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Reconstructing surfaces from point clouds

One can reconstruct a surface from 106 points within 1mn [CGAL]



3D Reconstruction from images

Acute3D, Bentley Systems



Geometric data analysis

 

Figure 1.  Conformation Space of Cyclo-Octane.  The set of conformations of cyclo-octane can 
be represented as a surface in a high dimensional space.  On the left, we show various 
conformations of cyclo-octane.  In the center, these conformations are represented by the 3D 
coordinates of their atoms.  On the right, a dimension reduction algorithm is used to obtain a 
lower dimensional visualization of the data. 

 

 

Figure 2. Decomposing Cyclo-Octane.  The cyclo-octane conformation space has an interesting 
decomposition.  The local geometry of a self-intersection consists of a cylinder (top left) and a 
Mobius strip (top right), while the self-intersection is a ring traversing the middle of each object 
(shown in red).  Globally, cyclo-octane conformations can be separated into a sphere (bottom 
left) and a Klein bottle (bottom right). 
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Geometrisation : Data = points + distances between points

Manifold Hypothesis : Data lie close to a structure of “small” intrinsic dimension

Problem : Infer the structure from the data
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Simplicial complexes

H. Poincaré (1854-1912)

Let V be a finite set. A simplicial complex (abstract) on V is a finite set of subsets of V
called the simplexes or faces of K that satisfy :

1. The elements of V belong to K (vertices)

2. If τ ∈ K and σ ⊆ τ , then σ ∈ K (dim(σ)
def
= |σ| − 1)



Nerve of a good cover
A simplicial complex to represent the topology of an object

Nerve theorem (J. Leray, 1945)
If the intersection of any subset of elements in the cover is contractible, then the nerve
and the union of the elements of the cover have the same homotopy type.



C̆ech complex
Nerve of a set of balls

A finite set of points P ∈ Rd

J. Leray

(1906-1998)

Corollary of the nerve theorem (J. Leray, 1945)
The C̆ech complex has the same homotopy type as the union of balls.



C̆ech and Rips-Vietoris complexes

σ ⊆ P ∈ CR(P, α) ⇔
⋂

p∈σ B(p, α) 6= ∅

σ ⊆ P ∈ R(P, α) ⇔ ∀p, q ∈ σ ‖p − q‖ ≤ 2α ⇔ B (p, α) ∩ B (q, α) 6= ∅
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Figure 2. A fixed set of points [upper left] can be completed to a
Čech complex Cε [lower left] or to a Rips complex Rε [lower right]
based on a proximity parameter ε [upper right]. This Čech complex
has the homotopy type of the ε/2 cover (S1 ∨ S1 ∨ S1), while the
Rips complex has a wholly different homotopy type (S1 ∨ S2).

stored as a graph and reconstituted instead of storing the entire boundary operator
needed for a Čech complex. This virtue — that coarse proximity data on pairs of
nodes determines the Rips complex — is not without cost. The penalty for this
simplicity is that it is not immediately clear what is encoded in the homotopy type
of R. In general, it is neither a subcomplex of En nor does it necessarily behave
like an n-dimensional space at all (Figure 2).

1.4. Which ε? Converting a point cloud data set into a global complex (whether
Rips, Čech, or other) requires a choice of parameter ε. For ε sufficiently small,
the complex is a discrete set; for ε sufficiently large, the complex is a single high-
dimensional simplex. Is there an optimal choice for ε which best captures the
topology of the data set? Consider the point cloud data set and a sequence of Rips
complexes as illustrated in Figure 3. This point cloud is a sampling of points on
a planar annulus. Can this be deduced? From the figure, it certainly appears as
though an ideal choice of ε, if it exists, is rare: by the time ε is increased so as
to remove small holes from within the annulus, the large hole distinguishing the
annulus from the disk is filled in.

2. Algebraic topology for data

Algebraic topology offers a mature set of tools for counting and collating holes
and other topological features in spaces and maps between them. In the context of
high-dimensional data, algebraic topology works like a telescope, revealing objects
and features not visible to the naked eye. In what follows, we concentrate on ho-
mology for its balance between ease of computation and topological resolution. We

Interleaving : R(P, α2 ) ⊆ C(P, α) ⊆ R(P, α)



Geometric simplicial complexes

Geometric simplex of dimension k : the convex hull of k + 1 (independent) points

Geometric simplicial complex :

A finite collection of geometric simplices K called the faces of K such that

I ∀σ ∈ K , σ is a simplex
I σ ∈ K , τ ⊂ σ⇒ τ ∈ K
I ∀σ, τ ∈ K , either σ ∩ τ = ∅ or σ ∩ τ is a common face of

both



Filtration of a simplicial complex
A filtration of K is a sequence of nested subcomplexes of K

∅ = K 0 ⊂ K 1 ⊂ · · · ⊂ K m = K

such that: K i+1 = K i ∪ σi+1, where σi+1 is a simplex of K

Example : C̆ech filtration

Computational Topology (Jeff Erickson) Examples of Cell Complexes

Corollary 15.1. For any points set P and radius �, the Aleksandrov-Čech complex AČ�(P) is homotopy-
equivalent to the union of balls of radius � centered at points in P.

Aleksandrov-Čech complexes and unions of balls for two different radii. 2-simplices are yellow; 3-simplices are green.

15.1.2 Vietoris-Rips Complexes: Flags and Shadows

The proximity graph N�(P) is the geometric graph whose vertices are the points P and whose edges join
all pairs of points at distance at most 2�; in other words, N�(P) is the 1-skeleton of the Aleksandrov-Čech
complex. The Vietoris-Rips complex VR�(P) is the flag complex or clique complex of the proximity
graph N�(P). A set of k+ 1 points in P defines a k-simplex in VR�(P) if and only if every pair defines an
edge in N�(P), or equivalently, if the set has diameter at most 2�. Again, the Vietoris-Rips complex is an
abstract simplicial complex.

The Vietoris-Rips complex was used by Leopold Vietoris [57] in the early days of homology theory as
a means of creating finite simplicial models of metric spaces.2 The complex was rediscovered by Eliayu
Rips in the 1980s and popularized by Mikhail Gromov [35] as a means of building simplicial models for
group actions. ‘Rips complexes’ are now a standard tool in geometric and combinatorial group theory.

The triangle inequality immediately implies the nesting relationship AČ�(P) ⊆ VR�(P) ⊆ AČ2�(P)
for any �, where ⊆ indicates containment as abstract simplicial complexes. The upper radius 2� can be
reduced to

�
3�/2 if the underlying metric space is Euclidean [21], but for arbitrary metric spaces, these

bounds cannot be improved.
One big advantage of Vietoris-Rips complexes is that they determined entirely by their underlying

proximity graphs; thus, they can be applied in contexts like sensor-network modeling where the
underlying metric is unknown. In contrast, the Aleksandrov-Čech complex also depends on the metric of
the ambient space that contains P; even if we assume that the underlying space is Euclidean, we need
the lengths of the edges of the proximity complex to reconstruct the Aleksandrov-Čech complex.

On the other hand, there is no result like the Nerve Lemma for flag complexes. Indeed, it is easy to
construct Vietoris-Rips complexes for points in the Euclidean plane that contain topological features of
arbitrarily high dimension.

2Vietoris actually defined a slightly different complex. Let U = {U1, U2, . . .} be a set of open sets that cover some topological
space X . The Vietoris complex of U is the abstract simplicial complex whose vertices are points in X , and whose simplices
are finite subsets of X that lie in some common set Ui . Thus, the Vietoris complex of an open cover is the dual of its
Aleskandrov-Čech nerve. Dowker [25] proved that these two simplicial complexes have isomorphic homology groups.

2

Filtrations play a central role in topological persistence
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Voronoi diagrams

A set of points P in (Rd , ‖.‖)

Voronoi cell V (pi ) = {x : ‖x − pi‖ ≤ ‖x − pj‖, ∀j}

Voronoi diagram Vor(P) = {set of cells V (pi ), pi ∈ P}



Delaunay Triangulations
Sur la sphère vide (On the empty sphere), Boris Delaunay (1934)

The Delaunay complex Del(P) is
the nerve of Vor(P)

Theorem
If P contains no subset of d + 2 points on a same hypersphere, then
Del(P) is a triangulation of P
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Correspondence between structures
hpi : xd+1 = 2pi · x − p2

i p̂i = (pi , p2
i ) = h∗pi

V(P) = h+
p1 ∩ . . . ∩ h+

pn

duality−→ D(P) = conv−({p̂1, . . . , p̂n})
↑ ↓

Voronoi diagram of P nerve−→ Delaunay triang. of P

The diagram commutes if P is in general position wrt spheres



Corollaries
Combinatorial complexity

The Voronoi diagram of n points of Rd has the same combinatorial
complexity as the intersection of n half-spaces of Rd+1

The Delaunay triangulation of n points of Rd has the same
combinatorial complexity as the convex hull of n points of Rd+1

The two complexities are the same (duality): Θ(nd d
2 e) [Mc Mullen 1970]

Worst-case: points on the moment curve Γ(t) = {t , t2, ..., td} ⊂ Rd

Quadratic in R3



Corollaries
Algorithmic complexity

Construction of Del(P), P = {p1, ..., pn} ⊂ Rd

1 Lift the points of P onto the paraboloid xd+1 = x2 of Rd+1:
pi → p̂i = (pi ,p2

i )

2 Compute conv({p̂i})
3 Project the lower hull conv−({p̂i}) onto Rd

Complexity : Θ(n log n + nd
d
2 e) [Clarkson & Shor 1989] [Chazelle 1993]



Alpha-shapes and the Delaunay filtration

Let U(α) be the union of the balls B(p, α), p ∈ P.

The alpha-shape of P, noted alpha(P), is the nerve of the restriction of Del(P) to U(α).

The alpha-shape is a deformation retract of the union of balls

The Delaunay filtration is the nested sequence of alpha(P) for α ∈ [0,∞]



C̆ech complex versus alpha-shape

I Both complexes are homotopy equivalent to U(α)

I The size of C̆ech(P, α) is Θ(nd )

I The size of the alpha-shape(P) is Θ(nd
d
2 e)

I the alpha-shape naturally embeds in Rd but not C̆ech(B) (general position)



Motivation for Geometric Data Analysis

Combinatorial models

Delaunay complexes

Nets, sampling and clustering

Data structures



Definition and existence of nets

Definition

Let Ω be a bounded subset of Rd . A finite set of points P is called an (ε, η̄)-net of Ω iff

Covering/density : ∀x ∈ Ω,∃p ∈ P : ‖x − p‖ ≤ ε

Packing/separation : ∀p, q ∈ P : ‖p − q‖ ≥ η̄ ε def
= η

Lemma Ω admits an (ε, 1)-net.

Proof. While there exists a point p ∈ Ω, d(p,P) ≥ ε, insert p in P



Size of a net inside a unit ball Ω of Rd

Lemma The number of points of an (ε, η̄)-net of Ω is at most

n(ε, η̄) ≤
vold (B(1 + η

2 ))

vold (B( η2 ))
= O

(
1
εd

)

where the constant in the O depends on η̄d .



Size of the Delaunay complex of a net

Lemma Let Ω be a unit ball of Td , P an (ε, η̄)-net of Ω (of size n = |P| = O( 1
εd )) and

assume that d and η̄ are positive constants.

The Delaunay triangulation of P to Ω has linear size O(n).

Proof.

1. The Delaunay neighbours of a point p are at distance ≤ 2ε from p

2. There number is np = O(1) using a volume argument

3. The number of simplices incident on p is at most

d+1∑
i=1

(
np
i

)
≤

np∑
i=0

(
np
i

)
= 2np .



Two problems about nets in discrete metric spaces

Input: a finite point set W . We know the distances between any 2 points but not the
locations of the points.

Problems: Can we extract from W a subsample L such that

Subsampling : L is a (λ, 1)-net of W (assuming W is λ dense)

Clustering : |L| = k and maxw∈W d(w , L) is minimized.



Farthest point insertion

Input: the distance matrix of a finite point set W and either a positive constant λ
(Case 1) or an integer k (Case 2)

1. L := {w1} initialize L sample with any point of W

2. L(w) := w1 for all w ∈ W L(w) stores the element of L closest to w

3. λ∗ := maxw∈W ‖w − L(w)‖

4. w∗ := a point p ∈ W such that ‖p − L(p)‖ = λ∗ point of W most distant from L

5. while either λ∗ > λ (Case 1) or |L| < k (Case 2)

5.1 add w∗ to L
5.2 for each point w of W such that ‖w − w∗‖ < ‖w − L(w)‖ do

5.2.1 L(w) := w∗
5.2.2 update λ∗ and w∗

6. return : L ⊆ W

Property : Case 1 : L is (λ, 1)-net of W
Case 2 : L is an approximate solution to the k -centers problem

Time complexity : O(kn)



Constructing nets by subsampling

Lemma 1 Let W be a finite set of points such that the distance of any point q ∈ W to
W \ {q} is at most ε and let λ ≥ ε. One can extract from W a subsample L that is a
(λ, 1)-net of W .

Proof

For any i > 0, Li = {l1, ..., li} and λi = d(li , Li−1) (li indexed by insertion order)

Since Li grows with i : j ≥ i ⇒ λj ≤ λi (*)

We claim that at each iteration i > 0, Li is a (λi , 1)-net of W .

1. Li is λi -dense in W by (*)

2. Li is λi -separated: lalb closest par in Li , lb (inserted after la)

⇒ ‖la − lb‖ = λb ≥ λi by (*)



k -centers clustering

Problem : Select from W a subset L of k points so as to maximize the minimum
pairwise distance between the points of L.

Lemma 2 The farthest insertion algorithm (Case 2) provides a 2-approximation to the
k -centers problem and to the k-centers clustering problem.

Proof

I W ⊂ ∪k−1
i=1 B(li , λk )

⇒ Two points of Lopt lie in the same ball B(li , λk ), for some i ≤ k − 1

⇒ ∃p, q ∈ Lopt s.t. ‖p − q‖ ≤ 2λk

I The distance between any two points of Lk is at least λk (Lemma 1).

⇒ 1
2 maxminPD(Lopt) ≤ λk ≤ maxminPD(Lk )
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Data structures to represent simplicial complexes

Atomic operations
I Look-up/Insertion/Deletion of a simplex

I Facets and subfaces of a simplex

I Cofaces, link of a simplex

I Topology preserving operations

I Edge contractions

I Elementary collapses

Explicit representation of all simplices ? of all incidence relations ?



The Hasse diagram

G(V ,E) σ ∈ V ⇔ σ ∈ K
(σ, τ) ∈ E ⇔ σ ⊂ τ ∧ dim(σ) = dim(τ)− 1

1

2

3

4

5

3 4 521

3 4 5 54 52 3

4 55 53

5

3

6 7 8 90

9897

9

86

7
9

0

1 1 2 2 2 3 3 4 6 6 7 7

21 32

432

43 7632 42

∅



The simplex tree is a prefix tree (trie)

1. index the vertices of K

2. associate to each simplex σ ∈ K , the sorted list of its vertices

3. store the simplices in a trie.

1

2

3

4

5

3 4 521

3 4 5 54 52 3

4 55 53

5

3

3

3

3

6 7 8 90

9897

9

86

7
9

0



Performance of the simplex tree

I A subgraph of the Hasse diagram
I Explicit representation of all simplices
I #nodes = #K
I depth = dim(K) + 1
I #children(σ) ≤ #cofaces(σ) ≤ deg(last(σ))

I Memory complexity: O(1) per simplex

I Basic operations

I Membership (σ) : O(dσ log n)
I Insertion (σ) : O(2dσdσ log n)

Implemented in the GUDHI library



Redundancy in the Simplex Tree

Simplex Automaton

3

4
5

6

5

3 4
2

4

1

5

6

3 5
6 3

4
5

5

4

5

6 5 4
5 5

5 5

6

Simplex Automaton

3

4
5

6

5

3

4
2

4

1

5

6

3 5
6 3

4
5

5

4

5

6 5 4
5 5

5 5

6



Minimal simplex automaton B., Karthik, Tavenas 2016

Minimal Simplex Automaton

1 2

3

4

5,6
3

4

5,6

3

4

5

4 4

5,6 5

Hopcroft’s Algorithm: O(m log m log n) time.

7

I Compression time : O(m log m log n) [Hopcroft 1971]
I Static queries: unchanged
I Dynamic queries: more complex

I The size of the automaton depends on the labelling of the vertices

Finding an optimal labelling is NP-complete
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Experiments
Data Set 1: Rips Complex from sampling of Klein bottle in R5.

n α d k m Size After
Compression

Compression
Ratio

10,000 0.15 10 24,970 604,573 218,452 2.77
10,000 0.16 13 25,410 1,387,023 292,974 4.73
10,000 0.17 15 27,086 3,543,583 400,426 8.85
10,000 0.18 17 27,286 10,508,486 524,730 20.03

Data Set 2: Flag complexes generated from random graph
Gn,p.

n p d k m Size After
Compression

Compression
Ratio

25 0.8 17 77 315,370 467 537.3
30 0.75 18 83 4,438,559 627 7,079.0
35 0.7 17 181 3,841,591 779 4,931.4
40 0.6 19 204 9,471,220 896 10,570.6
50 0.5 20 306 25,784,504 1,163 22,170.7
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Simplex Array List [B., Karthik C.S., Tavenas 2017]

Store only the maximal simplices

2 La structure SAL

SAL est la structure de référence pour stocker un complexe simplicial. On
donne une nouvelle manière de définir SAL, que nous estimons plus facile à com-
prendre car elle sépare clairement le stockage de l’information qui caractérise le
complexe simplicial et la structure additionnelle qui est maintenue pour accéder
rapidement à cette information. L’information qui caractérise le complexe, c’est
son ensemble de simplexes maximaux K, qui est stocké dans une table de ha-
chage MS, où chaque simplexe est associé à la somme des clés de ses sommets.
Une telle table de hachage permet seulement de tester facilement l’apparte-
nance d’un simplexe au complexe en tant que simplexe maximal, or en pratique
on veut pouvoir tester l’appartenance de n’importe quel simplex. On a donc
besoin d’une structure supplémentaire, qui permet d’accéder rapidement à MS,
une table de hachage T0 qui associe à chaque sommet un ensemble de pointeurs
vers les emplacements dans MS des cofaces maximales du sommet.

1

4

2

3

6

Associative array T0 associating each 
vertex to its doubly linked list. Set MS of the maximal simplices.

6 3 4 2

2

3 6 1

1

Figure 2 – La structure SAL avec n � 6, d = 4, k = 3 et les simplexes
maximaux : �A = {2346}, �B = {12} et �C = {136}

Complexité en mémoire :

O
� X

�2K

d�
�

= O(kd)

Un simplexe � occupe O(d�) mémoire, donc au total MS prend O
�P

�2K d�
�

mémoire. Ensuite, il faut remarquer qu’il y a d� références depuis T0 vers l’em-
placement d’un simplex maximal � dans MS, une pour chacun de ses sommets,
donc au total il y a O

�P
�2K d�

�
références dans T0, donc T0 occupe lui aussi

O
�P

�2K d�
�
.

4

Memory storage : O
(∑

σ∈K dσ
)

= O(kd) Optimal



Proof of optimality
Theorem

Consider the class of all simplicial complexes K(n, k ,d) where d ≥ 2
and k ≥ n + 1.

Any data structure that can represent the simplicial complexes of this

class requires log
((n/2

d+1)
k−n

)
bits to be stored,

which is Ω(kd log n) for any constant ε ∈ (0,1) and for
2
εn ≤ k ≤ n(1−ε)d and d ≤ nε/3.

Proof P = |vert(K )|, P ′ ⊂ P, |P ′| = n/2

Consider the set S of all simplicial complexes with vertex set ⊂ P ′, of
dimension d and having k − n maximal simplices (all of dimension d) and

observe that |S| =
((n/2

d+1)
k−n

)
Let K1, ...,K|S| be those complexes with vertex sets P1, ...,P|S|
Complete each Ki with vertices in P \ Pi and edges spanning those vertices
so that K +

i has n vertices and k maximal simplices (of dimension 1 or h)

We have |S| complexes of K(n, k , d ,m)



Basic operations
Complexity depends on a local parameter

2 La structure SAL
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mémoire. Ensuite, il faut remarquer qu’il y a d� références depuis T0 vers l’em-
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Γi (σ) = number of maximal cofaces of σ of dimension i

Γi = maxσ∈K Γi (σ)

Membership (σ): O
(∑dσ−1

i=0 Γi (σ) log n
)

= O(Γ0d log n) ST : O(d log n)

Insertion (σ) : O(Γ0(σ)d2
σ log n) = O(Γ0d2) ST : O(dσ2dσ log n)



Experimental results
Data Set 1 (Rips complex on a Klein bottle in R5)

No n α d k m Γ0 Γ1 Γ2 Γ3 |SAL|
1 10,000 0.15 10 24,970 604,573 62 53 47 37 424,440
2 10,000 0.16 13 25,410 1,387,023 71 61 55 48 623,238
3 10,000 0.17 15 27,086 3,543,583 90 67 61 51 968,766
4 10,000 0.18 17 27,286 10,508,486 115 91 68 54 1,412,310

To be released in the GUDHI library (F. Godi)



Conclusions

Next lectures

I Other types of simplicial complexes
I Triangulation of manifolds

Open questions

I Bound on Γ0 for interesting simplicial complexes
I Lower bounds on query time assuming optimal storage O(kd log n)


