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Lecture 1 : Elements of Computational Geometry and
Topology

Motivation for Geometric Data Analysis
Combinatorial models

Delaunay complexes

Nets, sampling and clustering

Data structures



Reconstructing surfaces from point clouds

One can reconstruct a surface from 108 points within 1mn [CGAL]



3D Reconstruction from images

Acute3D, Bentley Systems



Geometric data analysis
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Geometrisation : Data = points + distances between points

Manifold Hypothesis : Data lie close to a structure of “small” intrinsic dimension

Problem : Infer the structure from the data



Combinatorial models



Simplicial complexes

4
Y

Let V be a finite set. A simplicial complex (abstract) on V is a finite set of subsets of V
called the simplexes or faces of K that satisfy :

H. Poincaré (1854-1912)

1. The elements of V belongto K (vertices)

2. lireKando Cr thenc e K (dim(c) & |o| — 1)



Nerve of a good cover

A simplicial complex to represent the topology of an object

Nerve theorem (J. Leray, 1945)

If the intersection of any subset of elements in the cover is contractible, then the nerve
and the union of the elements of the cover have the same homotopy type.



Cech complex

Nerve of a set of balls

A finite set of points P € R?

J. Leray
(1906-1998)

Corollary of the nerve theorem
The Cech complex has the same homotopy type as the union of balls.

(J. Leray, 1945)




Cech and Rips-Vietoris complexes

o CPeCR(P,a) & mpeo B(p,a) # 0
cCPERMP,a) & Vpgeolp—qgl<2a < B(p,a)nB(ga)#0

Interleaving : R(P, ) € C(P,a) C R(P, a)



Geometric simplicial complexes

Geometric simplex of dimension k : the convex hull of k + 1 (independent) points

Geometric simplicial complex :

A finite collection of geometric simplices K called the faces of K such that

> Vo € K, o is a simplex
> ceK,TCo=>T1€eK
> VYo, 1 € K, either e Nt = 0 or o N 7 is a common face of

e ’5




Filtration of a simplicial complex

A filtration of K is a sequence of nested subcomplexes of K
0=K'cK'c...cK"=K

such that: K™™' = K' U™, where o/t is a simplex of K

Example : Cech filtration

Filtrations play a central role in topological persistence



Delaunay complexes



Voronoi diagrams

A set of points P in (RY, ||.]|)

Voronoi cell V(pi)

s llx = pill < llx = pll, ik

{set of cells V(p;), pi € P}

Voronoi diagram

Vor(P)



Delaunay Triangulations
Sur la sphere vide (On the empty sphere), Boris Delaunay (1934)

The Delaunay complex Del(P) is
the nerve of Vor(P)
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Delaunay Triangulations
Sur la sphere vide (On the empty sphere), Boris Delaunay (1934)

The Delaunay complex Del(P) is
the nerve of Vor(P)

Theorem
If P contains no subset of d + 2 points on a same hypersphere, then
Del(P) is a triangulation of P



Correspondence between structures
hp; = Xd41 :2.01")(—17,-2

bi = (pi, P?) = hp,

V(P)=h N...0h, wly
T
Voronoi diagram of P

nerve
—

D(P) =conv™ ({p1,

., bn})

Delaunay triang. of P

[m]

The diagram commutes if P is in general position wrt spheres

=



Corollaries

Combinatorial complexity

The Voronoi diagram of n points of R has the same combinatorial
complexity as the intersection of n half-spaces of R+

The Delaunay triangulation of n points of RY has the same
combinatorial complexity as the convex hull of n points of R4+
d
2

The two complexities are the same (duality): e(nf | ) [Mc Mullen 1970]

Worst-case: points on the moment curve '(t) = {t,t?,...,t} ¢ RY

Quadratic in RS




Corollaries

Algorithmic complexity

Construction of Del(P), P = {ps,...,pn} C RY

1 Lift the points of P onto the paraboloid x4, = x? of RI+!:
pi — pi = (pi, p?)
2 Compute conv({p;})

3 Project the lower hull conv=({p;}) onto RY

Complexity : ©(nlogn+ nl21)  [Clarkson & Shor 1989] [Chazelle 1993]



Alpha-shapes and the Delaunay filtration

Let U(«) be the union of the balls B(p, o), p € P.
The alpha-shape of P, noted alpha(P), is the nerve of the restriction of Del(P) to U(«).

The alpha-shape is a deformation retract of the union of balls

The Delaunay filtration is the nested sequence of alpha(P) for « € [0, 0]



Cech complex versus alpha-shape

v

Both complexes are homotopy equivalent to U(«)

> The size of Cech(P, a) is ©(n?)

v

The size of the alpha-shape(P) is @(nf%W)

v

the alpha-shape naturally embeds in R? but not Cech(B) (general position)

u]
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Nets, sampling and clustering



Definition and existence of nets

Definition
Let Q be a bounded subset of RY. A finite set of points P is called an (e, 77)-net of Q iff
Covering/density : VxeQ,IpeP:|x—p|<e

Packing/separation: Vp,qc P:|p—q| > 7e =

Lemma Q admits an (e, 1)-net.

Proof. While there exists a point p € Q, d(p, P) > ¢, insert pin P



Size of a net inside a unit ball Q of R

Lemma The number of points of an (e, 77)-net of Q is at most

B volg(B(1 + 3)) ( 1 )
ne,m) < DOt 2) g

voly(B(})) <

where the constant in the O depends on 779.



Size of the Delaunay complex of a net

Lemma Let Q be a unit ball of T9, P an (e, 77)-net of Q (of size n = |P| = 0(517)) and
assume that d and 7 are positive constants.

The Delaunay triangulation of P to Q has linear size O(n).

Proof.

1. The Delaunay neighbours of a point p are at distance < 2¢ from p
2. There number is np = O(1) using a volume argument

3. The number of simplices incident on p is at most

B(r) <5 )

i=1 i=0



Two problems about nets in discrete metric spaces

Input: a finite point set W. We know the distances between any 2 points but not the
locations of the points.

Problems: Can we extract from W a subsample L such that
Subsampling : Lis a (X, 1)-net of W (assuming W is X dense)

Clustering : |L| = k and max,,cw d(w, L) is minimized.



Farthest point insertion

Input: the distance matrix of a finite point set W and either a positive constant A
(Case 1) or an integer k (Case 2)

1. L:={w} initialize L sample with any point of W
2. L(w) :=wy forallwe W L(w) stores the element of L closest to w
3. A" == maxyew [w — L(w))|

4. w* :=apoint p € W such that ||p — L(p)|| = \* point of W most distant from L
5. while either \* > X (Case 1) or |L| < k (Case 2)

5.1add w* to L

5.2 for each point w of W such that ||[w — w*|| < ||w — L(w)|| do
521 L(w) :=w*
5.2.2 update \* and w*

6.return: LC W

Property : Case 1: Lis (A, 1)-net of W
Case 2 : L is an approximate solution to the k-centers problem

Time complexity : O(kn)



Constructing nets by subsampling

Lemma 1 Let W be a finite set of points such that the distance of any point g € W to
W\ {q} is at most € and let A > €. One can extract from W a subsample L that is a
(A, 1)-net of W.

Proof
Foranyi>0,L;={h,...}and X\; = d(/;,Li_1) (l; indexed by insertion order)
Since L; grows with i : J2i = NN @)

We claim that at each iteration i > 0, L; is a (A;, 1)-net of W.

1. Ljis Aj-dense in W by (*)
2. L;is \j-separated: lalp closest par in L;, I, (inserted after /)
= |lla=hll=X>X  by()



k-centers clustering

Problem : Select from W a subset L of k points so as to maximize the minimum
pairwise distance between the points of L.

Lemma 2 The farthest insertion algorithm (Case 2) provides a 2-approximation to the
k-centers problem and to the k-centers clustering problem.

Proof
> WU B, )
= Two points of Loy lie in the same ball B(/;, Ax), for some i < k — 1
= 3p,q € Lop s:t. [|p— qll < 2X«
> The distance between any two points of Ly is at least A\ (Lemma 1).

= % maxminPD(Lop) < A < maxminPD(L)



Data structures



Data structures to represent simplicial complexes

Atomic operations

> Look-up/Insertion/Deletion of a simplex

> Facets and subfaces of a simplex

> Cofaces, link of a simplex
»> Topology preserving operations

»> Edge contractions

> Elementary collapses

Explicit representation of all simplices ? of all incidence relations ?




The Hasse diagram

GIV,E) ocV & ocK
(0,7)€EE & oCT A dim(o)=dim(7)—1

123 24235 45 35 679

2345



The simplex tree is a prefix tree (irie)

1. index the vertices of K

2. associate to each simplex o € K, the sorted list of its vertices
3. store the simplices in a trie.

4

5 6 8
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2 9@
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|
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Performance of the simplex tree

vyVvyVvYyVvyy

v

A subgraph of the Hasse diagram

Explicit representation of all simplices

#nodes = #K

depth = dim(K) + 1

#children(o) < #cofaces(c) < deg(last(o))
Memory complexity: O(1) per simplex

Basic operations

> Membership (¢):  O(d, logn)
> Insertion (o) : O(2% d, log n)

Implemented in the GUDHI library



Redundancy in the Simplex Tree




Minimal simplex automaton B., Karthik, Tavenas 2016

> Compression time : O(mlog mlog n) [Hopcroft 1971]
> Static queries: unchanged
» Dynamic queries: more complex



Minimal simplex automaton B., Karthik, Tavenas 2016

> Compression time : O(mlog mlog n) [Hopcroft 1971]
Static queries: unchanged
» Dynamic queries: more complex

v

> The size of the automaton depends on the labelling of the vertices

Finding an optimal labelling is NP-complete



Experiments
Data Set 1: Rips Complex from sampling of Klein bottle in R5.

n o d P m Size Aftgr Compression
Compression Ratio
10,000 | 0.15 | 10 | 24,970 604,573 218,452 2.77
10,000 | 0.16 | 13 | 25,410 | 1,387,023 292,974 4.73
10,000 | 0.17 | 15 | 27,086 | 3,543,583 400,426 8.85
10,000 | 0.18 | 17 | 27,286 | 10,508,486 | 524,730 20.03
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Data Set 2: Flag complexes generated from random graph
Gnp-

Size After Compression
n p d k m Compression Ratio
25| 08 |17 | 77 315,370 467 537.3
30 | 0.75 |18 | 83 4,438,559 627 7,079.0
35| 0.7 |17 | 181 | 3,841,591 779 4,931.4
40 | 0.6 | 19 | 204 | 9,471,220 896 10,570.6
50 | 0.5 | 20 | 306 | 25,784,504 1,163 22,170.7




Simplex Array List [B., Karthik C.S., Tavenas 2017]

Store only the maximal simplices

(2] >

Doubly linked Tist referencing the .
[maximum cofaces of the verte: N

Sct coding for 0,4

Jr EIBIEE]

Doubly Tinked s
maximum coface:

(4]

Doubly linked list referencing the
maximum cofaices of the

Set coding for 15

Doubly linked list referencing the
maximum cofaces of the vertex 1

Doubly Tinked list rel g the
maximum cofaces of

b [3](6 (1]

Set coding for oc

Associative array TO associating each
vertex to its doubly linked list.

Set MS of the maximal simplices.

Memory storage : O (3, <k do) = O(kd) Optimal



Proof of optimality
Theorem

Consider the class of all simplicial complexes K(n, k, d) where d > 2
and k > n+41.

Any data structure that can represent the simplicial complexes of this
class requires log ((d+‘)) bits to be stored,

which is Q(kd log n) for any constant ¢ € (0, 1) and for
2n<k<nl-99and d < n°/3.

Proof P = |vert(K)|, P’ C P, |P'| = n/2

Consider the set S of all simplicial complexes with vertex set ¢ P’, of
dimension d and having k — n maximal simplices (all of dimension d) and

/2
observe that | S| = ((d+1))
Let Ky, ..., K|s| be those complexes with vertex sets Py, ..., P

Complete each K; with vertices in P \ P; and edges spanning those vertices
so that K" has n vertices and k maximal simplices (of dimension 1 or h)

We have |S| complexes of K(n, k, d, m)



Basic operations

Complexity depends on a local parameter

P el

each

Associative array TO associating
vertex to its doubly linked list. Set MS of the maximal simplices.

I'i(c) = number of maximal cofaces of ¢ of dimension i

= maxsex [i(0)
Membership (0): O (z;’;g‘ Mi(o) log n) = O(Todlogn) ST :O(dlogn)

Insertion (o) :  O(To(c)d? log n) = O(lpd?) ST : O(d,2% log



Experimental results
Data Set 1 (Rips complex on a Klein bottle in R®)

No n @ d k m ) Iy o I3 ‘SAL‘

1 10,000 | 0.15 | 10 | 24,970 604,573 62 | 53 | 47 | 37 424,440
2 10,000 | 0.16 | 13 | 25,410 | 1,387,023 71 61 | 55 | 48 623,238
3 10,000 | 0.17 | 15 | 27,086 | 3,543,583 90 | 67 | 61 | 51 968,766
4 | 10,000 | 0.18 | 17 | 27,286 | 10,508,486 | 115 | 91 | 68 | 54 | 1,412,310

To be released in the GUDHI library (F. Godi)




Conclusions

Next lectures

» Other types of simplicial complexes
» Triangulation of manifolds

Open questions

»> Bound on Iy for interesting simplicial complexes
> Lower bounds on query time assuming optimal storage O(kd log n)



