Foundations of Geometric Methods in Data Science

Jean-Daniel Boissonnat
Mathieu Carrière

Frédéric Cazals
INRIA

Master Science des Données et Intelligence Artificielle 2023

Lecture 1 : Elements of Computational Geometry and Topology

Motivation for Geometric Data Analysis

Combinatorial models

Delaunay complexes

Nets, sampling and clustering

Data structures

Reconstructing surfaces from point clouds

One can reconstruct a surface from 10^{6} points within 1 mn

3D Reconstruction from images

Acute3D, Bentley Systems

Geometric data analysis

Geometrisation: Data $=$ points + distances between points
Manifold Hypothesis : Data lie close to a structure of "small" intrinsic dimension
Problem: Infer the structure from the data

Motivation for Geometric Data Analysis

Combinatorial models

Delaunay complexes

Nets，sampling and clustering

Data structures

Simplicial complexes

H. Poincaré (1854-1912)

Let V be a finite set. A simplicial complex (abstract) on V is a finite set of subsets of V called the simplexes or faces of K that satisfy :

1. The elements of V belong to K (vertices)
2. If $\tau \in K$ and $\sigma \subseteq \tau$, then $\sigma \in K \quad(\operatorname{dim}(\sigma) \stackrel{\text { def }}{=}|\sigma|-1)$

Nerve of a good cover

A simplicial complex to represent the topology of an object

Nerve theorem

If the intersection of any subset of elements in the cover is contractible, then the nerve and the union of the elements of the cover have the same homotopy type.

C̆ech complex

Nerve of a set of balls

A finite set of points $\mathcal{P} \in \mathbb{R}^{d}$

Corollary of the nerve theorem
(J. Leray, 1945)

The C̆ech complex has the same homotopy type as the union of balls.

C̆ech and Rips-Vietoris complexes

$$
\begin{aligned}
& \sigma \subseteq \mathcal{P} \in C R(\mathcal{P}, \alpha) \Leftrightarrow \bigcap_{p \in \sigma} B(p, \alpha) \neq \emptyset \\
& \sigma \subseteq \mathcal{P} \in R(\mathcal{P}, \alpha) \Leftrightarrow \forall p, q \in \sigma\|p-q\| \leq 2 \alpha \Leftrightarrow B(p, \alpha) \cap B(q, \alpha) \neq \emptyset
\end{aligned}
$$

Interleaving : $R\left(\mathcal{P}, \frac{\alpha}{2}\right) \subseteq C(\mathcal{P}, \alpha) \subseteq R(\mathcal{P}, \alpha)$

Geometric simplicial complexes

Geometric simplex of dimension k : the convex hull of $k+1$ (independent) points
Geometric simplicial complex :
A finite collection of geometric simplices K called the faces of K such that

- $\forall \sigma \in K, \sigma$ is a simplex
- $\sigma \in K, \tau \subset \sigma \Rightarrow \tau \in K$
- $\forall \sigma, \tau \in K$, either $\sigma \cap \tau=\emptyset$ or $\sigma \cap \tau$ is a common face of both

Filtration of a simplicial complex

A filtration of K is a sequence of nested subcomplexes of K

$$
\emptyset=K^{0} \subset K^{1} \subset \cdots \subset K^{m}=K
$$

such that: $K^{i+1}=K^{i} \cup \sigma^{i+1}$, where σ^{i+1} is a simplex of K

Example : C̆ech filtration

Filtrations play a central role in topological persistence

Motivation for Geometric Data Analysis

Combinatorial models

Delaunay complexes

Nets, sampling and clustering

Data structures
\square

Voronoi diagrams

A set of points \mathcal{P} in $\left(\mathbb{R}^{d},\|\cdot\|\right)$

Voronoi cell

$$
V\left(p_{i}\right)=\left\{x:\left\|x-p_{i}\right\| \leq\left\|x-p_{j}\right\|, \forall j\right\}
$$

Voronoi diagram

$$
\operatorname{Vor}(\mathcal{P})=\left\{\text { set of cells } V\left(p_{i}\right), p_{i} \in \mathcal{P}\right\}
$$

Delaunay Triangulations

Sur la sphère vide (On the empty sphere), Boris Delaunay (1934)

The Delaunay complex $\operatorname{Del}(\mathcal{P})$ is the nerve of $\operatorname{Vor}(\mathcal{P})$

Delaunay Triangulations

Sur la sphère vide (On the empty sphere), Boris Delaunay (1934)

The Delaunay complex $\operatorname{Del}(\mathcal{P})$ is the nerve of $\operatorname{Vor}(\mathcal{P})$

Delaunay Triangulations

Sur la sphère vide (On the empty sphere), Boris Delaunay (1934)

The Delaunay complex $\operatorname{Del}(\mathcal{P})$ is the nerve of $\operatorname{Vor}(\mathcal{P})$

If \mathcal{P} contains no subset of $d+2$ points on a same hypersphere, then
$\operatorname{Del}(\mathcal{P})$ is a triangulation of \mathcal{P}

Correspondence between structures

$$
h_{p_{i}}: x_{d+1}=2 p_{i} \cdot x-p_{i}^{2}
$$

$$
\hat{p}_{i}=\left(p_{i}, p_{i}^{2}\right)=h_{p_{i}}^{*}
$$

Voronoi diagram of \mathcal{P}

Delaunay triang. of \mathcal{P}

The diagram commutes if \mathcal{P} is in general position wrt spheres

Corollaries

Combinatorial complexity

The Voronoi diagram of n points of \mathbb{R}^{d} has the same combinatorial complexity as the intersection of n half-spaces of \mathbb{R}^{d+1}
The Delaunay triangulation of n points of \mathbb{R}^{d} has the same combinatorial complexity as the convex hull of n points of \mathbb{R}^{d+1}
The two complexities are the same (duality): $\Theta\left(n^{\left\lceil\frac{d}{2}\right\rceil}\right)$ [Mc Mullen 1970]
Worst-case: points on the moment curve $\Gamma(t)=\left\{t, t^{2}, \ldots, t^{d}\right\} \subset \mathbb{R}^{d}$

Corollaries

Algorithmic complexity

Construction of $\operatorname{Del}(\mathcal{P}), \mathcal{P}=\left\{p_{1}, \ldots, p_{n}\right\} \subset \mathbb{R}^{d}$

1 Lift the points of \mathcal{P} onto the paraboloid $x_{d+1}=x^{2}$ of \mathbb{R}^{d+1} : $p_{i} \rightarrow \hat{p}_{i}=\left(p_{i}, p_{i}^{2}\right)$
2 Compute conv($\left.\left\{\hat{p}_{i}\right\}\right)$
3 Project the lower hull $\operatorname{conv}^{-}\left(\left\{\hat{p}_{i}\right\}\right)$ onto \mathbb{R}^{d}

Alpha-shapes and the Delaunay filtration

Let $U(\alpha)$ be the union of the balls $B(p, \alpha), p \in P$.
The alpha-shape of P, noted alpha (P), is the nerve of the restriction of $\operatorname{Del}(P)$ to $U(\alpha)$.

The alpha-shape is a deformation retract of the union of balls

The Delaunay filtration is the nested sequence of alpha (P) for $\alpha \in[0, \infty]$

C̆ech complex versus alpha-shape

- Both complexes are homotopy equivalent to $U(\alpha)$
- The size of $\operatorname{C̆} \operatorname{ech}(P, \alpha)$ is $\Theta\left(n^{d}\right)$
- The size of the alpha-shape (P) is $\Theta\left(n^{\left\lceil\frac{d}{2}\right\rceil}\right)$
- the alpha-shape naturally embeds in \mathbb{R}^{d} but not $\breve{C e c h}(B)$ (general position)

Motivation for Geometric Data Analysis

Combinatorial models

Delaunay complexes

Nets, sampling and clustering

Data structures

Definition and existence of nets

Definition

Let Ω be a bounded subset of \mathbb{R}^{d}. A finite set of points P is called an $(\varepsilon, \bar{\eta})$-net of Ω iff
Covering/density : $\quad \forall x \in \Omega, \exists p \in P:\|x-p\| \leq \varepsilon$
Packing/separation: $\quad \forall p, q \in P:\|p-q\| \geq \bar{\eta} \varepsilon \stackrel{\text { def }}{=} \eta$

Lemma Ω admits an $(\varepsilon, 1)$-net.

Proof. While there exists a point $p \in \Omega, d(p, P) \geq \varepsilon$, insert p in P

Size of a net inside a unit ball Ω of \mathbb{R}^{d}

Lemma The number of points of an $(\varepsilon, \bar{\eta})$-net of Ω is at most

$$
n(\varepsilon, \bar{\eta}) \leq \frac{\operatorname{vol}_{d}\left(B\left(1+\frac{\eta}{2}\right)\right)}{\operatorname{vol}_{d}\left(B\left(\frac{\eta}{2}\right)\right)}=O\left(\frac{1}{\varepsilon^{d}}\right)
$$

where the constant in the O depends on $\bar{\eta}^{d}$.

Size of the Delaunay complex of a net

Lemma Let Ω be a unit ball of \mathbb{T}^{d}, P an $(\varepsilon, \bar{\eta})$-net of Ω (of size $n=|P|=O\left(\frac{1}{\varepsilon^{d}}\right)$) and assume that d and $\bar{\eta}$ are positive constants.

The Delaunay triangulation of P to Ω has linear size $O(n)$.

Proof.

1. The Delaunay neighbours of a point p are at distance $\leq 2 \varepsilon$ from p
2. There number is $n_{p}=O(1)$ using a volume argument
3. The number of simplices incident on p is at most

$$
\sum_{i=1}^{d+1}\binom{n_{p}}{i} \leq \sum_{i=0}^{n_{p}}\binom{n_{p}}{i}=2^{n_{p}}
$$

Two problems about nets in discrete metric spaces

Input: a finite point set W. We know the distances between any 2 points but not the locations of the points.

Problems: Can we extract from W a subsample L such that

Subsampling : L is a $(\lambda, 1)$-net of W (assuming W is λ dense)

Clustering : $|L|=k$ and $\max _{w \in W} d(w, L)$ is minimized.

Farthest point insertion

Input: the distance matrix of a finite point set W and either a positive constant λ (Case 1) or an integer k (Case 2)

1. $L:=\left\{w_{1}\right\}$
initialize L sample with any point of W
2. $L(w):=w_{1}$ for all $w \in W$ $L(w)$ stores the element of L closest to w
3. $\lambda^{*}:=\max _{w \in w}\|w-L(w)\|$
4. $w^{*}:=$ a point $p \in W$ such that $\|p-L(p)\|=\lambda^{*} \quad$ point of W most distant from L
5. while either $\lambda^{*}>\lambda$ (Case 1) or $|L|<k$ (Case 2)
5.1 add w^{*} to L
5.2 for each point w of W such that $\left\|w-w^{*}\right\|<\|w-L(w)\|$ do
5.2.1 $L(w):=w^{*}$
5.2.2 update λ^{*} and w^{*}
6. return : $L \subseteq W$

Property: Case $1: L$ is $(\lambda, 1)$-net of W
Case 2 : L is an approximate solution to the k-centers problem
Time complexity: $O(k n)$

Constructing nets by subsampling

Lemma 1 Let W be a finite set of points such that the distance of any point $q \in W$ to $W \backslash\{q\}$ is at most ε and let $\lambda \geq \varepsilon$. One can extract from W a subsample L that is a $(\lambda, 1)$-net of W.

Proof
For any $i>0, L_{i}=\left\{I_{1}, \ldots, l_{i}\right\}$ and $\lambda_{i}=d\left(l_{i}, L_{i-1}\right) \quad\left(l_{i}\right.$ indexed by insertion order)
Since L_{i} grows with $i: \quad j \geq i \Rightarrow \lambda_{j} \leq \lambda_{i}$

We claim that at each iteration $i>0, L_{i}$ is a $\left(\lambda_{i}, 1\right)$-net of W.

1. L_{i} is λ_{i}-dense in W by ($\left.{ }^{*}\right)$
2. L_{i} is λ_{i}-separated: $\quad l_{a} l_{b}$ closest par in L_{i}, I_{b} (inserted after l_{a})

$$
\Rightarrow \quad\left\|I_{a}-I_{b}\right\|=\lambda_{b} \geq \lambda_{i} \quad \text { by (*) }
$$

k-centers clustering

Problem: Select from W a subset L of k points so as to maximize the minimum pairwise distance between the points of L.

Lemma 2 The farthest insertion algorithm (Case 2) provides a 2-approximation to the k-centers problem and to the k-centers clustering problem.

Proof

- $W \subset \cup_{i=1}^{k-1} B\left(l_{i}, \lambda_{k}\right)$
\Rightarrow Two points of $L_{\text {opt }}$ lie in the same ball $B\left(l_{i}, \lambda_{k}\right)$, for some $i \leq k-1$
$\Rightarrow \exists p, q \in L_{\text {opt }}$ s.t. $\|p-q\| \leq 2 \lambda_{k}$
- The distance between any two points of L_{k} is at least λ_{k} (Lemma 1).

$$
\Rightarrow \quad \frac{1}{2} \operatorname{maxminPD}\left(L_{\mathrm{opt}}\right) \leq \lambda_{k} \leq \operatorname{maxminPD}\left(L_{k}\right)
$$

Motivation for Geometric Data Analysis

Combinatorial models

Delaunay complexes

Nets, sampling and clustering

Data structures

Data structures to represent simplicial complexes

Atomic operations

- Look-up/Insertion/Deletion of a simplex
- Facets and subfaces of a simplex

- Cofaces, link of a simplex
- Topology preserving operations
- Edge contractions
- Elementary collapses

Explicit representation of all simplices ? of all incidence relations ?

The Hasse diagram

The simplex tree is a prefix tree (trie)

1. index the vertices of K
2. associate to each simplex $\sigma \in K$, the sorted list of its vertices
3. store the simplices in a trie.

Performance of the simplex tree

- A subgraph of the Hasse diagram
- Explicit representation of all simplices
- \#nodes $=\# \mathcal{K}$
- depth $=\operatorname{dim}(\mathcal{K})+1$
- \#children $(\sigma) \leq \# \operatorname{cofaces}(\sigma) \leq \operatorname{deg}(\operatorname{last}(\sigma))$
- Memory complexity: O (1) per simplex
- Basic operations
- Membership $(\sigma): \quad O\left(d_{\sigma} \log n\right)$
- Insertion $(\sigma): \quad O\left(2^{d_{\sigma}} d_{\sigma} \log n\right)$

Implemented in the GUDHI library

Redundancy in the Simplex Tree

Minimal simplex automaton

B., Karthik, Tavenas 2016

- Compression time : $O(m \log m \log n)$
[Hopcroft 1971]
- Static queries: unchanged
- Dynamic queries: more complex

Minimal simplex automaton

- Compression time: $O(m \log m \log n)$
[Hopcroft 1971]
- Static queries: unchanged
- Dynamic queries: more complex
- The size of the automaton depends on the labelling of the vertices

Finding an optimal labelling is NP-complete

Experiments

Data Set 1: Rips Complex from sampling of Klein bottle in \mathbb{R}^{5}.

n	α	d	k	m	Size After Compression	Compression Ratio
10,000	0.15	10	24,970	604,573	218,452	2.77
10,000	0.16	13	25,410	$1,387,023$	292,974	4.73
10,000	0.17	15	27,086	$3,543,583$	400,426	8.85
10,000	0.18	17	27,286	$10,508,486$	524,730	20.03

Experiments

Data Set 1: Rips Complex from sampling of Klein bottle in \mathbb{R}^{5}.

n	α	d	k	m	Size After Compression	Compression Ratio
10,000	0.15	10	24,970	604,573	218,452	2.77
10,000	0.16	13	25,410	$1,387,023$	292,974	4.73
10,000	0.17	15	27,086	$3,543,583$	400,426	8.85
10,000	0.18	17	27,286	$10,508,486$	524,730	20.03

Data Set 2: Flag complexes generated from random graph $G_{n, p}$.

n	p	d	k	m	Size After Compression	Compression Ratio
25	0.8	17	77	315,370	467	537.3
30	0.75	18	83	$4,438,559$	627	$7,079.0$
35	0.7	17	181	$3,841,591$	779	$4,931.4$
40	0.6	19	204	$9,471,220$	896	$10,570.6$
50	0.5	20	306	$25,784,504$	1,163	$22,170.7$

Simplex Array List

[B., Karthik C.S., Tavenas 2017]

Store only the maximal simplices

Memory storage : $O\left(\sum_{\sigma \in K} d_{\sigma}\right)=O(k d)$
Optimal

Proof of optimality

Theorem

Consider the class of all simplicial complexes $\mathcal{K}(n, k, d)$ where $d \geq 2$ and $k \geq n+1$.

Any data structure that can represent the simplicial complexes of this class requires $\log \left(\begin{array}{c}\left(\begin{array}{c}n / 2 \\ d+1 \\ k-n\end{array}\right)\end{array}\right)$ bits to be stored, which is $\Omega(k d \log n)$ for any constant $\varepsilon \in(0,1)$ and for $\frac{2}{\varepsilon} n \leq k \leq n^{(1-\varepsilon) d}$ and $d \leq n^{\varepsilon / 3}$.

Proof $\mathcal{P}=|\operatorname{vert}(K)|, \mathcal{P}^{\prime} \subset \mathcal{P},\left|\mathcal{P}^{\prime}\right|=n / 2$
Consider the set S of all simplicial complexes with vertex set $\subset \mathcal{P}^{\prime}$, of dimension d and having $k-n$ maximal simplices (all of dimension d) and observe that $|S|=\left(\begin{array}{c}\left(\begin{array}{c}n+1 \\ \alpha+1 \\ k-n\end{array}\right)\end{array}\right.$
Let $K_{1}, \ldots, K_{|S|}$ be those complexes with vertex sets $\mathcal{P}_{1}, \ldots, \mathcal{P}_{|S|}$
Complete each K_{i} with vertices in $\mathcal{P} \backslash \mathcal{P}_{i}$ and edges spanning those vertices so that K_{i}^{+}has n vertices and k maximal simplices (of dimension 1 or h)
We have $|S|$ complexes of $\mathcal{K}(n, k, d, m)$

Basic operations

Complexity depends on a local parameter

$\Gamma_{i}(\sigma)=$ number of maximal cofaces of σ of dimension i
$\Gamma_{i}=\max _{\sigma \in K} \Gamma_{i}(\sigma)$
Membership $(\sigma): O\left(\sum_{i=0}^{d_{\sigma}-1} \Gamma_{i}(\sigma) \log n\right)=O\left(\Gamma_{0} d \log n\right) \quad \mathrm{ST}: O(d \log n)$ Insertion $(\sigma): \quad O\left(\Gamma_{0}(\sigma) d_{\sigma}^{2} \log n\right) \quad=O\left(\Gamma_{0} d^{2}\right)$ ST : $O\left(d_{\sigma} 2^{d_{\sigma}} \log \right.$

Experimental results

Data Set 1 (Rips complex on a Klein bottle in \mathbb{R}^{5})

No	n	α	d	k	m	Γ_{0}	Γ_{1}	Γ_{2}	Γ_{3}	$\|S A L\|$
1	10,000	0.15	10	24,970	604,573	62	53	47	37	424,440
2	10,000	0.16	13	25,410	$1,387,023$	71	61	55	48	623,238
3	10,000	0.17	15	27,086	$3,543,583$	90	67	61	51	968,766
4	10,000	0.18	17	27,286	$10,508,486$	115	91	68	54	$1,412,310$

To be released in the GUDHI library (F. Godi)

Conclusions

Next lectures

- Other types of simplicial complexes
- Triangulation of manifolds

Open questions

- Bound on Γ_{0} for interesting simplicial complexes
- Lower bounds on query time assuming optimal storage $O(k d \log n)$

