exists a (k + 1)$ -simplex ϕ which is not well "protected"

Such simplices can be removed by slightly perturbing the data

Further results

Topological correctness

- Control on the Hausdorff distance
- Control on the angles between the simplices and the tangent spaces

Details in B., Chazal, Yvinec. Geometric and Topological Inference

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Reconstruction of Rieman surfaces of \mathbb{R}^8

Data provided by A. Alvarez

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Triangulation of the space of conformations of C_8H_{16}

▲ロト▲圖ト▲目ト▲目ト 目 のへで