Nearest Neighbors Algorithms in Euclidean and Metric Spaces: Analysis

November 2, 2021

Frederic.Cazals@inria.fr

Nearest Neighbors Algorithms in Euclidean and Metric Spaces: Analysis

Intrinsic dimension?

Selected experiments on NN, regression, dimension estimation

RPTrees: search performance analysis

Random projections, intrinsic dimension and locality

Concentration phenomena: application to nearest neighbor searches

Concentration phenomena: key properties

Nearest Neighbors Algorithms in Euclidean and Metric Spaces: Analysis

Intrinsic dimension?

Selected experiments on NN, regression, dimension estimation

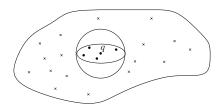
RPTrees: search performance analysis

Random projections, intrinsic dimension and locality

Concentration phenomena: application to nearest neighbor searches

Concentration phenomena: key properties

Nearest neighbors: on the importance of locality

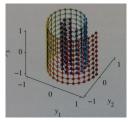


▶ Typical settings:

- Regression estimating a response variable from neighbors
- Supervised classification using neighbors
- Manifold / shape learning: learning a mathematical model for the data (e.g. simplicial complex)
- ▶ Samples used at a given location *q*:
 - nearest neighbors
 - points in a cell of a spatial partition e.g. a RPTree

Intermezzo: data and their intrinsic dimension (I)

▶ Intrinsic dimension: in many real world problems, features may be correlated, redundant, causing data to have low *intrinsic dimension*, i.e., data lies close to a low-dimensional manifold



▶ Example: binary ie B&W image

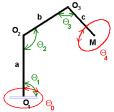
Consider an n × n binary image: image ∼ point on the hypercube of dimension n²

▶ Example: rotating an image

- Consider an $n \times n$ pixel image, with each pixel encode in the RGB channels: 1 image \sim on point in dimension $d = 3n^2$.
- ► Consider *N* rotated versions of this image: *N* point in \mathbb{R}^{3n^2}
- But these points intrinsically have one degree of freedom (that of the rotation)

Intermezzo: data and their intrinsic dimension (II)

▶ Example: 2D robotic arm with 3 d.o.f.



▶ Example: human body motion capture

- ▶ N markers attached to body (typically N=100).
- each marker measures position in 3 dimensions, 3N dimensional feature space.
- But motion is constrained by a dozen-or-so joints and angles in the human body.

⊳Ref: Verma et al. Which spatial partitions are adaptive to intrinsic dimension? UAI 2009

Formal notions of intrinsic dimension

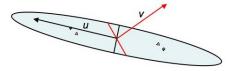
- ▶ Natural ones:
 - Affine dimension
 - Manifold dimension
- ▶ Requiring (elaborate) calculations:
 - ► (Local) covariance dimension
 - Assouad doubling dimension

Local covariance dimension and its multi-scale estimation

▶ Def.: a set $T \subset \mathbb{R}^D$ has covariance dimension (d, ϵ) if the largest d eigenvalues of its covariance matrix satisfy

$$\sigma_1^2 + \cdots + \sigma_d^2 \ge (1 - \epsilon) \cdot (\sigma_1^2 + \cdots + \sigma_D^2).$$

 \triangleright Def.: Local covariance dimension with parameters (d, ϵ, r) : the previous must hold when restricting T to balls of radius r.



▶ Multi-scale estimation from a point cloud *P*:

For each datapoint p and each scale r

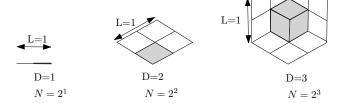
Collect samples in B(x, r)

Compute covariance matrix

Check how many eigenvalues are required: yields the dimension

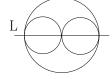
Assouad / doubling dimension: intuition

 \triangleright Pick a cube of side length L: count how many cubes of side length L/2 are needed to cover it



Assouad dimension

▶ Def: Set $S \subset \mathbb{R}^D$ has Assouad dimension $\leq d$: for any ball B, subset $S \cap B$ can be covered by 2^d balls of half the radius. Also called doubling dimension.



▶ Examples:

- ► S = line: Assouad dimension = 1
- ightharpoonup S = k-dimensional affine subspace: Assouad dimension = O(k)
- ▶ Union of D intervals [-1,1] in \mathbb{R}^D ; dim is $\log 2D$
- ▶ S = k-dim submanifold of \mathbb{R}^D with finite condition number: Assouad dimension = O(k) in small enough neighborhoods
- ▶ S = set of N points: Assouad dimension $\leq logN$
- ▶ Hardness: computing doubling dimensions and constants is generally hard: related to packing problems.

Generalization: doubling dimension and doubling measures

- ▶ Def.: A metric space X with metric is called *doubling* if there exists $M(X) \in \mathbb{N}$ so that any closed ball B(x,r) can be covered by at most M balls of radius r/2. The *doubling dimension* is $\log_2 M$.
- ▶ Def.: A measure μ on a metric space X is called *doubling* if $\exists C > 0$ such that $\forall x \in X$ and r > 0

$$\mu(B(x,2r) \leq C\mu(B(x,r)).$$

The dimension of the doubling measure satisfies $d_0 = \log_2 C$.

▶ Remarks:

- ▶ A metric space supporting a doubling measure is necessarily a doubling metric space, with dimension depending on *C*.
- Conversely, any complete doubling metric space supports a doubling measure.

Nearest Neighbors Algorithms in Euclidean and Metric Spaces: Analysis

Intrinsic dimension?

Selected experiments on NN, regression, dimension estimation

RPTrees: search performance analysis

Random projections, intrinsic dimension and locality

Concentration phenomena: application to nearest neighbor

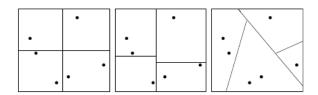
Concentration phenomena: key properties

Empirical results: contenders

▶ Contenders / algorithms:

- dyadic trees aka tries: pick a direction and split at the midpoint; cycle through coordinates.
- kd-tree: split at median along direction with largest spread.
- random projection trees: split at the median along a random direction.
- PD / PCA trees: split at the median along the principal eigenvector of the covariance matrix.
- two means trees: solve the 2-means; pick the direction spanned by the centroids, and split the data as per cluster assignment.

▶ dyadic trees, kd-trees, RP trees



Real word datasets

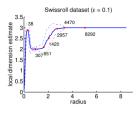
Datasets:

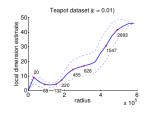
- Swiss roll
- Teapot dataset: rotated images of a teapot (1 B&W image: 50x30 pixels); thus, 1D dataset in ambient dimension 1500.
- ▶ Robotic arm: dataset in \mathbb{R}^{12} ; yet, robotic arm has 2 joints: (noisy) 2D dataset in ambient dimension 12.
- ▶ 1 from the MNIST OCR dataset; 20x20 B&W images, i.e. points in ambient dimension 400
- Love cluster from Australian Sign Language time-seris
- aw phoneme from MFCC TIMIT dataset

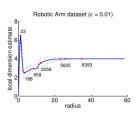
⊳Ref: Verma, Kpotufe, and Dasgupta, UAI 2009.

Empirical results: local covariance dimension estimation

 \triangleright Conventions: bold lines: estimate d(r); dashed lines: std dev; numbers: ave. over samples in balls of the given radius







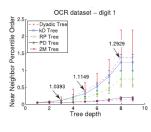
Observations:

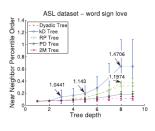
- Swiss roll (ambient space dim is 3): failure at small (noise dominates) and large scales (sheets get blended).
- ► Teapot: clear small dimensional structure at low scale, but rather 3-4 than 1.
- ▶ Robotic arm: tiny spot (*r* values) to get the correct dimension...noise.

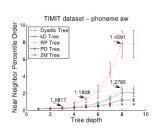
▶Ref: Verma, Kpotufe, and Dasgupta, UAI, 2009

Empirical results: performance for NN searches

- \triangleright Searching $p_{(1)}$: performance is the order of the NN found / dataset size
 - percentile order: order of NN found / dataset size (the smaller the better; max is 100%)
 - tree depth: NN sought at each level in the tree
 - lacktriangle decorating numbers: distance ratio $\|q-nn(q)\|/\|q-p_{(1)}\|$







▶ Observations:

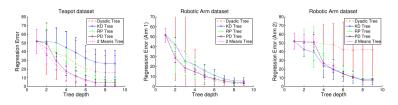
- percentile order deteriorates with depth separation does occur
- yet, the distance ratio remains small even at high percentile orders
- ▶ 2M and PD (i.e. PCA trees) consistently yield better nearest neighbors: better adaptation to the intrinsic dimension

⊳Ref: Verma, Kpotufe, and Dasgupta, UAI, 2009

Empirical results: regression

▶ Regression:

- predicting the rotation angle (response variable) from the average values found in the cell containing the query point
- ightharpoonup performance is L_2 error on the response variable
- theory says that best results are expected for data structure adapting to the intrinsic dimension



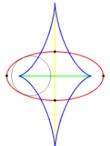
Observations:

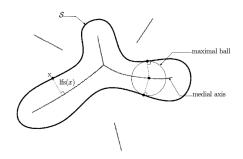
- ▶ Small tree depth: averaging over many neighbors is detrimental
- Best results for 2M trees, PD (i.e., PCA) trees, and RP trees.

DRef: N. Verma, S. Kpotufe, and S. Dasgupta, UAI, 2009

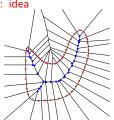
Intermezzo: medial axis of an open set

▶ Def.:





▶ Construction from Voronoi: idea



References

- Dasgupta, Sanjoy, and Yoav Freund. Random projection trees and low dimensional manifolds. Proceedings of the fortieth annual ACM symposium on Theory of computing. ACM, 2008.
- Verma, Nakul, Samory Kpotufe, and Sanjoy Dasgupta. Which spatial partition trees are adaptive to intrinsic dimension?. Proceedings of the twenty-fifth conference on uncertainty in artificial intelligence. AUAI Press, 2009.
- ▶ J. Heinonen, Lectures on analysis on metric spaces, Springer, 2001.

Nearest Neighbors Algorithms in Euclidean and Metric Spaces: Analysis

Intrinsic dimension?

Selected experiments on NN, regression, dimension estimation

RPTrees: search performance analysis

Random projections, intrinsic dimension and locality

Concentration phenomena: application to nearest neighbor searches

Concentration phenomena: key properties

Random projection trees and nearest neighbors

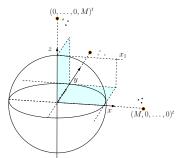
▶ Recap:

- Points iteratively projected on random directions
- Risks jeopardizing the search strategy: points far away (from the NN) squeeze in-between q and nn(q)
- Hardness of the NN search: function Φ

$$\Phi(q, P) = \frac{1}{n} \sum_{i=2}^{n} \frac{\|q - x_{(1)}\|_{2}}{\|q - x_{(i)}\|_{2}}.$$
 (1)

Projections on random directions for separation

Separation property fails in using coordinate axis (kd-trees)



- ▶ Consider the following point set $\{x_1, \ldots, x_n\}$:
 - x₁: the all-ones vector
 - For each x_i , i > 1: pick a random coord and set it to a large value M; set the remaining coords to uniform random numbers is (0,1)
- ▶ Query point q: the origin
- \triangleright kd-trees separate q and x_1 , even though function Φ is arbitrarily small:
 - ▶ The NN of q (=origin) is x_1
 - ▶ But by growing M, function Φ gets close to $0 \Rightarrow$ random projections will work well
 - However, any coord. projection separates q and x_1 : on average, the fraction of points falling in-between q and x_1 is arbitrarily large:

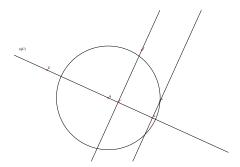
$$\frac{1}{n}(n-\frac{n}{d})=1-\frac{1}{d}$$

▶ Coming next: RPTrees work well in this case; randomness is needed. → → → → →

Demo with DrGeo

Compulsory tools for geometers

- ▶ In the sequel: Consider 3 points q, x, y with $||q x|| \le ||q y||$.
- \triangleright In projection on a random direction U: probability to have the projection of y nearest to q than the projection of x?
- ▷ DrGeo: http://www.drgeo.eu/



▶ Event E to avoid: $\langle y, U \rangle$ falls strictly in-between $\langle q, U \rangle$ and $\langle x, U \rangle$

▶ NB: also of interest: IPE, http://ipe.otfried.org/

Random projections: relative position of three points

- ▷ In the sequel: q, x, y: 3 points with $||q x|| \le ||q y||$
- \triangleright Colinearity index q, x, y:

$$coll(q, x, y) = \frac{\langle q - x, y - x \rangle}{\|q - x\| \|y - x\|}$$
 (2)

▶ Event E: $\langle y, U \rangle$ falls strictly in-between $\langle q, U \rangle$ and $\langle x, U \rangle$

Lemma 1. Consider $q, x, y \in \mathbb{R}^d$ and $||q - x|| \le ||q - y||$. The proba. over random directions U, of E, satisfies:

$$\mathbb{P}\left[E\right] = \frac{1}{\pi}\arcsin\left(\frac{\|q - x\|}{\|q - y\|}\sqrt{1 - \operatorname{coll}(q, x, y)^2}\right) \tag{3}$$

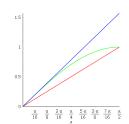
Corollary 2.

$$\frac{1}{\pi} \frac{\|q - x\|}{\|q - y\|} \sqrt{1 - \text{coll}(q, x, y)^2} \le \mathbb{P}[E] \le \frac{1}{2} \frac{\|q - x\|}{\|q - y\|} \tag{4}$$

Proof of the corollary

▶ Using the Inequality:

$$\theta \in [0, \pi/2] : \frac{2\theta}{\pi} \le \sin \theta \le \theta \quad (5)$$



- ▶ Lower bound of the corr.: from the upper bound of Eq. (5): $\theta \le \arcsin \theta$ applied to $\mathbb{P}[E]$
- ▶ Upper bound of the corr.:

First note that:

$$\frac{\|q - x\|}{\|q - y\|} \sqrt{1 - \mathsf{coll}(q, x, y)^2} \le \frac{\|q - x\|}{\|q - y\|}$$

Then, apply $(2\phi/\pi) \le \phi$ to $\phi = \arcsin \|q - x\| / \|q - y\|$.

Random projections: separation of neighbors

 \triangleright Recall that for m > 1

$$\Phi_m(q, P) = \frac{1}{m} \sum_{i=2}^m \frac{\|q - p_{(1)}\|_2}{\|q - p_{(i)}\|_2}.$$
 (6)

Theorem 3. Consider $q, p_1, \ldots, p_n \in \mathbb{R}^d$, and a random direction U.

The expected fraction of the projected p_i that fall between q and $p_{(1)}$ is at most

$$\frac{1}{2}\Phi(q,P).$$

▶ Proof. Let Z_i be the event : " $p_{(i)}$ falls between q and $p_{(1)}$ in the projection". By the corollary 2, $\mathbb{P}[Z_i] \le (1/2) \|q - p_{(1)}\| / \|q - p_{(i)}\|$. Then, apply the linearity of expectation to $\sum Z_i/n$ (divide by n to get the fraction).

Theorem 4. Let $S \subset P$ with $p_{(1)} \in S$. If U is chosen uniformly at random, then for any $0 < \alpha < 1$, the proba. (over U) that a fraction α of the projected points in S fall between q and $p_{(1)}$ is

$$\leq \frac{1}{2\alpha}\Phi_{|S|}(q,P).$$

▶ Proof. Φ is maximized when S consists of the points closest to q. Then, previous Thm + Markov's inequality.

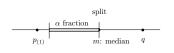
Regular spill trees-i.e. redundant storage

▶ Recap:

- Storage: point possibly stored twice using overlapping split with parameter α ; depth is $O(\log n/n_0)$
- Query routing: routing to a single leaf

Theorem 5. Let $\beta = 1/2 + \alpha$. The error probability is:

$$\mathbb{P}\left[\mathsf{Err}\right] \le \frac{1}{2\alpha} \sum_{i=0,\dots,l} \Phi_{\beta^{i}n}(q,P) \qquad (7)$$



▶ Proof, steps:

- lnternal node at depth i contains $\beta^i n$ points
- For such a node: proba to have q separated from $p_{(1)}$ $p_{(1)}$ transmitted to one side of the split \Rightarrow a fraction α of the points of the cell fall between q and the median $m \Rightarrow$ a fraction α of the points of the cell fall between q and $p_{(1)}$: this occurs with proba upper-bounded by $(1/2\alpha)\Phi_{\beta^ip}(q,P)$
 - To conclude: union-bound over all levels i

Virtual spill trees

▶ Recap:

- Storage: each point stored in a single leaf with median splits; depth is $O(\log n/n_0)$
- ightharpoonup Query routing: with overlapping splits of parameter α

Theorem 6. Let $\beta = 1/2$. The error probability is:

$$\mathbb{P}[Err] \le \frac{1}{2\alpha} \sum_{i=0,\dots,l} \Phi_{\beta^i n}(q, P) \tag{8}$$

▶ Proof, mutatis mutandis:

- ▶ Consider the path root leaf of $p_{(1)}$
- For a level, bound the proba. to have q routed to one side only
- Add up for all levels

Spill trees: probability of NN search failure

Theorem 7. (Spill trees) Consider a spill tree of depth $I = \log 1_{1/\beta} (n/n_0)$, with

- $\beta = 1/2 + \alpha$ for regular spill trees,
- ▶ and $\beta = 1/2$ for virtual spill trees.

If this tree is used to answer a query q, then:

$$\mathbb{P}\left[\mathsf{Err}\right] \leq \frac{1}{2\alpha} \sum_{i=0,\dots,l} \Phi_{\beta^{i}n}(q,P) \tag{9}$$

Nb: $\beta^i n$: number of data points found in an internal node at depth i

Random projection trees

▶ Recap:

- Pick a random direction and project points onto it
- ▶ Split at the β fractile for $\beta \in (1/4, 3/4)$
- Storage: each point mapped to a single leaf
- Query routing: query point mapped to a single leaf too

Theorem 8. Consider an RP tree for P. Define $\beta = 3/4$, and $I = \log_{1/\beta}(n/n_0)$. One has:

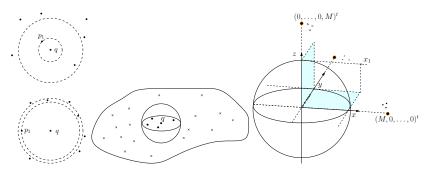
$$\mathbb{P}\left[\text{NN query does not return } p_{(1)}\right] \leq \sum_{i=0,\dots,l} \Phi_{\beta^i n} \ln \frac{2e}{\Phi_{\beta^i n}} \tag{10}$$

▶ Proof, key steps:

- F: fraction of points separating q and $p_{(1)}$ in projection
- Since split chosen at random in interval of mass 1/2: it separates q and $p_{(1)}$ with proba. F/(1/2)
- Integrating yields the result for one level; then, union bound.

Error bound depends on Φ ?

- Φ qualifies the hardness of the query situations
- ► Focus: pathological cases versus settings with some regularity



Bounding function Φ in specific settings

Improving the bound $\Phi < 1$

 \triangleright Perspective: assume that x_1, \ldots, x_n are drawn i.i.d. from a doubling measure. Can this regularity be used?

Theorem 9. Let μ be a continuous measure on \mathbb{R}^d , a doubling measure of dimension $d_0 \geq 2$. Assume $p_1, \ldots, p_n \sim \mu$. Let $0 < \delta < 1/2$. With probability $> 1 - 3\delta$:

$$\forall m \in [2, n]: \quad \Phi_m(q, P) \leq 6\left(\frac{2}{m}\ln\frac{1}{\delta}\right)^{1/d_0}$$

Theorem 10. Under the same hypothesis, with k the num. of NN sought:

- For both variants of the spill trees:

$$\mathbb{P}\left[\mathsf{Err}\right] \leq \frac{c_o k d_o}{\alpha} \left(\frac{8 \max(k, \ln 1/\delta)}{n_0}\right)^{1/d_0}$$

- For random projection trees with $n_0 \ge c_0(3k)^{d_0} \max(k, \ln 1/\delta)$:

$$\mathbb{P}\left[\textit{Err}\right] \leq c_o k (d_o + \ln n_0) \big(\frac{8 \max(k, \ln 1/\delta)}{n_0}\big)^{1/d_0}$$

▶ Rmk: failure proba. can be made arbitrarily small by_taking n₀ large enough.

References

- DS13 S. Dasgupta and K. Sinha. Randomized partition trees for exact nearest neighbor search. JMLR: Workshop and Conference Proceedings, 30:1–21, 2013.
 - V12 S. Vempala. Randomly-oriented kd Trees Adapt to Intrinsic Dimension. FSTTCS, 2012.
- VKD09 N. Verma, S. Kpotufe, S. Dasgupta, Which spatial partitions are adaptive to intrinsic dimension? UAI 2009.

Nearest Neighbors Algorithms in Euclidean and Metric Spaces: Analysis

Intrinsic dimension?

Selected experiments on NN, regression, dimension estimation

RPTrees: search performance analysis

Random projections, intrinsic dimension and locality

Concentration phenomena: application to nearest neighbor searches

Concentration phenomena: key properties

Partitioning rules that adapt to intrinsic dimension

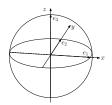
- ▶ Principal component analysis: split the data at the median along the principal direction of covariance.
 - ▶ Drawback 1: estimation of principal component requires a significant amount of data and only about $\frac{1}{2^l}$ fraction of data remains at a cell at level l
 - Drawback 2: computationally too expensive for some applications
- \triangleright 2-means i.e. solution of *k*-means with k=1: compute the 2-means solution, and split the data as per the cluster assignment
 - Drawback 1: 2-means is an NP-hard optimization problem
 - ▶ Drawback 2: the best known $(1+\epsilon)$ -approximation algorithm for 2-means (A. Kumar, Y. Sabharwal, and S. Sen, 2004) would require a prohibitive running time of $O(2^{d^{O(1)}}Dn)$, since we need $\epsilon \approx 1/d$.
 - Approximate solution can be obtained using Loyd iterations.

Doubling dimension – Assouad dimension – locality

- Assouad and doubling dimensions (seen earlier)
- On the importance of locality: see examples of the accuracy of regressors based on nearest neighbors (seen earlier)

Recursive splits: how many splits are required to halve the diameter of a point set?

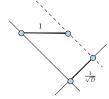
- \triangleright A set defined along coordinate axis in \mathbb{R}^D :
 - ► Consider $S = \bigcup_{i=1,...,D} \{t \ e_i, -1 \le t \le 1\}.$
 - ▶ $S \subset B(0,1)$ and covered by 2D balls $B(\cdot,1/2)$ (this num. is minimal)
 - ► Assouad dimension is log 2*D*



- ▶ Observation: kd-trees requires
- d splits / levels to halve the diameter of S
- this requires in turn $\geq 2^d$ points
- \triangleright Fact: RPTree will halve the diameter faster ($d \log d$ levels with d the *intrinsic* dim.)

Random projections and distances

 $ightharpoonup \ln \mathbb{R}^D$: distance roughly get shrunk by a factor $1/\sqrt{D}$



Lemma 11. Fix any vector $x \in \mathbb{R}^d$. Pick any random unit vector U on S^{d-1} . One has:

$$\mathbb{P}\left[|\langle x, U \rangle| \le \alpha \frac{\|x\|}{\sqrt{D}}\right] \le \frac{2}{\pi} \alpha \tag{11}$$

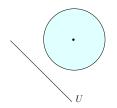
$$\mathbb{P}\left[|\langle x, U \rangle| \ge \beta \frac{\|x\|}{\sqrt{D}}\right] \le \frac{2}{\beta} e^{-\beta^2/2} \tag{12}$$

▶ Rmk: these are so-called concentration inequalities, see later.

Random projections and diameter

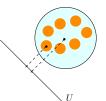
- ▶ Projecting a subset $S \subset \mathbb{R}^d$ along a random direction: how does the diameter of the projection compares to that of S?
- ▶ S full dimensional:

 $diam(projection) \leq diam(S)$



▷ S has Assouad dimension d:
 (then, with high probability...)

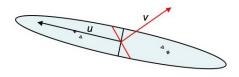
 $\mathsf{diam}(\mathsf{projection}) \leq \mathsf{diam}(S) \sqrt{d/D}$



▶ Rmk:

Cover S with 2^d balls of radius 1/2 4^d balls of radius 1/4 $(1/\varepsilon)^d$ balls of radius ε

Random projection trees algorithm: rationale



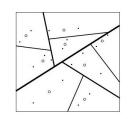
- Keep the good properties of PCA at a much lower cost
 - intuition: splitting along a random direction is not that different since it will have some component in the direction of the principal component
- ▶ Generally works, but in some cases fails to reduce diameter
 - Think of a dense spherical cluster around the mean containing most of the data and a concentric shell of points much farther away (think: outliers)
 - ightharpoonup characterized by the average interpoint distance Δ_A within cell being much smaller than its diameter Δ
 - ▶ ⇒ another split is used, based on distance from the mean

Linear versus spherical cuts

▶ Linear split with jitter:

```
{Split by projection: no outlier} 

ChooseRule(S) choose a random unit direction v pick any x \in S at random let y \in S its furthest neighbor choose \delta at random in [-1,1] \|x-y\|/\sqrt{d} Rule(x) := x \cdot v < (median_{z \in S}(z \cdot v) + \delta)
```



▶ Combined split:

```
{Split by projection: no outlier}

ChooseRule(S)

if \Delta^2(S) \leq c \cdot \Delta_A^2(S) then

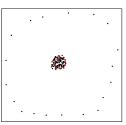
choose a random unit direction v

Rule(x) := x \cdot v \leq \mathrm{median}_{z \in S}(z \cdot v)

else
```

{Spherical cut: remove *outliers*} $Rule(x) := \|x - \mathbf{mean}(S)\| \le \mathbf{median}_{z \in S}(\|z - \mathbf{mean}(S)\|)$

NB: Δ : diameter; Δ_A : average interpoint distance



Random projection trees algorithm: RPTree-max and RPTree-mean

▶ Algorithm:

```
\label{eq:makeTree} \begin{split} & \textbf{MakeTree}(S) \\ & \textbf{if} \ |S| < \text{MinSize then} \\ & \textbf{return} \ \ (\textit{Leaf}) \\ & \textbf{else} \\ & \textit{Rule} \leftarrow \textit{ChooseRule}(S) \\ & \textit{LeftTree} \leftarrow \textit{Maketree}(\{x \in S : \textit{Rule}(x) = \textit{true}\}) \\ & \textit{RightTree} \leftarrow \textit{Maketree}(\{x \in S : \textit{Rule}(x) = \textit{false}\}) \\ & \textbf{return} \ \ [\textit{Rule}, \textit{LeftTree}, \textit{RightTree}] \end{split}
```

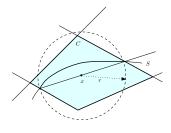
▶ Two options

- RPTree-max: linear split with jitter
- ► RPTree-mean: combined split

Performance guarantee:

amortized (i.e., global) result for RPTree-max

▶ Def.: radius of a cell C of a RPTree: smallest r > 0 such that $S \cap C \subset B(x,r)$ for some $x \in C$.



Theorem 12. (RPTree-max) Consider a RPTree-max built for a dataset $S \subset \mathbb{R}^d$. Pick any cell C of the tree; assume that $S \cap C$ has **Assouad** dimension $\leq d$. There exists a constant c_1 such that with proba. $\geq 1/2$, for every descendant C' more than $c_1d \log d$ levels below C, one has radius(C') \leq radius(C)/2.

 \triangleright Summary: $d \log d$ levels suffice to halve the diameter (with high probability)

Intermezzo: complexity analysis in computer science

- ▶ Various complexities used to analyse the performances of an algorithm:
 - ► Worst-case best-case. Example: quicksort.
 - Average case: averaged over some randomness hypothesis. Example: quicksort.
 - Amortized: averaged over a sequence of operations. A costly operation can help reorganize / optimize the data structure - construction, which helps future operations.

Example: insertion into a red-black tree.

DRef: Cormen, Leiserson, Rivest; Introduction to algorithms; MIT press

Performance guarantee:

per-level result for RPTree-mean, with adaptation to covariance dimension

Theorem 13. (RPTree-mean) There exists constants $0 < c_1, c_2, c_3 < 1$ for which the following holds.

- ▶ Consider any cell C such that $S \cap C$ has **covariance dimension** (d, ϵ) , $\epsilon < c_1$
- ▶ Pick $x \in S \cap C$ at random, and let C' be the cell containing it at the next level down
- ► Then, if *C* is split:
- by projection (focus on interpoint distance): $(\Delta^2(S) \le c \cdot \Delta_A^2(S))$

$$\mathsf{E}[\Delta_A^2(S\cap C')] \leq (1-(c_3/d))\Delta_A^2(S\cap C)$$

• by distance i.e. spherical cut (focus on diameter):

$$\mathsf{E}[\Delta^2(S\cap C')] \le c_2\Delta^2(S\cap C)$$

NB: the expectation is over the randomization in splitting C and the choice of $x \in S \cap C$.

Bibliography

▶ Results presented:

Dasgupta S, Freund Y. Random projection trees and low dimensional manifolds. ACM STOC 2008.

▶ Related:

- Kpotufe S. k-NN regression adapts to local intrinsic dimension. NIPS 2011.
- Chaudhuri K, Dasgupta S. Rates of convergence for nearest neighbor classification. NIPS 2014. (NB: k-NN based classification.)

Diameter reduction again: the revenge of kd-trees

- Diameter reduction property: holds for kd-trees on randomly rotated data
- ▶ Rmk: one random ration suffices

⊳Ref: Vempala. Randomly-oriented kd Trees Adapt to Intrinsic Dimension. FSTTCS. Vol. 18. 2012.

Nearest Neighbors Algorithms in Euclidean and Metric Spaces: Analysis

Intrinsic dimension?

Selected experiments on NN, regression, dimension estimation

RPTrees: search performance analysis

Random projections, intrinsic dimension and locality

Concentration phenomena: application to nearest neighbor searches

Concentration phenomena: key properties

p-norms and Unit Balls

- ▶ Notations:
 - d: the dimension of the space
 - \triangleright \mathcal{F} : a 1d distribution
 - $ightharpoonup X = (X_1, \dots, X_d)$ a random vector such that $X_i \sim \mathcal{F}$
 - $P = \{p^{(j)}\}$: a collection on n iid realizations of X
- ▶ Generalizations of L_p norms, p > 0:

$$\|X\|_{p} = (\sum_{i}^{i} |X_{i}|^{p})^{1/p}$$
 (13)

Unit balls: see plots

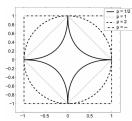


Fig. 2. Two-dimensional unit balls for several values of the parameter of the p-norm.

- ▶ Cases of interest in the sequel:
 - Minkowski norms: p, an integer $p \ge 1$:
 - ▶ fractional p-norms: 0 . NB: triangle inequality not respected; NB: balls not convex for <math>p < 1. sometimes called pre-norms.
- \triangleright Study the variation of $\|\cdot\|_{p}$ as a function of d

Concentration of the Euclidean norm: Observations

▶ Plotting the variation of the following for random points in $[0,1]^d$:

$$\min \left\| \cdot \right\|_{2}, \quad \mathbb{E}\left[\left\| \cdot \right\|_{2}\right] - \sigma\left[\left\| \cdot \right\|_{2}\right], \quad \mathbb{E}\left[\left\| \cdot \right\|_{2}\right], \\ \mathbb{E}\left[\left\| \cdot \right\|_{2}\right] + \sigma\left[\left\| \cdot \right\|_{2}\right], \quad \max \left\| \cdot \right\|_{2}, \\ M = \sqrt{d}$$

$$\tag{14}$$

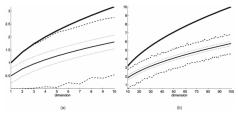


Fig. 1. From bottom to top: minimum observed value, average minus standard deviation, average value, average plus standard deviation, maximum observed value, and maximum possible value of the Euclidean norm of a random vector. The expectation grows, but the variance remains constant A small subinterval of the domain of the norm is reached in practice.

▶ Observation:

- ▶ The average value increases with the dimension *d*
- The standard deviation seems to be constant; likewise for the min-max values
- ▶ For $d \le 10$ i.e. d small: the min and max values are close to the bounds: lower bound is 0, upper bound is $M = \sqrt{d}$
- For d large say $d \ge 10$, the norm concentrates within a small portion of the domain; the gap wrt the bounds widens when d increases.

Concentration of the Euclidean Norm: Theorem

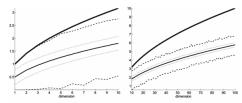
Theorem 14. Let $X \in \mathbb{R}^d$ be a random vector with iid components $X_i \sim \mathcal{F}$. There exist constants a and b that do not depend on the dimension (they depend on \mathcal{F}), such that:

$$\mathbb{E}\left[\left\|X\right\|_{2}\right] = \sqrt{ad - b} + O(1/d) \tag{15}$$

$$\operatorname{Var}[\|X\|_2] = b + O(1/\sqrt{d}).$$
 (16)

▶ Remarks:

- The variance is small wrt the expectation, see plot
- ▶ The error made in using $\mathbb{E}[\|X\|_2]$ instead of $\|X\|_2$ becomes negligible: it looks like points are on a sphere of radius $\mathbb{E}[\|X\|_2]$.
- ▶ The results generalize even if the X_i are not independent; then, d gets replaced by the number of degrees of freedom.



Contrast and Relative Contrast: Definition

 \triangleright Contrast and relative contrast of n iid random draws from X. The annulus centered at the origin and containing the points is characterized by:

Contrast_a :=
$$D_{max} - D_{min} = \max_{j} \left\| p^{(j)} \right\|_{p} - \min_{j} \left\| p^{(j)} \right\|_{p}$$
. (17)

and the relative contrast is defined by:

$$Contrast_r = \frac{D_{max} - D_{min}}{D_{min}}.$$
 (18)

▶ Variation of the contrast $|D_{max} - D_{min}|$ for various p and increasing d:

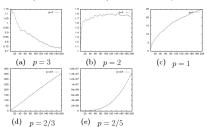


Fig. 1. |Dmax - Dmin| depending on d for different metrics (uniform data)

Contrast and Relative Contrast: the case of Minkowski norms

Theorem 15. Consider n points which are iid realization of X. There exists a constant C_p such that the absolute contrast of a Minkowski norm satisfies:

$$C_{p} \leq \lim_{d \to \infty} \mathbb{E}\left[\frac{D_{max} - D_{min}}{d^{1/p - 1/2}}\right] \leq (n - 1)C_{p}. \tag{19}$$

Observations:

▶ The contrast grows as $d^{1/p-1/2}$

Metric	Contrast $D_{max} - D_{min}$
L_1	$C_1\sqrt{d}$
L_2	C_2
L_3	0

- The Manhattan metric: only one for which the contrast grows with d.
- For the Euclidean metric, the contrast converge to a constant.
- ▶ For $p \ge 3$, the contrast converges to zero: the distance does not discriminate between the notions of *close* and *far*.
- NB: the bounds depend on n; it makes sense to try to exploit the particular coordinates at hand (cf later).
- ▶ NB: Thm also exist for the relative contract and other p-norms = → (3)

Practical Implications for (Exact) NN Queries

- ▶ The concentration of distances:
 - The first NN (of the origin) is well defined cf the min curve
 - But in seeking k-NN: the concentration is likely to yield a large number of points at the same distance – these points are equivalent distance-wise.
- ▶ Complexity-wise: the curse of dimensionality:
 - Exact strategies (cf kd-trees, metric trees): likely to trigger a visit of almost all nodes in the tree: the concentration of distance can be such that a method does no better than the linear scan.
 - In contrast: defeatist search strategies suffice.
- Sanity check: in running a NN query, make sure that distances are meaningful: multi-modality (at least bi-modality) of the distribution of distance is a good sanity check to ensure some samples are really closer.
- ▶ If possible: use less concentrated metrics, with more discriminative power see also feature selection.

A wise use of distances

▶ Distance filtering:

- What is the nearest neighbor in high dimensional spaces?, Hinneburg et al, VLDB 2000.
- ▶ Using sketch-map coordinates to analyze and bias molecular dynamics simulations, Parrinello et al, PNAS 109, 2012.

▶ Feature selection:

- Random Forests, Breiman, Machine learning 2001
- Principal Differences Analysis: Interpretable Characterization of Differences between Distributions, Mueller et al, NIPS 2015

References

- AHK01 Charu C Aggarwal, Alexander Hinneburg, and Daniel A Keim. On the surprising behavior of distance metrics in high dimensional space. Springer, 2001.
- CTP11 M. Ceriotti, G. Tribello, and M. Parrinello. Simplifying the representation of complex free-energy landscapes using sketch-map. PNAS, 108(32):13023-13028, 2011.
- FWV07 D. Francois, V. Wertz, and M. Verleysen. The concentration of fractional distances. IEEE Trans. on Knowledge and Data Engineering, 19(7):873-886, 2007.
- HAK00 Alexander Hinneburg, Charu C Aggarwal, and Daniel A Keim. What is the nearest neighbor in high dimensional spaces? VLDB 2000.

Nearest Neighbors Algorithms in Euclidean and Metric Spaces: Analysis

Intrinsic dimension?

Selected experiments on NN, regression, dimension estimation

RPTrees: search performance analysis

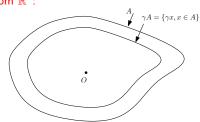
Random projections, intrinsic dimension and locality

Concentration phenomena: application to nearest neighbor searches

Concentration phenomena: key properties

Geometry in high dimension: scaled bodies and their volume

▶ Scaling a body from \mathbb{R}^d :



 \triangleright For $\gamma = 1 - \varepsilon^{-1}$:

$$\frac{\operatorname{Vol}((1-\varepsilon)A)}{\operatorname{Vol}(A)} = (1-\varepsilon)^d \le e^{-\varepsilon d}.$$
 (20)

ightharpoonup Fix ε and let $d \to \infty$: the ratio tends to zero. That is: nearly all the volume of A belongs to the annulus of width ε .

¹Use $e^{-x} > 1 - x$

Unit sphere: surface area and volume

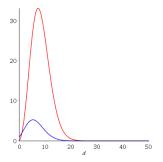
▶ The Gamma function Γ:

$$\Gamma(x) = \int_{0}^{\infty} s^{x-1} e^{-s} ds. \tag{21}$$

NB: for integers $\Gamma(n) = (n-1)!$

 \triangleright The surface area and volume of the unit sphere S^d are given by:

$$A(d) = \frac{2\pi^{d/2}}{\Gamma(d/2)}, \ V(d) = \frac{A(d)}{d}.$$
 (22)

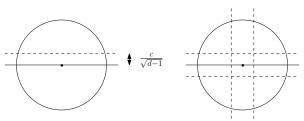


Variation of the surface area (red) and volume (blue) of the unit sphere, as a function of the dimension *d*

Unit ball: volume concentration near the equator

▶ Thm: (Slab Thm.) For $c \ge 1$ and $d \ge 3$, at least a fraction $1 - \frac{2}{c}e^{-c^2/2}$ of the volume of the unit ball satisfies $|x_1| \le \frac{c}{\sqrt{d-1}}$.

▶ Corr: With $c=2\sqrt{\ln d}$, a fraction at least $1-O(\frac{1}{d})\geq 1/2$ of the volume of the unit ball lies in a cube of half side length $c/\sqrt{d-1}=2\sqrt{\ln d}/\sqrt{d-1}$. Since the vol. of this cube $\to 0$, the volume of the unit ball goes to 0 when $d\to\infty$.



Proof: apply the Them with $c = 2\sqrt{\ln d}$. Details on the blackboard.

Nb: Vertices of the cube are outside the ball. This does not matter since the Thm integrates slices *up to* $c/\sqrt{d-1}$.

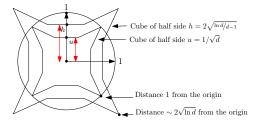
Unit ball:

are points near the surface of within a small cubic core?

- ▶ Apparent contradiction:
 - Argument from body scaling: mass located near the surface of the unit sphere
 - Previous argument: $\geq 1/2$ of the mass located *near* the equator, within a cube of side length $4\sqrt{\ln d/d-1}$

▶ Explanation:

- lacktriangle cube whose vertices are on the unit sphere: half side $1/\sqrt{d}$
- ▶ corners of the cube of half side length $h = 2\sqrt{\ln d/d-1}$ are at distance $\sim 2\sqrt{\ln d}$ from the origin. this cube covers a significant portion of the unit ball.



The cube of *small* side length *h projects* vertices far away from the unit sphere.

Random points are almost orthogonal with high probability

▶ Thm. Consider n points $\{x_1, \ldots, x_n\}$ drawn uniformly at random from the unit ball. The following holds with probability 1 - O(1/n):

1.
$$\mathbb{P}\left[\|\mathbf{x}_i\| \geq 1 - \frac{2 \ln n}{d}\right] \geq 1 - O(1/n), \forall i$$

2.
$$\mathbb{P}\left[|\langle \mathbf{x}_i, \mathbf{x}_j \rangle| \leq \sqrt{\frac{6 \ln n}{d-1}}\right] \geq 1 - O(1/n), \forall i \neq j.$$

- Discussion:
 - 1. Points near the surface of the ball
 - 2. Vectors associated with a pair of points are nearly orthogonal

Generating random points on/inside S^{d-1}

- ▶ Generate a point $\mathbf{x} = (x_1, \dots, x_d)^t$ whose coordinates are iid Gaussians:
 - Generate x_1, \ldots, x_d iid Gaussian with $\mu = 0$ and $\sigma = 1$
 - distribution is spherically symmetric (on a sphere of given radius).
 - random vector has arbitrary norm
 - ► The density of *X* is

$$f_G(\mathbf{x}) = \frac{1}{(2\pi)^{d/2}} e^{-\frac{x_1^2 + x_2^2 + \dots + x_d^2}{2}} = \frac{1}{(2\pi)^{d/2}} e^{-\|\mathbf{x}\|^2/2}.$$
 (23)

- ▶ To obtain a unit vector: $\frac{x}{\|x\|}$. NB: its coordinates are not independent.
- ▶ Inside the unit ball: the point $\frac{\mathbf{x}}{\|\mathbf{x}\|}$ needs to be scaled by a density $\rho(r) = dr^{d-1}$.

The Gaussian annulus theorem

for an isotropic d dimensional Gaussian

Density of the isotropic Gaussian: Gaussian of zero mean and σ^2 along each dir.:

$$f_G(X) = \frac{1}{(2\pi)^{d/2}} e^{-\frac{x_1^2 + x_2^2 + \dots + x_d^2}{2}}.$$
 (24)

▶ Expectation of $||X||^2$:

$$\mathbb{E}\left[\|X\|^2\right] = \mathbb{E}\left[\sum_{i=1,\dots,d} x_i^2\right] = \sum_{i=1,\dots,d} \mathbb{E}\left[x_i^2\right] = d\mathbb{E}\left[x_1^2\right] = d. \tag{25}$$

 \triangleright Thm. Consider an isotropic d dimensional Gaussian with $\sigma=1$ in each direction. For any $\beta < \sqrt{d}$, consider the annulus defined by

$$\mathcal{A} = \{ X \text{ such that } \sqrt{d} - \beta \le ||X|| \le \sqrt{d} + \beta \}.$$
 (26)

There exists a fixed positive constant c such that

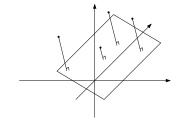
$$\mathbb{P}(\mathcal{A}^c) \le 3e^{-c\beta^2}.\tag{27}$$

- ightharpoonup Rmk: how come the mass concentrates around \sqrt{d} ?
 - Concentration thm: the mass concentrates near $\sqrt{\mathbb{E}\left[\left\|X\right\|^2\right]}=\sqrt{d}$
 - ► The density f_G is max. at the origin; but integrating over the unit ball ... no mass since the volume of the unit ball tends to 0. (prop. seen earlier.)
 - mass since the volume of the unit ball tends to 0. (prop. seen earlier.)

 In going well beyond \sqrt{d} : the density f_G gets too small.

Projecting onto a (random) affine subspace

- \triangleright k-dimensional affine subspace: matrix R: $d \times k$ whose vectors define an (orthonormal) basis
- ▶ To obtain such an orthonormal matrix R:
 - draw k (unit) random vectors (see above)
 - perform a Gram-Schmidt orthonormalization NB: the orthonormalization process complicates things, since entries of the matrix are no longer independent
- ▶ To get a randomized dimension-k matrix R dim is $d \times k$):
 - Draw the $d \times k$ entries at random, using a the normal distribution (Gaussian with 0 mean and unit variance)
 - ► Then $f(\mathbf{v}) = (\mathbf{u}_1 \cdot \mathbf{v}, \mathbf{u}_2 \cdot \mathbf{v}, \dots, \mathbf{u}_k \cdot \mathbf{v})^T$



Projection $f(\mathbf{v})$ of a vector \mathbf{v} onto a (random) affine space of dimension k, in matrix form:

$$f(\mathbf{v}) = R^t \cdot \mathbf{v}. \tag{28}$$

NB: $f(\mathbf{v})$ has dimensions $(k \times d)(d \times 1) = k \times 1$

Projection theorem onto a random dimension k affine subspace

- ho Goal: we shall prove that in projection $\|f(\mathbf{v})\| \sim \sqrt{k} \, \|\mathbf{v}\|$
- ▶ Rmks:
 - ▶ The distance/norm $||f||(\cdot)$ increases since the vectors defining the affine space are not unit length.
 - The basis defined by R is not orthonormal.
 - BUT: the analysis are much simpler!
- ightharpoonup Thm. Let v be a vector from \mathbb{R}^d . Consider a random affine subspace as defined on the previous slide. Then, for any $\varepsilon > 0$:

$$\mathbb{P}\left[\left|\|f(\mathbf{v})\| - \sqrt{k}\|\mathbf{v}\|\right| \ge \varepsilon\sqrt{k}\|\mathbf{v}\|\right] \le 3e^{-ck\varepsilon^2}.$$
 (29)

NB: the constant c comes from the Gaussian annulus them.

- ▶ Proof: blackboard.
- \triangleright NB: versions where matrix R is orthonormal also exist. See the bibliography.

Application: the Johnson-Lindenstrauss lemma

- ▶ Rationale: project a point set $P = \{x_1, ..., x_n\}$ from \mathbb{R}^d to \mathbb{R}^k while preserving distances / with low distorsion.
- ightharpoonup Thm / lemma: Johnson-Lindenstrauss For any $arepsilon \in (0,1)$, consider

$$k \ge \frac{3}{c\varepsilon^2} \ln n. \tag{30}$$

(NB: c from the Gaussian annulus Thm.) For a random projection onto an affine space of dim. k, define the event:

$$\mathcal{E}: (1-\varepsilon)\sqrt{k} \le \frac{\|f(\mathbf{x}_i) - f(\mathbf{x}_i)\|}{\|\mathbf{x}_i - \mathbf{x}_i\|} \le (1+\varepsilon)\sqrt{k}, \forall (\mathbf{x}_i, \mathbf{x}_i).$$
(31)

One has:

$$\mathbb{P}\left[\mathcal{E}\right] \ge 1 - \frac{3}{2n}.\tag{32}$$

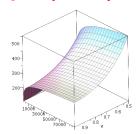
- ▶ Proof: blackboard.
- NB: the only *property* of data used while defining the projection is the number of samples.

Johnson-Lindenstrauss: lower bound

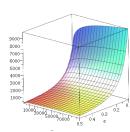
▶ Embedding dimension *k*:

$$k = \frac{3}{c\varepsilon^2} \ln n. \tag{33}$$

▶ Large: $\varepsilon \in [0.5 - 0.99]$



ightharpoonup Medium: $\varepsilon \in [0.1-5]$



 $ightharpoonup \mathsf{Small}: arepsilon \in [0.01-0.1]$



Bibliography

- S. Dasgupta and A. Gupta, an elementary proof of a theorem of Johnson and Lindenstrauss, Random structures and algorithms, 2003.
- S. Vempala, The random projection method, AMS, 2005.
- ► S. Levy, Flavors of geometry, Cambridge, 1997
- A. Blum, J. Hopcroft, R. Kannan, Foundations of Data Science, Cambridge, 2020.