
Introduction to AI: assignment 1 - EUR DS4H
Jupyter, Numpy and Scikit Learn

Part I: classification of machine learning problems

In the table below, different machine learning problems are given.
Based on their description, give the corresponding type of problem:
regression, classification, clustering or dimensionality reduction.

Description Type
Given a dataset of steering angles and front cam-
era images from a moving car, predict the steering
angle to be used given an image.
Use a dataset of a credit company to predict if a
borrower will be able to pay back a loan based on
his financial situation
Group books based on their content only.
Based on a dataset of segmented and annotated im-
ages, detect if an object is present in an image or
not.
Group clients of a service based on their demand
profile.
Visualize a complex dataset with many features in
a 2D graphic.
Based on a dataset with sensor readings in a car
and behavior of the driver (driving normally, eat-
ing, talking in the cellphone), predict its behavior
from sensor readings.
Given a corpus of news articles with their corre-
sponding subjects (sports, politics, finance), predict
the subject of an article outside the corpus.
Given a corpus of news articles without subject in-
dication, separate the articles in different groups.
Using a dataset of house attributes such as sale
price, area in square meters, number of rooms and
neighborhood, predict the sale price as a function
of the other attributes.
Predict if a tumor is malignant or benign based on
different types of medical imagery. The prediction
model is built upon a dataset containing images of
tumors along with conclusions from medical diag-
nosis.

introduction to ai: assignment 1 - eur ds4h 2

Part II: Jupyter

For the following parts it will be required to have Anaconda installed
in your computer with a recent version of Python (e.g. 3.7 or newer).
You can download and read installation instructions at the following
websites:

https://www.anaconda.com/products/individual

https://docs.anaconda.com/anaconda/install/

Normally, Jupyter, the numerical algebra library, numpy, the ma-
chine learning library, scikit-learn, the scientific programming library,
scipy, and the data analysis library, pandas are all already installed with
Anaconda. If that is not your case, or you if you find problems using
these libraries later in the labworks, you will mostly find a solution for
your specific problem in forums in the internet.

Jupyter is an interactive programming environment which can be
used for different languages such as Python, R, Scala and Julia. Jupyter
notebooks, as we will see next, can contain, at the same time, text,
equations, code and rich outputs, such as graphics and videos. In
this part we will briefly start exploring the Jupyter environment with
Python 1. 1 In case you do not want to install

Anaconda, a similar environment to
jupyter can be found in google colab
https://colab.research.google.com

• Open Jupyter following the instructions in

https://jupyter-notebook-beginner-guide.readthedocs.io/en/latest/

execute.html

• To create folders and notebooks, click on New on the top right (see
Figure 1). To rename a folder or a notebook, click on the check box
on its left, then on Rename just above (see Figure 2).

https://www.anaconda.com/products/individual
https://docs.anaconda.com/anaconda/install/
https://colab.research.google.com
https://jupyter-notebook-beginner-guide.readthedocs.io/en/latest/execute.html
https://jupyter-notebook-beginner-guide.readthedocs.io/en/latest/execute.html

introduction to ai: assignment 1 - eur ds4h 3

Figure 1: Indication on how to create
new folders and notebooks

Figure 2: Indication on how to rename a
folder or a notebook

Create a folder and rename it as ML_intro, for example in your
desktop, then inside it, create a subfolder and rename it Labwork_1.
Within this folder create a notebook and rename it labwork_1.

introduction to ai: assignment 1 - eur ds4h 4

• Once you have created the notebook, you should see something
similar to Figure 3, which shows an empty cell.

2 3 4

1

5 6 7 8 97

1110

Figure 3: Window displaying an opened
notebook

Numbers have been inserted in Figure 3 to indicate the important
elements of the Jupyter user interface. They are the following:

1. Cell content: the content of Jupyter notebooks is made of cells.
Here is where you enter text to be displayed or code to be ex-
ecuted. Text cells can be formatted using Markdown syntax2, 2 https://github.com/

adam-p/markdown-here/wiki/

Markdown-Cheatsheet
you can also add mathematical expressions using $.$, for exam-
ple $y=ax$ will give y = ax after executing the cell. Note that
you need to use LaTex typesetting3 to write mathematical ex- 3 https://en.wikibooks.org/wiki/

LaTeX/Mathematicspressions.

2. File: in this menu you can create, open, save and export note-
books. For example, to export your notebook as a PDF file, click
on Download as, then PDF via LaTex (.pdf). This can be useful when
you want to develop a machine learning algorithm and quickly
have a PDF report on what you are working on.

3. Edit: you can edit cells with the options in this menu.

4. View: turn on/off options on the user interface.

5. Insert: cell insertion options.

6. Cell: options to execute a cell (Run) and to change its type.

7. Kernel: Jupyter runs on a kernel, the kernel is responsible for
running the code part of the Jupyter notebook either on your
machine (http://localhost:8888) or somewhere else. When you in-
terrupt (Interrupt) the kernel, it is equivalent to stop running the
code, you can restart it again later (Restart). If you want to clear
all variables from your notebook, so that you can test again parts

https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet
https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet
https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet
https://en.wikibooks.org/wiki/LaTeX/Mathematics
https://en.wikibooks.org/wiki/LaTeX/Mathematics

introduction to ai: assignment 1 - eur ds4h 5

of it, you simply click on Restart & Clear Output, and then run
your selected parts. If you want to rerun the entire notebook
from the beginning, you click on Restart & Run All.

8. Navigate: this allows you to navigate through different chapters
and sections of your notebook.

9. Help: here you can find documentation and tutorials not only
about Jupyter but also about Python.

10. Run cell: this is the shortcut to run a selected cell. Note that if
you run a code cell with variables on it, the values of the variables
are kept stored.

11. Cell type: here you can choose the different types of cell. For
example, Code for a code cell and Markdown for a text cell.

If you want to start a chapter in your notebook, then you sim-
ply insert a chapter heading in a text cell by starting the cell with
#. Similarly, for a section, you start the cell with ##. After run-
ning the cells, you can navigate through the different parts of
your notebook in Navigate as previously explained and see the
structure of your notebook in the table of contents.

The meaning of the other buttons in the interface can be easily
obtained by hovering the mouse pointer above their icons.

• Reproduce the notebook shown in Figure 4. Test the Kernel menu
options Restart & Clear Output and Restart & Run All to see their
effects and generate a PDF file of your notebook.

Figure 4: Example of a simple notebook
with different types of cells.

introduction to ai: assignment 1 - eur ds4h 6

Part II: Numpy (and matplotlib)

Numerical operations such as array creation and manipulation and
linear algebra operations are often required in machine learning, ei-
ther during data manipulation/pre-processing or for programming
the algorithms. Since these operations are not all built-in functions
of Python, we need to use a library. The standard Python library for
numerical operations is numpy. To use numpy functions, you need to
import the library, this can be done with the command import, to sim-
plify its use we are going to rename it with a shorter name np thus
leading to the following code line:

import numpy as np

Create a subheading named Numpy (and matplotlib): artificial genera-
tion of a dataset and add a new cell with the import command above.

In the following parts, we are going to illustrate the use of some
Numpy functions by generating an artificial dataset. We will later
apply some algorithms from the Scikit-learn library on this dataset.

We are going to create a dataset with 2 input features, X = [x1 x2],
and an discrete-valued output y (two classes: y1 = 0 and y2 = 1).
There will be N = 400 observations, N1 = 200 observations corre-
sponding to class y1 = 0 and N2 = 200 corresponding to class y2 = 1.

1. To generate artificially the data, we will first set some parameters
of the dataset generator: the numbers of observations in each class
N1 = 200 and N2 = 200, the distance between the class centers
in feature space d = 1 and their dispersion (standard deviation)
σ1 = 0.5 and σ2 = 0.5. Add a cell with the parameters definition.

2. We will assume that 2 observations lie at the center of each class
feature space, their feature values are x1 =

d
2
[−1 − 1] and x2 =

d
2
[1 1]. To start generating the matrix of feature values add the

following code cell which uses numpy’s array function:

X_T=(d/2) *np . array ([[− 1 . , 1 .] , [− 1 . , 1 .]])

3. Print the array and the results of the functions np.shape, np.size and
len applied to the array. What do these functions do?

4. The array we have created is a transposed version of the feature
matrix we really want. Generate the correct feature matrix X using
numpy’s transpose function.

5. How do we print on the screen element x2,2 of this matrix? How
do we print on the screen the second row and the second column of
this matrix?

introduction to ai: assignment 1 - eur ds4h 7

6. Generate 2 random matrices X1 and X2 representing the two fea-
tures and N1 − 1 and N2 − 1 observations of the two classes. Use
np.random.normal function with means given by x1 and x2 and stan-
dard deviations given by σ1 and σ2.

7. Generate a scatter plot of the observations of the two matrices using
the following code cell:

import m a t p l o t l i b . pyplot as p l t
%m a t p l o t l i b i n l i n e
p l t . s c a t t e r (X_1 [: , 0] , X_1 [: , 1]) ;
p l t . s c a t t e r (X_2 [: , 0] , X_2 [: , 1] , c= ’ r ’) ;
p l t . t i t l e (" S c a t t e r p l o t of the two c l a s s e s ") ;
p l t . x l a b e l (" $\mathbf { x } _1$ ") ;
p l t . y l a b e l (" $\mathbf { x } _2$ ") ;

You should see a figure similar to Fig. 5.

Figure 5: Scatterplot of the simulated
dataset.

Explain what this cell do by commenting each code line on the right.
Note that this scatter plot represents visually what information we
would have in a classification problem.

8. Stack the previously defined matrices X, X1 and X2 in one single
matrix X using the command np.vstack.

9. Generate one single scatter plot with all points in blue color. Note
that this scatter plot represents visually what information we would
have in a clustering problem (no class information).

10. Using the functions np.array, np.zeros, np.ones and np.vstack, gener-
ate a vector y with the discrete labels, 0s and 1s, corresponding to
the classes of the observations in X. Verify its shape, size and length
and print it on the screen.

Part III: Scikit-learn

In this part we are going to use the previously generated dataset (X, y)
to illustrate how to use the Scikit-learn library. We are going to focus Scikit-learn documentation can be

found at: http://scikit-learn.org/
stable/tutorial/index.html

on two tasks, classification with logistic regression and clustering with
k-means.

1. For classification, you need first to import a set of models with the
following command:

from sklearn import l inear_model as lm

2. Machine learning tasks in Scikit-learn mainly correspond to three
steps: first a prediction model is specified along with possible cus-
tomization of some of its parameters, then the model is fitted to the

http://scikit-learn.org/stable/tutorial/index.html
http://scikit-learn.org/stable/tutorial/index.html

introduction to ai: assignment 1 - eur ds4h 8

data, this part corresponds in fact to what we call “learn from data".
The fitted model is then applied in a given prediction task.

In the case of logistic regression, we define a logistic regression
model with the command

logreg = lm . L o g i s t i c R e g r e s s i o n ()

then fitting is done with logreg.fit(X,y) and prediction is done with
logreg.predict(Xtest).

Fit a logistic regression model to the artificially generated dataset
and test the prediction model in the same dataset. Compare the
predicted outputs ŷ with the original y to see if there are errors. To
print both the predictions and the original y side by side, you can
use the numpy’s command column_stack.

3. Import the k-means clustering method with

from sklearn . c l u s t e r import KMeans

and define the clustering model with two classes

kmeans = KMeans (n _ c l u s t e r s =2)

Fit the model on the feature matrix X and compare the predictions
given by the clustering method ŷ with the original y.

4. The accuracy Accŷ(x)(Xtest, ytest) of a classification algorithm on a
given test dataset (Xtest, ytest) is the frequency of predicted outputs
ŷ(x) equal to ytest obtained when applying the algorithm to the
observations of Xtest:

Accŷ(x)(Xtest, ytest) =
1

Ntest

Ntest

∑
i=1

1
[
ŷ(xi

test) = yi
test

]
where Ntest is the number of observations in the test dataset, the
couple (xi

test, yi
test) is the i-th observation of the testing dataset and

the indicator function 1 [ŷ = ytest] is defined as follows:

1 [ŷ = ytest] =

1, if ŷ = ytest,

0, otherwise.

The accuracy is a measure of the quality of prediction of the model
on a given dataset.

Using the function sklearn.metrics.accuracy_score, evaluate the accu-
racy of the previously obtained logistic regression model using as
test dataset, the same dataset we have used to fit it. Comment the
result (is it closer to zero, 1/2 or 1?).

introduction to ai: assignment 1 - eur ds4h 9

5. Evaluate the accuracy of the prediction model obtained with k-
means using again as test dataset, the same dataset we have used
to fit it. Comment the results. Is this accuracy measure available in
practical clustering problems?

	Part I: classification of machine learning problems
	Part II: Jupyter
	Part II: Numpy (and matplotlib)
	Part III: Scikit-learn

