Topological Machine Learning (I1):
Guiding ML models

1. Hierarchical and Mode Seeking Clustering

2. Topology-based Clustering
3. Topology-based Optimization

Topological Machine Learning (I1):
Guiding ML models

1. Hierarchical and Mode Seeking Clustering

General clustering

Def: A partition of data into groups of similar data points. The data points
In each group, or cluster, are similar to each other and dissimilar to the ones
from other clusters.

General clustering

Def: A partition of data into groups of similar data points. The data points
In each group, or cluster, are similar to each other and dissimilar to the ones
from other clusters.

Input: a finite set of observations: point cloud embedded in an Euclidean
space (i.e., with well-defined coordinates) or a more general metric space
(pairwise distance or similarity) matrix.

General clustering

Def: A partition of data into groups of similar data points. The data points
In each group, or cluster, are similar to each other and dissimilar to the ones
from other clusters.

Input: a finite set of observations: point cloud embedded in an Euclidean
space (i.e., with well-defined coordinates) or a more general metric space
(pairwise distance or similarity) matrix.

Goal: partition the data into a relevant family of clusters.

General clustering

Def: A partition of data into groups offsimilar data points] The data points
In each group, or cluster, arelsimilar to each other and dissimilar to the ones

Not a single or universal notion of cluster.
A variety of approaches:
e Variational (Bayes priors)
e Spectral (eigenvalues of Laplacian)
e Density-based (KDE, DTM)
e Hierarchical (dendrograms)

® ctcC...

General clustering

Def: A partition of data into groups offsimilar data points] The data points
In each group, or cluster, arelsimilar to each other and dissimilar to the ones

Not a single or universal notion of cluster.

A variety of approaches:
We will see a few standard algo-
rithms and how they can be im-

e Spectral (eigenvalues of Laplacian) proved with (0-dimensional) per-
sistent homology.

e Variational (Bayes priors)

e Density-based (KDE, DTM)
e Hierarchical (dendrograms)

® ctcC...

The k-means algorithm

Input: A (large) set of n points X and
an integer k < n.

Goal: Find a set of £ points L = {y, ...

that minimizes

b = En: d(ilfz, L)2
1=1

, Yk }

The k-means algorithm

Input: A (large) set of n points X and
an integer k < n. o

Goal: Find a set of k points L = {y1,...,yx}
that minimizes

b = En: d(ilfz, L)2
1=1

This is a NP hard problem!

Lloyd's algorithm: a very simple local search algorithm.

The k-means algorithm

Lloyd’s algorithm

L'+ {yi,...,y;} (initial seeds)
11
while convergence not reached:
for j €4{1,...,k}:
S% < {r € X : d(z,y}) achieves d(x, L")}
for j € {1,...,k}:
y;' < |§;| 2 zesi ¥
1< 1+1

The k-means algorithm

Lloyd’s algorithm

L'+ {yi,...,y;} (initial seeds)
11
while convergence not reached:
for j €4{1,...,k}:
S’ < {x € X : d(x,y) achieves d(z, L")}
for j € {1,...,k}:
y;+1 S |5};| ZxES;Z L
1< 1+1

The k-means algorithm

Lloyd’s algorithm

L'+ {yi,...,y;} (initial seeds)
11
while convergence not reached:
for j €4{1,...,k}:
S’ < {x € X : d(x,y) achieves d(z, L")}
for j € {1,...,k}:
y;+1 S |5};| ZxES;Z L
1< 1+1

The k-means algorithm

Lloyd’s algorithm

L'+ {yi,...,y;} (initial seeds)
11
while convergence not reached:
for j €4{1,...,k}:
S’ < {x € X : d(x,y) achieves d(z, L")}
for j € {1,...,k}:
y;+1 S |5};| ZxES;Z L
1< 1+1

The k-means algorithm

Lloyd’s algorithm

L'+ {yi,...,y;} (initial seeds)
11
while convergence not reached:
for j €4{1,...,k}:
S’ < {x € X : d(x,y) achieves d(z, L")}
for j € {1,...,k}:
y;+1 S |5};| ZxES;Z L
1< 1+1

The k-means algorithm

Lloyd’s algorithm

L'+ {yi,...,y;} (initial seeds)
11
while convergence not reached:
for j €4{1,...,k}:
S’ < {x € X : d(x,y) achieves d(z, L")}
for j € {1,...,k}:
y;+1 S |5};| ZxES;Z L
1< 1+1

The k-means algorithm

Warning:
e Minimum is not necessarily global!

e Speed of convergence not guaranteed.

o Lack of stability: output is very sensitive
to initial seeds.

Hierarchical clustering algorithms

Goal: Build a hierarchy of clusters (nested family of partitions).

Hierarchical clustering algorithms

Goal: Build a hierarchy of clusters (nested family of partitions).

Agglomerative (bottom-up)

Start with single point cluster and
recursively merge the most similar
clusters to one parent cluster until
reaching a stopping criterion (e.g.,
max distance or cluster number).

o o o o o o
Pr P2 P3 P4 Ds Pé6
® D6

Hierarchical clustering algorithms

Goal: Build a hierarchy of clusters (nested family of partitions).

Agglomerative (bottom-up)

Start with single point cluster and
recursively merge the most similar
clusters to one parent cluster until
reaching a stopping criterion (e.g.,
max distance or cluster number).

Se

® D2

L

o
Pr P2 P3 P4 Ds Pé6
® D6

Hierarchical clustering algorithms

Goal: Build a hierarchy of clusters (nested family of partitions).

Agglomerative (bottom-up)

Start with single point cluster and
recursively merge the most similar
clusters to one parent cluster until
reaching a stopping criterion (e.g.,
max distance or cluster number).

'B.

® D6

| |

P1

P2

P3

P4

°
P5

o
P6

Hierarchical clustering algorithms

Goal: Build a hierarchy of clusters (nested family of partitions).

Agglomerative (bottom-up)

Start with single point cluster and
recursively merge the most similar
clusters to one parent cluster until
reaching a stopping criterion (e.g.,
max distance or cluster number).

'B.

® D6

| |

P1

P2

P3

P4

°
P5

o
P6

Hierarchical clustering algorithms

Goal: Build a hierarchy of clusters (nested family of partitions).

Agglomerative (bottom-up)

Start with single point cluster and
recursively merge the most similar
clusters to one parent cluster until
reaching a stopping criterion (e.g.,
max distance or cluster number).

'B.

ey

o
Pr P2 P3 P4 Ds Pé6
® D6

Hierarchical clustering algorithms

Goal: Build a hierarchy of clusters (nested family of partitions).

Acol . Dendogram, i.e., a tree such that:
gglomerative (bottom-up) - each leaf node is a singleton,

Start with single point cluster and |- each node represents a cluster,

recursively merge the most similar |- the root node contains the whole data,
clusters to one parent cluster until |- each internal node has two daughters, cor-

reaching a stopping criterion (e.g., responding to the clusters that were merged

max distance or cluster number). to obtain it. \

-
(17 |

o
Pr P2 P3 P4 Ds Pé6

'B.

® D6

Hierarchical clustering algorithms

Goal: Build a hierarchy of clusters (nested family of partitions).

Agglomerative (bottom-up) Dividing (top-down)

Start with single point cluster and
recursively merge the most similar
clusters to one parent cluster until
reaching a stopping criterion (e.g.,
max distance or cluster number).

Start with a single global cluster and
recursively split each cluster until
reaching a stopping criterion.

o o o o o o
Pr P2 P3 P4 Ds Pé6
® D6

Hierarchical clustering algorithms

Goal: Build a hierarchy of clusters (nested family of partitions).

Agglomerative (bottom-up) Dividing (top-down)

Start with single point cluster and
recursively merge the most similar
clusters to one parent cluster until
reaching a stopping criterion (e.g.,
max distance or cluster number).

Start with a single global cluster and
recursively split each cluster until
reaching a stopping criterion.

o o o o
Pr P2 P3 Pa Ds Pé6

Hierarchical clustering algorithms

Goal: Build a hierarchy of clusters (nested family of partitions).

Agglomerative (bottom-up) Dividing (top-down)

Start with single point cluster and
recursively merge the most similar
clusters to one parent cluster until
reaching a stopping criterion (e.g.,
max distance or cluster number).

Start with a single global cluster and
recursively split each cluster until
reaching a stopping criterion.

N/

o o o o
Pr P2 P3 Pa Ds Pé6

P4 P5

Hierarchical clustering algorithms

Goal: Build a hierarchy of clusters (nested family of partitions).

Agglomerative (bottom-up) Dividing (top-down)

Start with single point cluster and
recursively merge the most similar
clusters to one parent cluster until
reaching a stopping criterion (e.g.,
max distance or cluster number).

Start with a single global cluster and
recursively split each cluster until
reaching a stopping criterion.

o o
P4 D5 Pe6

Single linkage clustering

Input: A set X,, = {x1,...,z,} in a metric space (X,d) (or just a matrix
of pairwise dissimilarities ((d; ;))i ;).

Given two clusters C,C" C X, let d(C,C") = inf copecr d(x, 2').

Single linkage clustering

Input: A set X,, = {x1,...,z,} in a metric space (X,d) (or just a matrix
of pairwise dissimilarities ((d; ;))i ;).

Given two clusters C,C" C X, let d(C,C") = inf copecr d(x, 2').

Agglomerative (bottom-up)

1. Start with a clustering where
each x; Is a cluster.

2. At each step, merge the two clos-
est clusters until it remains a single
cluster (containing all data points).

Output: the resulting dendrogram.

Single linkage clustering

Input: A set X,, = {x1,...,z,} in a metric space (X,d) (or just a matrix
of pairwise dissimilarities ((d; ;))i ;).

Given two clusters C,C" C X, let d(C,C") = inf copecr d(x, 2').

sup: complete linkage

Agglomerative (bottom-up) |C|-1|C’| > . average linkage

1. Start with a clustering where
each x; Is a cluster.

2. At each step, merge the two clos-
est clusters until it remains a single
cluster (containing all data points).

Output: the resulting dendrogram.

Single linkage clustering

Input: A set X,, = {x1,...,z,} in a metric space (X,d) (or just a matrix
of pairwise dissimilarities ((d; ;))i ;).

Given two clusters C,C" C X, let d(C,C") = inf copecr d(x, 2').

Agglomerative (bottom-up)

1. Start with a clustering where
each x; Is a cluster. ° o

2. At each step, merge the two clos-
est clusters until it remains a single e o
cluster (containing all data points).

Output: the resulting dendrogram.

Single linkage clustering

Input: A set X,, = {x1,...,z,} in a metric space (X,d) (or just a matrix

of pairwise dissimilarities ((d; ;))i ;).

Given two clusters C,C" C X, let d(C,C") = inf copecr d(x, 2').

Agglomerative (bottom-up)

1. Start with a clustering where
each x; Is a cluster.

2. At each step, merge the two clos-
est clusters until it remains a single
cluster (containing all data points).

Output: the resulting dendrogram.

Single linkage clustering

Input: A set X,, = {x1,...,z,} in a metric space (X,d) (or just a matrix

of pairwise dissimilarities ((d; ;))i ;).

Given two clusters C,C" C X, let d(C,C") = inf copecr d(x, 2').

Agglomerative (bottom-up)

1. Start with a clustering where
each x; Is a cluster.

2. At each step, merge the two clos-
est clusters until it remains a single
cluster (containing all data points).

Output: the resulting dendrogram.

Single linkage clustering

Input: A set X,, = {x1,...,z,} in a metric space (X,d) (or just a matrix

of pairwise dissimilarities ((d; ;))i ;).

Given two clusters C,C" C X, let d(C,C") = inf copecr d(x, 2').

Agglomerative (bottom-up)

1. Start with a clustering where
each x; Is a cluster.

2. At each step, merge the two clos-
est clusters until it remains a single
cluster (containing all data points).

Output: the resulting dendrogram.

Single linkage clustering

Input: A set X,, = {x1,...,z,} in a metric space (X,d) (or just a matrix

of pairwise dissimilarities ((d; ;))i ;).

Given two clusters C,C" C X, let d(C,C") = inf copecr d(x, 2').

Agglomerative (bottom-up)

1. Start with a clustering where
each x; Is a cluster.

2. At each step, merge the two clos-
est clusters until it remains a single
cluster (containing all data points).

Output: the resulting dendrogram.

Single linkage clustering

Input: A set X,, = {x1,...,z,} in a metric space (X,d) (or just a matrix

of pairwise dissimilarities ((d; ;))i ;).

Given two clusters C,C" C X, let d(C,C") = inf copecr d(x, 2').

Agglomerative (bottom-up)

1. Start with a clustering where
each x; Is a cluster.

2. At each step, merge the two clos-
est clusters until it remains a single
cluster (containing all data points).

Output: the resulting dendrogram.

The (in)stability of dendrograms

The (in)stability of dendrograms

The (in)stability of dendrograms

The (in)stability of dendrograms

The (in)stability of dendrograms

The (in)stability of dendrograms

The (in)stability of dendrograms

. “1: [Characterization, Stability and Convergence
T h e (I n)Sta bl | Ity Of d e n d rOg ra m S of Hierarchical Clustering Methods, Carlsson,

Mémoli, J. Machine Learning Research, 2010]

dp(x,x") := height of lowest common ancestor of z,x" in dendrogram D.

Thm: dgy((X,dpy), (Y,dpy)) < dar((X,dx), (Y, dy)). ultrametric!

. “1: [Characterization, Stability and Convergence
T h e (I n)Sta bl | Ity Of d e n d rOg ra m S of Hierarchical Clustering Methods, Carlsson,

Mémoli, J. Machine Learning Research, 2010]

dp(x,x") := height of lowest common ancestor of z,x" in dendrogram D.

Thm: dgy((X,dpy), (Y,dpy)) < dar((X,dx), (Y, dy)). ultrametric!

This is actually not true for complete and average clustering.

The (in)stability of dendrograms

Small perturbations on the input data can induce wide changes in the structure
of the output dendrograms. However, the merging times (height of dendro-
gram nodes) remain stable.

The (in)stability of dendrograms

Small perturbations on the input data can induce wide changes in the structure

of the output dendrograms. However, the merging times (height of dendro-
gram nodes) remain stable.

Moreover, single linkage clustering keeps track of the evolution of the con-
nected components of the distance function to the data (for Euclidean data).

The

(in)stability of dendrograms

Small perturbations on the input data can induce wide changes in the structure

of the

output dendrograms. However, the merging times (height of dendro-

gram nodes) remain stable.

Moreover, single linkage clustering keeps track of the evolution of the con-
nected components of the distance function to the data (for Euclidean data).

— 0-d

imensional persistent homology provides a stable output!

The (in)stability of dendrograms

However, building a hierarchy based on spatial proximity is still not a great idea
when there are outliers, since there is no stability of merging times anymore.

— O-dimensional persistent homology provides a stable output!

The (in)stability of dendrograms

However, building a hierarchy based on spatial proximity is still not a great idea
when there are outliers, since there is no stability of merging times anymore.

— O-dimensional persistent homology provides a stable output!

The (in)stability of dendrograms

However, building a hierarchy based on spatial proximity is still not a great idea
when there are outliers, since there is no stability of merging times anymore.

— 0-dimensional persistent homology provides a stable output!

The (in)stability of dendrograms

® ‘..:.
A A
ot o . 5 efe w il 5
o:.

However, building a hierarchy based on spatial proximity is still not a great idea
when there are outliers, since there is no stability of merging times anymore.

Another way to build a hierarchy is with the sublevel sets of a density function.
Using density for clustering is at the core of mode-seeking algorithms.

— O-dimensional persistent homology provides a stable output!

Mode seeking clustering

In mode seeking, data points are sampled according to some (unknown) prob-
ability density, and clusters are given with its basins of attraction.

Two approaches:

[Mean shift: a robust approach toward feature

o Iterative SUCh as. e g Mean Shlft space analysis, Comaniciu et al., IEEE Trans. on

Pattern Analysis and Machine Intelligence, 2002]

[A Graph-Theoretic Approach to Nonparametric

® Graph-baSEd, SUCh aS, e.g., Cluster Analysis, Koontz et al., IEEE Trans. on
Computers, 1976].

Mean Shift (2002)

Mean Shift (2002)

1. Pick random guess x € X.

Mean Shift (2002)

1. Pick random guess x € X.

2. Compute
M(Qf) = inEN(oc) K(z,2;)

where N(x) is a neighborhood of x, and K is a kernel, e.g., Gaussian kernel

K(z,y) = exp (—12412).

Mean Shift (2002)

1. Pick random guess x € X.

where N(x) is a neighborhood of x, and K is a kernel, e.g., Gaussian kernel
K (x,y) = exp (— 1542,

3. Update x + M (x).

2. Compute

M(x) =

Mean Shift (2002)

1. Pick random guess x € X.

where N (x) is a neighborhood of x, and K is a kernel, e.g., Gaussian kernel

K(z,y) = exp (—12412).

3. Update x + M (x).

2. Compute M(z) =

Do that for many random guesses, postprocess and merge similar centroids,
and use the distances to the centroids to decide clusters.

Mean Shift (2002)

1. Pick i)
 Regionof
2. Com interest
Center of
where [i n kernel
K(z,y)
[Mean Shift]
3. Upd: vecor
Do that ntroids,
and use

The Koonz, Narendra and Fukunaga algorithm (1976)

The Koonz, Narendra and Fukunaga algorithm (1976

Density estimation

The Koonz, Narendra and Fukunaga algorithm (1976

Density estimation

graph

The Koonz, Narendra and Fukunaga algorithm (1976

Density estimation

graph

Discrete approximation of
the gradient; for each ver-
tex v, a gradient edge Is
selected among the edges
adjacent to v.

-

The Koonz, Narendra and Fukunaga algorithm (1976)

The algorithm:

Input: A neighborhood graph G with n vertices (the data points) and an
n-dimensional vector f (density estimate).

Sort the vertex indices {1,2,...,n} in decreasing order: f(1) > --- > f(n).

Initialize a union-find data structure I/ and two lists g, r of length n.

fori e {1,...,n}:
Let NV be the set of neighbors of 7 in G that have indices lower than i
if N =@
Create a new entry e in U and attach vertex ¢ to it: U.MakeSet(i)
7“[6] <— 1 (r[e] stores the root vertex associated with the entry ¢)
else:)
g [Z] < argmax{f(9)] € N } (g[i] stores the approximate gradient at vertex i)
e; < U.Find(gli])
Attach vertex ¢ to the entry e;: U.Union(z,e;)

Output: The collection of entries e in U.

The Koonz, Narendra and Fukunaga algorithm (1976)

Drawbacks:

estimated
density

One has as many clusters as local maxima of the density estimate, which are
very sensitive to noise and outliers.

The Koonz, Narendra and Fukunaga algorithm (1976)

Drawbacks:

estimated
density

One has as many clusters as local maxima of the density estimate, which are
very sensitive to noise and outliers.

The choice of the neighborhood graph (k-nearest neighbors, triangulations,
etc) may result in wide changes in the output.

The Koonz, Narendra and Fukunaga algorithm (1976)

Drawbacks:

One has as many clusters as local maxima of the density estimate, which are
very sensitive to noise and outliers.

The choice of the neighborhood graph (k-nearest neighbors, triangulations,
etc) may result in wide changes in the output.

Approaches to overcome these issues:

The Koonz, Narendra and Fukunaga algorithm (1976)

Drawbacks:

One has as many clusters as local maxima of the density estimate, which are
very sensitive to noise and outliers.

The choice of the neighborhood graph (k-nearest neighbors, triangulations,
etc) may result in wide changes in the output.

Approaches to overcome these issues:

One can smooth out the density estimate, but smoothing is usually data-driven
and hard to tune.

The Koonz, Narendra and Fukunaga algorithm (1976)

Drawbacks:

One has as many clusters as local maxima of the density estimate, which are
very sensitive to noise and outliers.

The choice of the neighborhood graph (k-nearest neighbors, triangulations,
etc) may result in wide changes in the output.

Approaches to overcome these issues:

One can smooth out the density estimate, but smoothing is usually data-driven
and hard to tune.

Build a hierarchy of clusters with O-dimensional persistent homology!

Topological Machine Learning (I1):
Guiding ML models

2. Topology-based Clustering

Reminder: O-dimensional PH of density

Given a probability density f, we will consider the superlevel-set filtration
f1([t, +00)) for t from +o0 to —o0o, instead of the sublevel-set filtration.

Reminder: O-dimensional PH of density

Given a probability density f, we will consider the superlevel-set filtration
f1([t, +00)) for t from +o0 to —o0o, instead of the sublevel-set filtration.

Reminder: O-dimensional PH of density

Given a probability density f, we will consider the superlevel-set filtration
f1([t, +00)) for t from +o0 to —o0o, instead of the sublevel-set filtration.

Reminder: O-dimensional PH of density

Given a probability density f, we will consider the superlevel-set filtration
f1([t, +00)) for t from +o0 to —o0o, instead of the sublevel-set filtration.

ﬂ >Rd

Reminder: O-dimensional PH of density

Given a probability density f, we will consider the superlevel-set filtration
f1([t, +00)) for t from +o0 to —o0o, instead of the sublevel-set filtration.

Reminder: O-dimensional PH of density

Given a probability density f, we will consider the superlevel-set filtration
f1([t, +00)) for t from +o0 to —o0o, instead of the sublevel-set filtration.

Reminder: O-dimensional PH of density

Given a probability density f, we will consider the superlevel-set filtration
f1([t, +00)) for t from +o0 to —o0o, instead of the sublevel-set filtration.

Reminder: O-dimensional PH of density

Given a probability density f, we will consider the superlevel-set filtration
f1([t, +00)) for t from +o0 to —o0o, instead of the sublevel-set filtration.

Reminder: O-dimensional PH of density

Given a probability density f, we will consider the superlevel-set filtration
f1([t, +00)) for t from +o0 to —o0o, instead of the sublevel-set filtration.

+ oo

Reminder: O-dimensional PH of density

Moreover, the stability theorem ensures that, given an underlying true density
f, and an estimator f ot it, one has:

dy(Dy, D) < || f = flloo
R A

+ oo

Building a hierarchy of cluster with 0-dimensional PH

In addition to being stable, O-dimensional PH also remembers the connected
components that were merged together during the filtration process and builds
a hierarchy out of this information.

Building a hierarchy of cluster with 0-dimensional PH

In addition to being stable, O-dimensional PH also remembers the connected
components that were merged together during the filtration process and builds
a hierarchy out of this information.

This means that, given a fixed threshold 7 > 0, one can even retrieve the
clusters associated to all the bars of length (or prominence) > 7!

Building a hierarchy of cluster with 0-dimensional PH

In addition to being stable, O-dimensional PH also remembers the connected
components that were merged together during the filtration process and builds
a hierarchy out of this information.

This means that, given a fixed threshold 7 > 0, one can even retrieve the
clusters associated to all the bars of length (or prominence) > 7!

Building a hierarchy of cluster with 0-dimensional PH

In addition to being stable, O-dimensional PH also remembers the connected
components that were merged together during the filtration process and builds
a hierarchy out of this information.

This means that, given a fixed threshold 7 > 0, one can even retrieve the
clusters associated to all the bars of length (or prominence) > 7!

v —0 < T< +00

[Persistence-Based Clustering

ToMATo: Topological Mode Analysis Tool i fememian - wanieras
Guibas, J. ACM, 2013]

A

1. Define an order on the point cloud with a density estimator f.

(sort data points by decreasing estimated density values)

[Persistence-Based Clustering

ToMATo: Topological Mode Analysis Tool i fememian - wanieras
Guibas, J. ACM, 2013]

A

1. Define an order on the point cloud with a density estimator f.

(sort data points by decreasing estimated density values)

2. Extend order to the graph edges (i.e., compute the upper-star filtration).
(f([w, v]) = min{f(u), f(v)})

[Persistence-Based Clustering

ToMATo: Topological Mode Analysis Tool i fememian - wanieras
Guibas, J. ACM, 2013]

A

1. Define an order on the point cloud with a density estimator f.

(sort data points by decreasing estimated density values)

2. Extend order to the graph edges (i.e., compute the upper-star filtration).
(f([w, v]) = min{f(u), f(v)})

3. Compute the O-dimensional persistence diagram of this filtration.

(apply O-dimensional persistence algorithm — union-find data structure)

[Persistence-Based Clustering

ToMATo: Topological Mode Analysis Tool i fememian - wanieras

Guibas, J. ACM, 2013]

Given a neighborhood graph with n vertices and m edges:

1. the algorithm sorts the vertices by decreasing density values,

2. and then makes a single pass through the vertex set, merging clusters
on the fly using a union-find data structure.

— Running time: O(nlogn + (n +m)a(n))
— Space complexity: O(n + m)
— Main memory usage: O(n)

Estimating the correct number of clusters

1. Define an order on the point cloud with a density estimator f
(sort data points by decreasing estimated density values)

2. Extend order to the graph edges (i.e., compute the upper-star filtration).
(f([u,v]) = min{f(u), f(v)})

3. Compute the O-dimensional persistence diagram of this filtration.

(apply O-dimensional persistence algorithm — union-find data structure)

Estimating the correct number of clusters

1. Define an order on the point cloud with a density estimator f
(sort data points by decreasing estimated density values)

2. Extend order to the graph edges (i.e., compute the upper-star filtration).
(f([u,v]) = min{f(u), f(v)})

3. Compute the O-dimensional persistence diagram of this filtration.

(apply O-dimensional persistence algorithm — union-find data structure)

topological

Estimating the correct number of clusters

1. Define an order on the point cloud with a density estimator f
(sort data points by decreasing estimated density values)

2. Extend order to the graph edges (i.e., compute the upper-star filtration).
(f([u,v]) = min{f(u), f(v)})

3. Compute the O-dimensional persistence diagram of this filtration.

(apply O-dimensional persistence algorithm — union-find data structure)

background noise

Estimating the correct number of clusters

1. Define an order on the point cloud with a density estimator f
(sort data points by decreasing estimated density values)

2. Extend order to the graph edges (i.e., compute the upper-star filtration).
(f([u,v]) = min{f(u), f(v)})

3. Compute the O-dimensional persistence diagram of this filtration.

(apply O-dimensional persistence algorithm — union-find data structure)

:l

¢ 6 prominent
peaks

Estimating the correct number of clusters

1. Define an order on the point cloud with a density estimator f
(sort data points by decreasing estimated density values)

2. Extend order to the graph edges (i.e., compute the upper-star filtration).
(f([u,v]) = min{f(u), f(v)})

3. Compute the O-dimensional persistence diagram of this filtration.

(apply O-dimensional persistence algorithm — union-find data structure)

Estimating the correct number of clusters

Hypotheses:

o f:RY— R a c-Lipschitz probability density function,

e P C R? a finite set of n points sampled i.i.d. according to f,
e f: P — R a density estimator s.t. 77 := max,ep |f(p) — f(p)| < II/5,
e G = (P, E) the -neighborhood graph for some positive § < == 577

Note: II is the prominence of the least prominent peak of f

Estimating the correct number of clusters

Hypotheses:

o f:RY— R a c-Lipschitz probability density function,
e P C R? a finite set of n points sampled i.i.d. according to f,

e f: P — R a density estimator s.t. 77 := max,ep |f(p) — f(p)| < II/5,
I1— 577

e G = (P, E) the d-neighborhood graph for some positive § <

Note: II is the prominence of the least prominent peak of f

Thm: For any choice of 7 such that 2(cd +1n) < 7 < II — 3(cd + 1), the
number of clusters computed by the algorithm is equal to the number of peaks
Of f W|th probab”rty at Ieast 1 — e_Q(n) (the €2 notation hides factors depending on c, &)

Proof: Skipped. The main ingredient is the stability theorem.

Estimating the correct number of clusters

| 2(co +m)

LI —3(cd +n)

2(05:+ n) 11 —:3(65 +n)

Thm: For any choice of 7 such that 2(cd + 1) < 7 < II — 3(cd + 1), the

number of clusters computed by the algorithm is equal to the number of peaks
Of f W|th probab|||ty at Ieast 1 — e_ﬂ(n) (the €2 notation hides factors depending on ¢, §)

Proof: Skipped. The main ingredient is the stability theorem.

Pseudo-code

Input: A graph G with n vertices, an n-dimensional vector f and 7 > 0.
Sort the vertex indices {1,2,...,n} in decreasing order: (1) > --- > f(n).
Initialize a union-find data structure U/ and two lists g, r of length n.

for i € {1,...,n}:
Let A be the set of neighbors of 7 in G that have indices lower than ¢
if N =o:
Create a new entry e in U and attach vertex i to it: U .MakeSet(i)
T [6] <{— 1 (r[e] stores the root vertex associated with the entry)
else:)
g[@] < argmax{f(j)] = N} (g[i] stores the approximate gradient at vertex)
e; < U.Find(g|i|)
Attach vertex ¢ to the entry e;: U.Union(i,e;)
for j € N:
e < U.Find(y)
if e # e; and min{f(rle]), f(rle)} < fi) + T cluster merges
U .Union(e, e;) with persistence
rleUei] < argmax{f(rle]), f(rlei])}
e; < el e;

Output: the collection of entries e of U such that f(r(e)) > 7.

Experimental results

s

L d
L]

Synthetic Data

CA Y

I‘*ﬂl ‘;l
. k:

-

RN 3y

"l

Spectral clustering

(k-means in eigenspace),;

0.996
0.994

0.992

. !
-'— L [

'{-\li’ L -“: “"’."""""'..-.-“I."‘|r PR TN . ’ OB

0.988

0.986

0.984

0.982

098 | | | | | | |

Experimental results

Synthetic Data

ToMATo

Experimental results

Synthetic Data

L ti‘i.r.;-.‘:r

- &
ke 1 - .!-.‘1! '#
.] . '.'i y .~ .5 l"" e‘"?
;ﬁ‘;':?-;_".'...ﬁ oy Syt
o, ® Lk = ._:.-]) "
S e 1.2
ety e .
Lo OB & : A A
E..:- II'.I.JI- ﬁ ‘%"-.' ;3. ... / p : '.'.‘.:lﬁ
vt . et e s
ot et ol

ToMATo
°
o o
°
.°0 ®e °
..Q..)
°
° ,"
.. (] ',"]
® ¢ 0"’/.
[J 'o' J
e | | ' i S

Experimental results

Synthetic Data

[
"t

4
3 L]

-
[i"
S L

C A A
Ty
¥

Experimental results

Biological Data
Alanine-Dipeptide conformations (R*!)
with RMSD distance (non-Euclidean).

Common belief: 6 metastable states. 3|

PD shows anywhere between 4 and 7 clusters. ?|

E h t | |t [Topological methods for exploring low-density states in biomolecular fold-
Xpe” I I len a reSU S ing pathways, Yao, Sun, Huang, Bowman, Singh, Lesnick, Guibas, Pande,
Carlsson, J. Chem. Phys., 2009]

BiOlOgicaI Data Rank Prominence Metastability
1 +00 0.99982
Alanine-Dipeptide conformations (R?!) 2 3827 1.91865
3 1334 2.8813
. . . 4 557 3.76217
with RMSD distance (non-Euclidean). : o 173838
6 32 5.65553
7 26 6.50757
38 7.2 6.8193
9 3.0 -
10 2.2 -

N (68 ~ o1 (@) ~
T T T T T

Metastability

Common belief: 6 metastable states.

PD shows anywhere between 4 and 7 clusters.

- _ 00— 3 4 5 6 7 8
Measures of metastability confirm this insight. Number of clusters

[Topological methods for exploring low-density states in biomolecular fold-

EXpe” menta | reSU |tS ing pathways, Yao, Sun, Huang, Bowman, Singh, Lesnick, Guibas, Pande,

Carlsson, J. Chem. Phys., 2009]

Biological Data
Alanine-Dipeptide conformations (R?!)

with RMSD distance (non-Euclidean).

Note: Spectral Clustering takes a week
of tweaking, while ToMATo runs out-
of-the-box in a few minutes.

t L e .

Experimental results

Image Segmentation
Density is estimated in 3D color space.

Neighborhood graph is built in image domain

Distribution of prominences does not usually
show a clear unique gap.

Still, relationship between choice of 7 and

] (.5 1.5 2 25

number of obtained clusters remains explicit.

Application to non-rigid shape segmentation

[Persistence-Based Segmentation of Deformable Shapes,
Skraba, Ovsjanikov, Chazal, Guibas, Proc. CVPR 2010]

Persistence diagram for david1 with f = HKS(0.1)

80+

*

60 -

50

40 - ,
T 5 prominent
o, peaks/clusters
10+

X 3 3 D Sh a p e 00 1|0 2|o 50 4|0 5|o éo ?Io slo

f = HKS function on X

Application to non-rigid shape segmentation

[Persistence-Based Segmentation of Deformable Shapes,
Skraba, Ovsjanikov, Chazal, Guibas, Proc. CVPR 2010]

Persistence diagram for david1 with f = HKS(0.1)

80+

\4

60 -

50

40 - ,
T 5 prominent
o, peaks/clusters
10+

X 3 3 D Sh a p e 00 1|0 2|o 50 4|0 5|o éo ?Io slo

f = HKS function on X

Problem: cluster boundaries are unstable, which gives dirty segments.

Application to non-rigid shape segmentation

[Persistence-Based Segmentation of Deformable Shapes,
Skraba, Ovsjanikov, Chazal, Guibas, Proc. CVPR 2010]

Persistence diagram for david1 with f = HKS(0.1)

80+

\4

60 -

50

40 - ,
T 5 prominent
o, peaks/clusters
10+

X 3 3 D Sh a p e 00 1|0 2|o 50 4|0 5|o éo ?Io slo

f = HKS function on X

Problem: cluster boundaries are unstable, which gives dirty segments.

Topological Machine Learning (11):
Guiding ML models

3. Topology-based Optimization

Persistence diagrams and optimization

BBB What filtration to choose?
.e persistence
. o C
e ° Persistence diagram
e Classifier (RF, SVM, NN etc.) k(o5 0) = (D), () > o
e Dim. red. (PCA, MDS, UMAP, t-SNE) A o o o o
e Clustering (DBSCAN, K-means, etc.) - >0 °
o o H
Etc. >

Problem setting

Q: How to define VD7

Problem setting

Q: How to define VD7

Q: Given a parameterized family of functions F = {fy : 0 € ©}, how to
define Vo Dy,7?

Q: Given a point cloud X C R?, how to define V x DRips(X)?

Problem setting

Q: How to define VD7

Q: Given a parameterized family of functions F = {fy : 0 € ©}, how to
define Vo Dy,7?

Q: Given a point cloud X C R?, how to define V x DRips(X)?

Idea: Let's go back to the PD construction...

Computation with matrix reduction

Input: simplicial filtration

(Persistent) homology can be computed by us-
ing the fact that each simplex is either:

positive, 1.e., it creates a new homology class |

negative, I.e., it destroys an homology class

Computation with matrix reduction

Input: simplicial filtration

(Persistent) homology can be computed by us-
ing the fact that each simplex is either:

positive, 1.e., it creates a new homology class |

negative, I.e., it destroys an homology class

—@

Computation with matrix reduction

Input: simplicial filtration

(Persistent) homology can be computed by us-
ing the fact that each simplex is either:

positive, 1.e., it creates a new homology class |

negative, I.e., it destroys an homology class

—@
—e@
oe

Computation with matrix reduction

Input: simplicial filtration

(Persistent) homology can be computed by us-
ing the fact that each simplex is either:

positive, 1.e., it creates a new homology class |

negative, I.e., it destroys an homology class

—e
—e
Noe
e

Noe

Computation with matrix reduction

Input: simplicial filtration

(Persistent) homology can be computed by us-
ing the fact that each simplex is either:

positive, 1.e., it creates a new homology class |

negative, I.e., it destroys an homology class

—e
—e
Noe
e

—@

Noe

Computation with matrix reduction

Input: simplicial filtration

(Persistent) homology can be computed by us-
ing the fact that each simplex is either:

positive, 1.e., it creates a new homology class

negative, I.e., it destroys an homology class

—e
—e
Noe

e

—e
s
Noe
—e
s
DO

1

Noe

Computation with matrix reduction ;

Input: simplicial filtration

6 5
(Persistent) homology can be computed by us- 7
ing the fact that each simplex is either:
positive, 1.e., it creates a new homology class | 1 5

negative, I.e., it destroys an homology class

; III‘

—e
—e
Noe
e
Noe

—e
s
NOe
—e
D
(N
—
2
DO

Computation with matrix reduction ;

Input: simplicial filtration

6 5
(Persistent) homology can be computed by us- 7
ing the fact that each simplex is either:
positive, 1.e., it creates a new homology class | 1 5

negative, I.e., it destroys an homology class

3 l I

® ®
2 1 2

3 3 3 3
A 3 A T)

—@
—@

—e
i

Noe

—e

Computation with matrix reduction

Input: simplicial filtration

Output: boundary matrix
reduced to column-echelon form

O simplex pairs give finite intervals:
2,4), 3,9), [6,7)

unpaired simplices give infinite intervals: |1, +00)

1121314567
1 * *
2 * | %
3 * | %
4 *
D *
0 *
7

3
5
7
1 4
112(3]4|5 7
! -
2 @*
3 (1)
4 *
: *
; ©
7

Computation with matrix reduction

Input: simplicial filtration

Output: boundary matrix
reduced to column-echelon form

O simplex pairs give finite intervals:
2,4), 3,9), [6,7)

A persistence diagram D is made of all
(F(oy),F(o_)) € R? where o (resp.
o_) is positive (resp. negative), and F is
the filtration function.

unpaired simplices give infinite intervals: |1, +00)

3
5

7

1 4
112]3 D 7

(r—\:;% H~

O,

(—) * | *

J| | Y | W[DN =

Computation with matrix reduction

Input: simplicial filtration

Output: boundary matrix
reduced to column-echelon form

O simplex pairs give finite intervals:
2,4), 3,9), [6,7)

A persistence diagram D is made of all
(F(oy),F(o_)) € R* where o (resp.
o_) is positive (resp. negative), and F is
the filtration function.

Thus we can define the gradient of a point
p=(F(o4),F(o-)) €D as

Vp = [VF(04), VF(0-)

unpaired simplices give infinite intervals: |1, +00)

1

2

3

(r—\:;% H~

O,

(—) * | *

J| | Y | W[DN =

Example: Vietoris-Rips gradient

Q: Define and compute Vietoris-Rips gradient?

Example: Vietoris-Rips gradient

oo Point cloud Xn

T

Example: Vietoris-Rips gradient

Point cloud Xn

o

Example: Vietoris-Rips gradient

...........

Point cloud Xn

i

.......

.......

.......

......

. Point cloud X,

Example: Vietoris-Rips gradient

.....

Persistence barcode

., .

Example: Vietoris-Rips gradient

.....

Persistence barcode

2., .

Given k-dim. simplex o = |vg, ..., vg|, one has

F (o) = max; j||v; — vj|]

.....

Example: Vietoris-Rips gradient

Persistence barcode

2., .

Given k-dim. simplex o = |vg, ..., vg|, one has

F (o) = max; j||v; — vj|]

Let p = (F(04), F(0-)) € Drips(X)

.....

Example: Vietoris-Rips gradient

Persistence barcode

2., .

Given k-dim. simplex o = |vg, ..., vg|, one has

F (o) = max; j||v; — vj|]

Let p = (F(04), F(0-)) € Drips(X)

with o = {vg,..., v} and o_ = {wyg, ..., wks+1}

€.

Exampl

...........

Persistence barcode

2., .

|

y 8% Hwa* — Whp=

Vxp = |5xllvic —vje

Let p = (F(04), F(0-)) € Drips(X)

with o = {vg,..., v} and o_ = {wyg, ..., wks+1}

€.

Exampl

...........

Persistence barcode

2., .

|

= (=)t (v(d) — fu(.il)) if i =¢* (5°) and 0 otherwise

v —vj || X727 J

y 8% Hwa* — Whp=

Vxp = |5xllvic —vje

%@Hvi* — Uy

Let p = (F(04), F(0-)) € Drips(X)

with o = {vg,..., v} and o_ = {wyg, ..., wks+1}

.....

Example: Vietoris-Rips gradient

Persistence barcode

2., .

|

= () L ” (v§f) — fuj(.il)) if i =¢* (5°) and 0 otherwise

y 8% Hwa* — Whp=

Vxp = [a_XHUi* — Uy

%@Hvi* — Uy

With this gradient rule, one can do gradient descent with any function of
persistence!

the number of holes In that
point cloud.

Persistence barcode

0.75

0.50 -

0.25 -

—0.25 +

—0.50 ~

—0.75 A

—1.00 ~

Point cloud at epoch O

- ®

['..- -’.% o o e® @ o' o
..'- : oo .. ‘- € ofe ..
2 ® o ® --.

I. @ . ‘ ° -I..-. ... I.-:
“ Qo *e o °, ® o
°® °s oy o © o

@ -' ~- °

°
° :- : ..' o .- ‘I. -.u‘ -. L
Ve ™€ * e
o8 © o % o0 ° o
® ®e ©. 2 %o ® a: o ® °,
’ -::. .". i. o0 ."-

°

“® , . ® o0 ; o3 i.- ":.l -.

T
—1.00

T T T T T T
-0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

the number of holes in that

point cloud.

We can use gradient descent to

minimize loss

LX) == |lpl3,

with p € Dgips(X) (in hom. 1).

Persistence barcode

0.75

0.50 -

0.25 -

—0.25 +

—0.50 ~

—0.75 A

—1.00 ~

Point cloud at epoch O

S, 80 o ted ov'e o s
.l. ‘ o0 .. ’- '.‘..". ..
X
.-. . o ¢ « ° -..--. .-. -.-‘
o] @ ‘ e ..- e
e &Ko °® b | m{ o © '-:
o o e ® g . ° - ° - &
DRRE L AN N
E . * % Qe
% o * °3° * =
o ® ® d e ® ® o °,
® =‘- -:. -- e LI
e Uy ®
AP DN TS VRO

T T T T T T T T T
-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

Exampl

........

.....

the number of holes in that

e, .

point cloud.

We can use gradient descent to

minimize loss

LX) == |lpl3,

Pomt cloud X,

Persistence barcode

Point cloud at epoch 1000

3_
2_
o ®
°
1 4 []
°
°
0 - []
. °
°
. []
°
I g
® 2 ®
°
® o ¢ o ° ° o ©
T T T T T T
-3 -2 -1 0 1 2

with p € Dgips(X) (in hom. 1).

Example: V

........

.....

Pomt cloud X,

Persistence barcode

., .

Point cloud at epoch 1000

the number of holes in that)
point cloud.) e
We can use gradient descent to minimize
loss .
L(X) - _ZHPHS‘I—CZ(X, C)v 21 . o o o
P | o o o °® | e o ©

with p € Drips(X) and C' unit square.

Example: V

. .

...........

., .

i}'--:‘fi‘::-.,_’Point cloud X,

the number of holes in that

point cloud.

i

Persistence barcode

Point cloud at epoch 1000

1.00 4

0.75

0.50

0.25

We can use gradient descent to minimize |

loss

LX) ==Y ol +d(X,0),

with p € DRips(X) and C unit square.

—0.25 +

—0.50 ~

—0.75 +

—1.00 ~

© 090 o000 g (00000000, 000 050,

S S
..-l.-----..'....-.'- -lii.-: l:
® $ 3 ®eo0g 0 0°

-. : S’ B

°
.o:'--'--:. --:- 0.:- -.-. .?
y ‘.--':. .---. -" oo,
: DA A
S oeccceg® H % o
: -:. ‘I e I-
s o® -..:-' ®oge00ede, * °°]
)

° ° »
.."' -i'=“':.'-' ---: ----3-- coo

T T T T T T T T T
-1.00 -0.7Y5 -050 -0.25 0.00 0.25 0.50 0.75 1.00

Example: Sublevel sets

Given k-dim. simplex o = |vg, ..., vg|, one has

F(o) = max; fo(vi)

Example: Sublevel sets
Given k-dim. simplex o = |vg, ..., vg|, one has
.F(O) — IMax; f@(?}i)

Vop = |55f0(vir), 55 fo(wa)]

Example: Sublevel sets
Given k-dim. simplex o = |vg, ..., vg|, one has
.F(O) — IMax; f@(vi)

Vop = |55f0(vir), 55 fo(wa)]

Let's say we want to remove
the stains in that image.

Image at epoch 0

Example: Sublevel sets

Given k-dim. simplex o = |vg, ..., vg|, one has
.F(O) — IMax; f@(vi)
Vop = [fo(vis), 25 fo(wg-)]

Let's say we want to remove
the stains in that image.

Image at epoch 0

We can use gradient descent to minimize
loss
L(X)=>_llpll3.
p

with p € Dpixel(I) (in hom. 0).

Example: Sublevel sets

Given k-dim. simplex o = |vg, ..., vg|, one has
.F(O) — IMax; f@(vi)
Vop = [fo(vis), 25 fo(wg-)]

Let's say we want to remove
the stains in that image.

Image at epoch 3000

We can use gradient descent to minimize
loss
L(X)=>_llpll3.
p

with p € Dpixel(I) (in hom. 0).

Example: Sublevel sets

Given k-dim. simplex o = |vg, ..., vg|, one has
.F(O) — IMax; f@(vi)
Vop = [fo(vis), 25 fo(wg-)]

Let's say we want to remove
the stains in that image.

Image at epoch 3000

We can use gradient descent to minimize
loss

L(X) =) lpll3+) max{|P|,[1—-P[},

Pel

with D < DPixel(l)-

Example: Sublevel sets

Given k-dim. simplex o = |vg, ..., vg|, one has
.F(O) — IMax; f@(vi)
Vop = [fo(vis), 25 fo(wg-)]

Let's say we want to remove
the stains in that image.

Image at epoch 3000

We can use gradient descent to minimize
loss

L(X) =) lpll3+) max{|P|,[1—-P[},

Pel

with D < DPixel(l)-

[Optimizing persistent homology based func-

TOpOlogical gradient descent tions, C., Chazal, Glisse, lke, Kanna, Umeda,

ICML, 2021]

[Optimizing persistent homology based func-

TOpOlogical gradient descent tions, C., Chazal, Glisse, lke, Kanna, Umeda,

ICML, 2021]

For a fixed ordering of the simplices in a simplicial complex K, the correspond-
ing persistence diagram always has the same number of points: its gradient
is well-defined!

[Optimizing persistent homology based func-

TOpOlogical gradient descent tions, C., Chazal, Glisse, lke, Kanna, Umeda,

ICML, 2021]

For a fixed ordering of the simplices in a simplicial complex K, the correspond-
ing persistence diagram always has the same number of points: its gradient

Is well-defined!

If the ordering changes, the boundary matrix can have a new reduced form
and the persistence diagram can have a new, different number of points.

[Optimizing persistent homology based func-

TOpOlogical gradient descent tions, C., Chazal, Glisse, lke, Kanna, Umeda,

ICML, 2021]

For a fixed ordering of the simplices in a simplicial complex K, the correspond-
ing persistence diagram always has the same number of points: its gradient
is well-defined!

If the ordering changes, the boundary matrix can have a new reduced form
and the persistence diagram can have a new, different number of points.

Prop: Let K be a simplicial complex and let ® : A — RI¥| a (parameterized)
filtration of K. There exists a partition A = SO U--- U O s.t. all the
restrictions ® : O, — RI¥ 1 are differentiable.

The O;'s are the parts of A where the ordering of the simplices of K is
preserved, and S is the boundaries of all O;'’s.

[Optimizing persistent homology based func-

TOpOlogical gradient descent tions, C., Chazal, Glisse, lke, Kanna, Umeda,

ICML, 2021]

Def: The Clarke subdifferential OL of L is the set:
0L = conv{lim,, ,,VL(x;) : L is diff. at x;},

where conv denotes the convex hull.

/\
f
/
/
/" nearby
/ gradients
- -
~ - -~ = subgradients
- I e B
- = ! I - o
-~ .
- / I —
;r' 1 \
/X /

[Optimizing persistent homology based func-

TOpOlogical gradient descent tions, C., Chazal, Glisse, lke, Kanna, Umeda,

ICML, 2021]

Let {Ozk}k, {Ck}k S.t.
ap >0, > ar =400 and >, a5 < 400

(x random variables s.t. E[(;] = 0 and E[||(x||?] < C for some C > 0

Thm: As long as £ o Pers o ® is locally Lipschitz, the sequence

a1 = ar — ax(gr + Ck),

where g € O, (L o Pers o ®), converges to a critical point of L o Pers o .

- (" - [A gradient sampling algorithm for
Topological stratified gradient descent swatics mas v spoictions «
topological data analysis, Leygonie, C.,

Lacombe, Oudot, 2021]

Better guarantees can be obtained by smoothing the gradient definition.
Def: The smoothed topological gradient of Pers o ® is defined as:

V, = argmin{||g|| : g € conv(S,)}

where S, = {Vy : d € O;,0; € N(O,)}, where O, is the stratum associ-
ated to a, and MV (O,) is the set of strata that are close to O,.

Intuitively, close strata means that their corresponding orderings are very sim-
ilar, e.g., they differ by single swaps, or their distance is bounded by ¢ > 0.

[A gradient sampling algorithm for

Topological stratified gradient descent s ma win sapicatons

topological data analysis, Leygonie, C.,
Lacombe, Oudot, 2021]

Better guarantees can be obtained by smoothing the gradient definition.
Def: The smoothed topological gradient of Pers o ® is defined as:

V, = argmin{||g|| : g € conv(S,)}

where S, = {Vy : d € O;,0; € N(O,)}, where O, is the stratum associ-
ated to a, and MV (O,) is the set of strata that are close to O,.

Intuitively, close strata means that their corresponding orderings are very sim-
ilar, e.g., they differ by single swaps, or their distance is bounded by ¢ > 0.

Thm: Let ¢ > 0. As long as £ o Pers o ® is Lipschitz, the sequence
Ap+1 — A — €~ @ak/H@ak H?

converges in finitely many iterations to @ s.t. 3a : V; =0 and ||a —al| < e.

Example: filter selection

Assume we have a supervised classification task. The goal is to find a filtration
from a family F such that the corresponding persistence diagrams give the
best classification score.

Example: filter selection

Assume we have a supervised classification task. The goal is to find a filtration
from a family F such that the corresponding persistence diagrams give the
best classification score.

L | -
Ex: images fil
[]
o] 25.0 o]
26 25.0
n
tered by a direc
y 5] 5§ 2 5] 225
20.0
. 2 200
tion parallleter— 01 s 01 01
20 175
. 15.0
|Zed b an |e °] o 18 = 15.0
| |
125
16
20 20 201 125
10.0
14 10.0
251 75 251 251
12 75
T T T T T T T
0 5 w 15 20 2 0 5 W 15 20 2 0 5 W 15 20 35
0 28 0
225 20
26
54 54 54
20.0 8
2
10 1 10 10
. 16
15.0
15 1 15 20 15 14
125
18
12
201 10.0 20 20
16
75 10
25 1 25 1 14 25 1
5.0 . ‘ ‘ . ‘ . . ‘ ‘ . ‘ ‘ 8

Example: filter selection

Assume we have a supervised classification task. The goal is to find a filtration

from a family F such that the corresponding persistence diagrams give the
best classification score.

Idea: minimize:

_ Zyi:yj:l dp(Df(mZ)7 Df (x]))
“h= zz: > i1 dp(Dy (i), Dy(xj))

one can also use Sliced Wasserstein for speedup.

Example: filter selection

Assume we have a supervised classification task. The goal is to find a filtration
from a family F such that the corresponding persistence diagrams give the
best classification score.

Idea: minimize:

_ Zyi:yj:l dP(Df(ajZ)7 Df (mj))
“h= zz: > i1 dp(Dy(wi), Dy(x5))

one can also use Sliced Wasserstein for speedup.

Dataset || Baseline || Before After Difference Dataset || Baseline || Before After Difference
vs01l 100.0 61.3 99.0 +37.6 vs26 99.7 08.8 98.2 -0.6
vs02 99.4 08.8 97.2 -1.6 vs28 90.1 96.8 96.8 0.0
vs06 09.4 87.3 08.2 +10.9 vs29 99.1 91.6 98.6 +7.0
vs09 994 86.8 98.3 +11.5 vs34 99.8 9904 90.1 -0.3
vslé 99.7 89.0 97.3 +8.3 vs36 99.7 990.3 99.3 -0.1
vs1l9 99.6 84.8 98.0 +13.2 vs37 98.9 94.9 97.5 +2.6
vs24 09.4 08.7 08.7 0.0 vs57 99.7 90.5 97.2 +6.7
vs25 99.4 80.6 97.2 +16.6 vs79 90.1 85.3 96.9 +11.5

[A Topological Regularizer for Classi-

Application: model regularization fers v Persistent Homology, Chen,

Ni, Bai, Wang, AISTATS, 2019]

o~

X X
Input data Reconstruction
Y
[Topological — autoencoders, Moor, Reconstruction loss
Horn, Rieck, Borgwardt, ICML, 2020]
Y
o o ° « o ° Topological loss
S el .
'.. .'.

Y
y

Take home message

Topological Data Analysis is:
a mathematically grounded framework...
H; = 7,/ By

...that applies to a wide variety of data sets...

Magnetometer Data Magnetometer Data

(walking) (cross trainer)
<
S et ~ .

S g Sl @k

o T ,%-’w‘ 5%
o

3

od :: :'o'-’ o i
iy %o 3 < A..f' o3 ¥ .
'.‘ b . o LI A \'lb;é‘
L) ;? -. - . L5 Jr
Fok >

S
05 08 03 05 0.

0.15

-0.1
o

Topological inference Topological machine learning

Exploratory data analysis

