Topological Machine Learning (II): Guiding ML models

1. Hierarchical and Mode Seeking Clustering
2. Topology-based Clustering
3. Topology-based Optimization
Topological Machine Learning (II): Guiding ML models

1. Hierarchical and Mode Seeking Clustering
2. Topology-based Clustering
3. Topology-based Optimization
General clustering

Def: A partition of data into groups of similar data points. The data points in each group, or cluster, are similar to each other and dissimilar to the ones from other clusters.
General clustering

Def: A partition of data into groups of similar data points. The data points in each group, or cluster, are similar to each other and dissimilar to the ones from other clusters.

Input: a finite set of observations: point cloud embedded in an Euclidean space (i.e., with well-defined coordinates) or a more general metric space (pairwise distance or similarity) matrix.
General clustering

Def: A partition of data into groups of similar data points. The data points in each group, or cluster, are similar to each other and dissimilar to the ones from other clusters.

Input: a finite set of observations: point cloud embedded in an Euclidean space (i.e., with well-defined coordinates) or a more general metric space (pairwise distance or similarity) matrix.

Goal: partition the data into a relevant family of clusters.
General clustering

Def: A partition of data into groups of similar data points. The data points in each group, or cluster, are similar to each other and dissimilar to the ones from other clusters.

Not a single or universal notion of cluster.

A variety of approaches:

• Variational (Bayes priors)
• Spectral (eigenvalues of Laplacian)
• Density-based (KDE, DTM)
• Hierarchical (dendrograms)
• etc...
General clustering

Def: A partition of data into groups of \textbf{similar data points}. The data points in each group, or cluster, are \textbf{similar to each other and dissimilar to the ones from other clusters}.

Not a single or universal notion of cluster.

A variety of approaches:

- Variational (Bayes priors)
- Spectral (eigenvalues of Laplacian)
- Density-based (KDE, DTM)
- Hierarchical (dendrograms)
- etc...

We will see a few standard algorithms and how they can be improved with (0-dimensional) persistent homology.
The k-means algorithm

Input: A (large) set of \(n \) points \(X \) and an integer \(k < n \).

Goal: Find a set of \(k \) points \(L = \{y_1, \ldots, y_k\} \) that minimizes

\[
E = \sum_{i=1}^{n} d(x_i, L)^2
\]
The k-means algorithm

Input: A (large) set of n points X and an integer $k < n$.

Goal: Find a set of k points $L = \{y_1, \ldots, y_k\}$ that minimizes

$$E = \sum_{i=1}^{n} d(x_i, L)^2$$

This is a NP hard problem!

Lloyd’s algorithm: a very simple local search algorithm.
The k-means algorithm

Lloyd’s algorithm

$L^1 \leftarrow \{y_1^1, \ldots, y_k^1\}$ (initial seeds)
i \leftarrow 1

while convergence not reached:
 for $j \in \{1, \ldots, k\}$:
 $S_j^i \leftarrow \{x \in X : d(x, y_j^i) \text{ achieves } d(x, L^i)\}$
 for $j \in \{1, \ldots, k\}$:
 $y_j^{i+1} \leftarrow \frac{1}{|S_j^i|} \sum_{x \in S_j^i} x$
i \leftarrow i + 1
The k-means algorithm

Lloyd’s algorithm

\[L^1 \leftarrow \{y^1_1, \ldots, y^1_k\} \text{ (initial seeds)} \]
\[i \leftarrow 1 \]

while convergence not reached:
 for \(j \in \{1, \ldots, k\} \):
 \[S^i_j \leftarrow \{x \in X : d(x, y^i_j) \text{ achieves } d(x, L^i)\} \]
 for \(j \in \{1, \ldots, k\} \):
 \[y^{i+1}_j \leftarrow \frac{1}{|S^i_j|} \sum_{x \in S^i_j} x \]
 \[i \leftarrow i + 1 \]
The k-means algorithm

Lloyd’s algorithm

$L^1 \leftarrow \{y^1_1, \ldots, y^1_k\}$ (initial seeds)
i \leftarrow 1

while convergence not reached:
 for $j \in \{1, \ldots, k\}$:
 $S^i_j \leftarrow \{x \in X : d(x, y^i_j) \text{ achieves } d(x, L^i)\}$
 for $j \in \{1, \ldots, k\}$:
 $y^i+1_j \leftarrow \frac{1}{|S^i_j|} \sum_{x \in S^i_j} x$
 $i \leftarrow i + 1$
The k-means algorithm

Lloyd’s algorithm

\[L^1 \leftarrow \{ y^1_1, \ldots, y^1_k \} \] (initial seeds)
\[i \leftarrow 1 \]

while convergence not reached:
 for \(j \in \{1, \ldots, k\} \):
 \[S^i_j \leftarrow \{ x \in X : d(x, y^i_j) \text{ achieves } d(x, L^i) \} \]
 for \(j \in \{1, \ldots, k\} \):
 \[y^{i+1}_j \leftarrow \frac{1}{|S^i_j|} \sum_{x \in S^i_j} x \]
\[i \leftarrow i + 1 \]
The k-means algorithm

Lloyd’s algorithm

\[L^1 \leftarrow \{y_1^1, \ldots, y_k^1\} \] (initial seeds)
\[i \leftarrow 1 \]
while convergence not reached:
 for \(j \in \{1, \ldots, k\} \):
 \[S_{j}^i \leftarrow \{x \in X : d(x, y_j^i) \text{ achieves } d(x, L^i)\} \]
 for \(j \in \{1, \ldots, k\} \):
 \[y_{j}^{i+1} \leftarrow \frac{1}{|S_{j}^i|} \sum_{x \in S_{j}^i} x \]
 \[i \leftarrow i + 1 \]
The k-means algorithm

Lloyd’s algorithm

$L^1 \leftarrow \{y_1^1, \ldots, y_k^1\}$ (initial seeds)
i \leftarrow 1

while convergence not reached:
 for $j \in \{1, \ldots, k\}$:
 $S^i_j \leftarrow \{x \in X : d(x, y_j^i) \text{ achieves } d(x, L^i)\}$
 for $j \in \{1, \ldots, k\}$:
 $y_{j+1}^i \leftarrow \frac{1}{|S^i_j|} \sum_{x \in S^i_j} x$
 $i \leftarrow i + 1$
The k-means algorithm

Warning:

- Minimum is not necessarily global!
- Speed of convergence not guaranteed.
- **Lack of stability:** output is very sensitive to initial seeds.
Hierarchical clustering algorithms

Goal: Build a hierarchy of clusters (nested family of partitions).
Hierarchical clustering algorithms

Goal: Build a hierarchy of clusters (nested family of partitions).

Agglomerative (bottom-up)

Start with single point cluster and recursively merge the most similar clusters to one parent cluster until reaching a stopping criterion (e.g., max distance or cluster number).
Hierarchical clustering algorithms

Goal: Build a hierarchy of clusters (nested family of partitions).

Agglomerative (bottom-up)
Start with single point cluster and recursively merge the most similar clusters to one parent cluster until reaching a stopping criterion (e.g., max distance or cluster number).

\[\begin{align*}
 p_1 & \quad p_2 \\
 p_3 & \quad p_4 \\
 p_5 & \quad p_6
\end{align*} \]
Hierarchical clustering algorithms

Goal: Build a hierarchy of clusters (nested family of partitions).

Agglomerative (bottom-up)

Start with single point cluster and recursively merge the most similar clusters to one parent cluster until reaching a stopping criterion (e.g., max distance or cluster number).
Hierarchical clustering algorithms

Goal: Build a hierarchy of clusters (nested family of partitions).

Agglomerative (bottom-up)

Start with single point cluster and recursively merge the most similar clusters to one parent cluster until reaching a stopping criterion (e.g., max distance or cluster number).
Hierarchical clustering algorithms

Goal: Build a hierarchy of clusters (nested family of partitions).

Agglomerative (bottom-up)
Start with single point cluster and recursively merge the most similar clusters to one parent cluster until reaching a stopping criterion (e.g., max distance or cluster number).
Hierarchical clustering algorithms

Goal: Build a hierarchy of clusters (nested family of partitions).

Agglomerative (bottom-up)
Start with single point cluster and recursively merge the most similar clusters to one parent cluster until reaching a stopping criterion (e.g., max distance or cluster number).

Dendogram, i.e., a tree such that:
- each leaf node is a singleton,
- each node represents a cluster,
- the root node contains the whole data,
- each internal node has two daughters, corresponding to the clusters that were merged to obtain it.
Hierarchical clustering algorithms

Goal: Build a hierarchy of clusters (nested family of partitions).

Agglomerative (bottom-up)
Start with single point cluster and recursively merge the most similar clusters to one parent cluster until reaching a stopping criterion (e.g., max distance or cluster number).

Dividing (top-down)
Start with a single global cluster and recursively split each cluster until reaching a stopping criterion.
Hierarchical clustering algorithms

Goal: Build a hierarchy of clusters (nested family of partitions).

Agglomerative (bottom-up)
Start with single point cluster and recursively merge the most similar clusters to one parent cluster until reaching a stopping criterion (e.g., max distance or cluster number).

Dividing (top-down)
Start with a single global cluster and recursively split each cluster until reaching a stopping criterion.
Hierarchical clustering algorithms

Goal: Build a hierarchy of clusters (nested family of partitions).

Agglomerative (bottom-up)
Start with single point cluster and recursively merge the most similar clusters to one parent cluster until reaching a stopping criterion (e.g., max distance or cluster number).

Dividing (top-down)
Start with a single global cluster and recursively split each cluster until reaching a stopping criterion.
Hierarchical clustering algorithms

Goal: Build a hierarchy of clusters (nested family of partitions).

Agglomerative (bottom-up)

Start with single point cluster and recursively merge the most similar clusters to one parent cluster until reaching a stopping criterion (e.g., max distance or cluster number).

Dividing (top-down)

Start with a single global cluster and recursively split each cluster until reaching a stopping criterion.
Single linkage clustering

Input: A set $X_n = \{x_1, \ldots, x_n\}$ in a metric space (X, d) (or just a matrix of pairwise dissimilarities $((d_{i,j}))_{i,j}$).

Given two clusters $C, C' \subseteq X_n$ let $d(C, C') = \inf_{x \in C, x' \in C'} d(x, x')$.
Single linkage clustering

Input: A set $X_n = \{x_1, \ldots, x_n\}$ in a metric space (X, d) (or just a matrix of pairwise dissimilarities $((d_{i,j}))_{i,j}$).

Given two clusters $C, C' \subseteq X_n$ let $d(C, C') = \inf_{x \in C, x' \in C'} d(x, x')$.

Agglomerative (bottom-up)

1. Start with a clustering where each x_i is a cluster.

2. At each step, merge the two closest clusters until it remains a single cluster (containing all data points).

Output: the resulting dendrogram.
Single linkage clustering

Input: A set $X_n = \{x_1, \ldots, x_n\}$ in a metric space (X, d) (or just a matrix of pairwise dissimilarities $((d_{i,j}))_{i,j}$).

Given two clusters $C, C' \subseteq X_n$ let $d(C, C') = \inf_{x \in C, x' \in C'} d(x, x')$.

Agglomerative (bottom-up)

1. Start with a clustering where each x_i is a cluster.

2. At each step, merge the two closest clusters until it remains a single cluster (containing all data points).

Output: the resulting dendrogram.
Single linkage clustering

Input: A set $X_n = \{x_1, \ldots, x_n\}$ in a metric space (X, d) (or just a matrix of pairwise dissimilarities $((d_{i,j}))_{i,j}$).

Given two clusters $C, C' \subseteq X_n$ let $d(C, C') = \inf_{x \in C, x' \in C'} d(x, x')$.

Agglomerative (bottom-up)

1. Start with a clustering where each x_i is a cluster.
2. At each step, merge the two closest clusters until it remains a single cluster (containing all data points).

Output: the resulting dendrogram.
Single linkage clustering

Input: A set $X_n = \{x_1, \ldots, x_n\}$ in a metric space (X, d) (or just a matrix of pairwise dissimilarities $((d_{i,j}))_{i,j}$).

Given two clusters $C, C' \subseteq X_n$ let $d(C, C') = \inf_{x \in C, x' \in C'} d(x, x')$.

Agglomerative (bottom-up)

1. Start with a clustering where each x_i is a cluster.
2. At each step, merge the two closest clusters until it remains a single cluster (containing all data points).

Output: the resulting dendrogram.
Single linkage clustering

Input: A set $X_n = \{x_1, \ldots, x_n\}$ in a metric space (X, d) (or just a matrix of pairwise dissimilarities $((d_{i,j}))_{i,j}$).

Given two clusters $C, C' \subseteq X_n$ let $d(C, C') = \inf_{x \in C, x' \in C'} d(x, x')$.

Agglomerative (bottom-up)

1. Start with a clustering where each x_i is a cluster.

2. At each step, merge the two closest clusters until it remains a single cluster (containing all data points).

Output: the resulting dendrogram.
Single linkage clustering

Input: A set $X_n = \{x_1, \ldots, x_n\}$ in a metric space (X, d) (or just a matrix of pairwise dissimilarities $((d_{i,j}))_{i,j}$).

Given two clusters $C, C' \subseteq X_n$ let $d(C, C') = \inf_{x \in C, x' \in C'} d(x, x')$.

Agglomerative (bottom-up)

1. Start with a clustering where each x_i is a cluster.

2. At each step, merge the two closest clusters until it remains a single cluster (containing all data points).

Output: the resulting dendrogram.
Single linkage clustering

Input: A set $X_n = \{x_1, \ldots, x_n\}$ in a metric space (X, d) (or just a matrix of pairwise dissimilarities $((d_{i,j}))_{i,j}$).

Given two clusters $C, C' \subseteq X_n$ let $d(C, C') = \inf_{x \in C, x' \in C'} d(x, x')$.

Agglomerative (bottom-up)

1. Start with a clustering where each x_i is a cluster.

2. At each step, merge the two closest clusters until it remains a single cluster (containing all data points).

Output: the resulting dendrogram.
Input: A set \(X_n = \{x_1, \ldots, x_n\} \) in a metric space \((X, d)\) (or just a matrix of pairwise dissimilarities \((d_{i,j})_{i,j}\)).

Given two clusters \(C, C' \subseteq X_n \) let \(d(C, C') = \inf_{x \in C, x' \in C'} d(x, x') \).

Agglomerative (bottom-up)

1. Start with a clustering where each \(x_i \) is a cluster.
2. At each step, merge the two closest clusters until it remains a single cluster (containing all data points).

Output: the resulting dendrogram.
The (in)stability of dendrograms

\[d_D(x, x') := \text{height of lowest common ancestor of } x, x' \text{ in dendrogram } D. \]

Thm: \(d_{GH}((X, d_{D_X}), (Y, d_{D_Y})) \leq d_{GH}((X, d_X), (Y, d_Y)). \)

ultrametric!
The (in)stability of dendrograms

\[d_D(x, x') := \text{height of lowest common ancestor of } x, x' \text{ in dendrogram } D. \]

Thm: \(d_{GH}((X, d_{DX}), (Y, d_{DY})) \leq d_{GH}((X, d_X), (Y, d_Y)). \) ultrametric!

This is actually not true for complete and average clustering.

The (in)stability of dendrograms

Small perturbations on the input data can induce wide changes in the structure of the output dendrograms. However, the merging times (height of dendrogram nodes) remain stable.
The (in)stability of dendrograms

Small perturbations on the input data can induce wide changes in the structure of the output dendrograms. However, the merging times (height of dendrogram nodes) remain stable.

Moreover, single linkage clustering keeps track of the evolution of the connected components of the distance function to the data (for Euclidean data).
The (in)stability of dendrograms

Small perturbations on the input data can induce wide changes in the structure of the output dendrograms. However, the merging times (height of dendrogram nodes) remain stable.

Moreover, single linkage clustering keeps track of the evolution of the connected components of the distance function to the data (for Euclidean data).

→ 0-dimensional persistent homology provides a stable output!
The (in)stability of dendrograms

However, building a hierarchy based on spatial proximity is still not a great idea when there are outliers, since there is no stability of merging times anymore.

→ 0-dimensional persistent homology provides a stable output!
The (in)stability of dendrograms

However, building a hierarchy based on spatial proximity is still not a great idea when there are outliers, since there is no stability of merging times anymore.

→ 0-dimensional persistent homology provides a stable output!
The (in)stability of dendrograms

However, building a hierarchy based on spatial proximity is still not a great idea when there are outliers, since there is no stability of merging times anymore.

→ 0-dimensional persistent homology provides a stable output!
The (in)stability of dendrograms

However, building a hierarchy based on spatial proximity is still not a great idea when there are outliers, since there is no stability of merging times anymore. Another way to build a hierarchy is with the sublevel sets of a density function. Using density for clustering is at the core of mode-seeking algorithms.

→ 0-dimensional persistent homology provides a stable output!
Mode seeking clustering

In mode seeking, data points are sampled according to some (unknown) probability density, and clusters are given with its basins of attraction.

Two approaches:

- **Iterative**, such as, e.g., Mean Shift.
 [*Mean shift: a robust approach toward feature space analysis*, Comaniciu et al., IEEE Trans. on Pattern Analysis and Machine Intelligence, 2002]

- **Graph-based**, such as, e.g.,
 [*A Graph-Theoretic Approach to Nonparametric Cluster Analysis*, Koontz et al., IEEE Trans. on Computers, 1976].
Mean Shift (2002)
Mean Shift (2002)

1. Pick random guess $x \in X$.
Mean Shift (2002)

1. Pick random guess $x \in X$.

2. Compute

$$M(x) = \frac{\sum_{x_i \in N(x)} K(x,x_i) \cdot x_i}{\sum_{x_i \in N(x)} K(x,x_i)} ,$$

where $N(x)$ is a neighborhood of x, and K is a kernel, e.g., Gaussian kernel

$$K(x,y) = \exp\left(-\frac{\|x-y\|^2}{2\sigma^2}\right).$$
Mean Shift (2002)

1. Pick random guess \(x \in X \).

2. Compute
\[
M(x) = \frac{\sum_{x_i \in N(x)} K(x,x_i) \cdot x_i}{\sum_{x_i \in N(x)} K(x,x_i)},
\]
where \(N(x) \) is a neighborhood of \(x \), and \(K \) is a kernel, e.g., Gaussian kernel
\[
K(x,y) = \exp \left(-\frac{\|x-y\|^2}{2\sigma^2} \right).
\]

3. Update \(x \leftarrow M(x) \).
Mean Shift (2002)

1. Pick random guess $x \in X$.

2. Compute

$$M(x) = \frac{\sum_{x_i \in N(x)} K(x, x_i) \cdot x_i}{\sum_{x_i \in N(x)} K(x, x_i)},$$

where $N(x)$ is a neighborhood of x, and K is a kernel, e.g., Gaussian kernel $K(x, y) = \exp\left(-\frac{\|x-y\|^2}{2\sigma^2}\right)$.

3. Update $x \leftarrow M(x)$.

Do that for many random guesses, postprocess and merge similar centroids, and use the distances to the centroids to decide clusters.
1. Pick a random guess $x \in X$.
2. Compute $M(x) = \sum_{x_i \in N(x)} K(x, x_i) \cdot x_i \sum_{x_i \in N(x)} K(x, x_i)$, where $N(x)$ is a neighborhood of x, and K is a kernel, e.g., Gaussian kernel $K(x, y) = \exp\left(-\frac{\|x-y\|^2}{2\sigma^2}\right)$.
3. Update $x \leftarrow M(x)$.

Do that for many random guesses, postprocess and merge similar centroids, and use the distances to the centroids to decide clusters.
The Koonz, Narendra and Fukunaga algorithm (1976)
The Koonz, Narendra and Fukunaga algorithm (1976)

Density estimation

[Diagram showing density estimation process]
The Koonz, Narendra and Fukunaga algorithm (1976)

Density estimation

Neighborhood graph
The Koonz, Narendra and Fukunaga algorithm (1976)

Density estimation

Discrete approximation of the gradient; for each vertex v, a gradient edge is selected among the edges adjacent to v.

Neighborhood graph
The Koonz, Narendra and Fukunaga algorithm (1976)

The algorithm:

Input: A neighborhood graph G with n vertices (the data points) and an n-dimensional vector \hat{f} (density estimate).

Sort the vertex indices $\{1, 2, \ldots, n\}$ in decreasing order: $\hat{f}(1) \geq \cdots \geq \hat{f}(n)$.

Initialize a union-find data structure U and two lists g, r of length n.

for $i \in \{1, \ldots, n\}$:

- Let N be the set of neighbors of i in G that have indices lower than i.
- if $N = \emptyset$:
 - Create a new entry e in U and attach vertex i to it: U.MakeSet(i)
 - $r[e] \leftarrow i$ ($r[e]$ stores the root vertex associated with the entry e)
- else:
 - $g[i] \leftarrow \text{argmax}\{\hat{f}(j) : j \in N\}$ ($g[i]$ stores the approximate gradient at vertex i)
 - $e_i \leftarrow U$.Find($g[i]$)
 - Attach vertex i to the entry e_i: U.Union(i, e_i)

Output: The collection of entries e in U.

The Koonz, Narendra and Fukunaga algorithm (1976)

Drawbacks:

One has as many clusters as local maxima of the density estimate, which are very sensitive to noise and outliers.
One has as many clusters as local maxima of the density estimate, which are very sensitive to noise and outliers.

The choice of the neighborhood graph (k-nearest neighbors, triangulations, etc) may result in wide changes in the output.
The Koonz, Narendra and Fukunaga algorithm (1976)

Drawbacks:

One has as many clusters as local maxima of the density estimate, which are very sensitive to noise and outliers.

The choice of the neighborhood graph (\(k\)-nearest neighbors, triangulations, etc) may result in wide changes in the output.

Approaches to overcome these issues:
The Koonz, Narendra and Fukunaga algorithm (1976)

Drawbacks:

One has as many clusters as local maxima of the density estimate, which are very sensitive to noise and outliers.

The choice of the neighborhood graph (k-nearest neighbors, triangulations, etc) may result in wide changes in the output.

Approaches to overcome these issues:

One can smooth out the density estimate, but smoothing is usually data-driven and hard to tune.
The Koonz, Narendra and Fukunaga algorithm (1976)

Drawbacks:

One has as many clusters as local maxima of the density estimate, which are very sensitive to noise and outliers.

The choice of the neighborhood graph (\(k\)-nearest neighbors, triangulations, etc) may result in wide changes in the output.

Approaches to overcome these issues:

One can smooth out the density estimate, but smoothing is usually data-driven and hard to tune.

Build a hierarchy of clusters with **0-dimensional persistent homology**!
Topological Machine Learning (II): Guiding ML models

1. Hierarchical and Mode Seeking Clustering
2. Topology-based Clustering
3. Topology-based Optimization
Reminder: 0-dimensional PH of density

Given a probability density f, we will consider the superlevel-set filtration $f^{-1}([t, +\infty))$ for t from $+\infty$ to $-\infty$, instead of the sublevel-set filtration.
Reminder: 0-dimensional PH of density

Given a probability density f, we will consider the superlevel-set filtration $f^{-1}([t, +\infty))$ for t from $+\infty$ to $-\infty$, instead of the sublevel-set filtration.
Reminder: 0-dimensional PH of density

Given a probability density f, we will consider the superlevel-set filtration $f^{-1}([t, +\infty))$ for t from $+\infty$ to $-\infty$, instead of the sublevel-set filtration.
Given a probability density f, we will consider the superlevel-set filtration $f^{-1}([t, +\infty))$ for t from $+\infty$ to $-\infty$, instead of the sublevel-set filtration.
Given a probability density f, we will consider the superlevel-set filtration $f^{-1}([t, +\infty))$ for t from $+\infty$ to $-\infty$, instead of the sublevel-set filtration.
Reminder: 0-dimensional PH of density

Given a probability density \(f \), we will consider the superlevel-set filtration \(f^{-1}([t, +\infty)) \) for \(t \) from \(+\infty \) to \(-\infty \), instead of the sublevel-set filtration.
Given a probability density f, we will consider the superlevel-set filtration $f^{-1}([t, +\infty))$ for t from $+\infty$ to $-\infty$, instead of the sublevel-set filtration.
Reminder: 0-dimensional PH of density

Given a probability density f, we will consider the superlevel-set filtration $f^{-1}([t, +\infty))$ for t from $+\infty$ to $-\infty$, instead of the sublevel-set filtration.
Given a probability density f, we will consider the superlevel-set filtration $f^{-1}([t, +\infty))$ for t from $+\infty$ to $-\infty$, instead of the sublevel-set filtration.
Moreover, the stability theorem ensures that, given an underlying true density f, and an estimator \hat{f} of it, one has:

$$d_b(D_f, D_{\hat{f}}) \leq \|f - \hat{f}\|_{\infty}.$$
Building a hierarchy of cluster with 0-dimensional PH

In addition to being stable, 0-dimensional PH also remembers the connected components that were merged together during the filtration process and builds a hierarchy out of this information.
Building a hierarchy of clusters with 0-dimensional PH

In addition to being stable, 0-dimensional PH also remembers the connected components that were merged together during the filtration process and builds a hierarchy out of this information.

This means that, given a fixed threshold $\tau \geq 0$, one can even retrieve the clusters associated to all the bars of length (or prominence) $> \tau$!

$$0 \leq \tau \leq \alpha - \beta$$
Building a hierarchy of cluster with 0-dimensional PH

In addition to being stable, 0-dimensional PH also remembers the connected components that were merged together during the filtration process and builds a hierarchy out of this information.

This means that, given a fixed threshold $\tau \geq 0$, one can even retrieve the clusters associated to all the bars of length (or prominence) $> \tau$!

$$\alpha - \beta < \tau \leq \gamma - \delta$$
In addition to being stable, 0-dimensional PH also remembers the connected components that were merged together during the filtration process and builds a hierarchy out of this information.

This means that, given a fixed threshold $\tau \geq 0$, one can even retrieve the clusters associated to all the bars of length (or prominence) $> \tau$!

\[\gamma - \delta < \tau \leq +\infty \]
1. Define an order on the point cloud with a density estimator \(\hat{f} \).

(sort data points by \textbf{decreasing} estimated density values)
ToMATo: Topological Mode Analysis Tool

1. Define an order on the point cloud with a density estimator \hat{f}.
 (sort data points by decreasing estimated density values)

2. Extend order to the graph edges (i.e., compute the upper-star filtration).
 $(\hat{f}([u, v]) = \min\{\hat{f}(u), \hat{f}(v)\})$
ToMATo: Topological Mode Analysis Tool

1. Define an order on the point cloud with a density estimator \hat{f}.
 (sort data points by decreasing estimated density values)

2. Extend order to the graph edges (i.e., compute the upper-star filtration).
 ($\hat{f}([u, v]) = \min\{\hat{f}(u), \hat{f}(v)\}$)

3. Compute the 0-dimensional persistence diagram of this filtration.
 (apply 0-dimensional persistence algorithm → union-find data structure)
ToMATo: Topological Mode Analysis Tool

Given a neighborhood graph with \(n \) vertices and \(m \) edges:

1. the algorithm sorts the vertices by decreasing density values,

2. and then makes a single pass through the vertex set, merging clusters on the fly using a union-find data structure.

\[
\rightarrow \text{Running time: } O(n \log n + (n + m)\alpha(n))
\]
\[
\rightarrow \text{Space complexity: } O(n + m)
\]
\[
\rightarrow \text{Main memory usage: } O(n)
\]
Estimating the correct number of clusters

1. Define an order on the point cloud with a density estimator \hat{f}.
 (sort data points by decreasing estimated density values)

2. Extend order to the graph edges (i.e., compute the upper-star filtration).
 $(\hat{f}([u, v]) = \min\{\hat{f}(u), \hat{f}(v)\})$

3. Compute the 0-dimensional persistence diagram of this filtration.
 (apply 0-dimensional persistence algorithm → union-find data structure)
Estimating the correct number of clusters

1. Define an order on the point cloud with a density estimator \(\hat{f} \).
 (sort data points by \textbf{decreasing} estimated density values)

2. Extend order to the graph edges (i.e., compute the \textit{upper-star filtration}).
 \(\hat{f}([u, v]) = \min\{\hat{f}(u), \hat{f}(v)\} \)

3. Compute the 0-dimensional persistence diagram of this filtration.
 (apply 0-dimensional persistence algorithm \(\rightarrow \) union-find data structure)
Estimating the correct number of clusters

1. Define an order on the point cloud with a density estimator \hat{f}.
 (sort data points by decreasing estimated density values)

2. Extend order to the graph edges (i.e., compute the upper-star filtration).
 \[
 \hat{f}([u,v]) = \min\{\hat{f}(u), \hat{f}(v)\}
 \]

3. Compute the 0-dimensional persistence diagram of this filtration.
 (apply 0-dimensional persistence algorithm → union-find data structure)
Estimating the correct number of clusters

1. Define an order on the point cloud with a density estimator \hat{f}.
 (sort data points by decreasing estimated density values)

2. Extend order to the graph edges (i.e., compute the upper-star filtration).
 ($\hat{f}([u,v]) = \min\{\hat{f}(u), \hat{f}(v)\}$)

3. Compute the 0-dimensional persistence diagram of this filtration.
 (apply 0-dimensional persistence algorithm → union-find data structure)
Estimating the correct number of clusters

1. Define an order on the point cloud with a density estimator \hat{f}.
 (sort data points by decreasing estimated density values)

2. Extend order to the graph edges (i.e., compute the upper-star filtration).
 \[(\hat{f}([u, v]) = \min\{\hat{f}(u), \hat{f}(v)\}) \]

3. Compute the 0-dimensional persistence diagram of this filtration.
 (apply 0-dimensional persistence algorithm \rightarrow union-find data structure)
Estimating the correct number of clusters

Hypotheses:

- \(f : \mathbb{R}^d \rightarrow \mathbb{R} \) a \(c \)-Lipschitz probability density function,
- \(P \subset \mathbb{R}^d \) a finite set of \(n \) points sampled i.i.d. according to \(f \),
- \(\hat{f} : P \rightarrow \mathbb{R} \) a density estimator s.t. \(\eta := \max_{p \in P} |\hat{f}(p) - f(p)| < \frac{\Pi}{5} \),
- \(G = (P, E) \) the \(\delta \)-neighborhood graph for some positive \(\delta < \frac{\Pi - 5\eta}{5c} \).

Note: \(\Pi \) is the prominence of the least prominent peak of \(f \).
Estimating the correct number of clusters

Hypotheses:

- $f : \mathbb{R}^d \to \mathbb{R}$ a c-Lipschitz probability density function,
- $P \subset \mathbb{R}^d$ a finite set of n points sampled i.i.d. according to f,
- $\hat{f} : P \to \mathbb{R}$ a density estimator s.t. $\eta := \max_{p \in P} |\hat{f}(p) - f(p)| < \Pi/5$,
- $G = (P, E)$ the δ-neighborhood graph for some positive $\delta < \frac{\Pi - 5\eta}{5c}$.

Note: Π is the prominence of the least prominent peak of f

Thm: For any choice of τ such that $2(c\delta + \eta) < \tau < \Pi - 3(c\delta + \eta)$, the number of clusters computed by the algorithm is equal to the number of peaks of f with probability at least $1 - e^{-\Omega(n)}$. *(the Ω notation hides factors depending on c, δ)*

Proof: Skipped. The main ingredient is the stability theorem.
Thm: For any choice of τ such that $2(c\delta + \eta) < \tau < \Pi - 3(c\delta + \eta)$, the number of clusters computed by the algorithm is equal to the number of peaks of f with probability at least $1 - e^{-\Omega(n)}$. (the Ω notation hides factors depending on c, δ)

Proof: Skipped. The main ingredient is the stability theorem.
Pseudo-code

Input: A graph G with n vertices, an n-dimensional vector \hat{f}, and $\tau \geq 0$.

Sort the vertex indices $\{1, 2, \ldots, n\}$ in decreasing order: $\hat{f}(1) \geq \cdots \geq \hat{f}(n)$.

Initialize a union-find data structure \mathcal{U} and two lists g, r of length n.

for $i \in \{1, \ldots, n\}$:

Let \mathcal{N} be the set of neighbors of i in G that have indices lower than i

if $\mathcal{N} = \emptyset$:

Create a new entry e in \mathcal{U} and attach vertex i to it: $\mathcal{U}.\text{MakeSet}(i)$

$r[e] \leftarrow i$ (*$r[e]$ stores the root vertex associated with the entry e*)

else:

$g[i] \leftarrow \text{argmax}\{\hat{f}(j) : j \in \mathcal{N}\}$ (*$g[i]$ stores the approximate gradient at vertex i*)

$e_i \leftarrow \mathcal{U}.\text{Find}(g[i])$

Attach vertex i to the entry e_i: $\mathcal{U}.\text{Union}(i, e_i)$

for $j \in \mathcal{N}$:

$e \leftarrow \mathcal{U}.\text{Find}(j)$

if $e \neq e_i$ and $\min\{\hat{f}(r[e]), \hat{f}(r[e_i])\} < \hat{f}(i) + \tau$:

$\mathcal{U}.\text{Union}(e, e_i)$

$r[e \cup e_i] \leftarrow \text{argmax}\{\hat{f}(r[e]), \hat{f}(r[e_i])\}$

$e_i \leftarrow e \cup e_i$

Output: the collection of entries e of \mathcal{U} such that $\hat{f}(r(e)) \geq \tau$.

cluster merges with persistence
Experimental results

Synthetic Data

Spectral clustering (k-means in eigenspace)
Experimental results

Synthetic Data

\(\tau = 0 \)

ToMATo
Experimental results

Synthetic Data

ToMATo
Experimental results

Synthetic Data
Experimental results

Biological Data

Alanine-Dipeptide conformations (\mathbb{R}^{21}) with RMSD distance (non-Euclidean).

Common belief: 6 metastable states.
PD shows anywhere between 4 and 7 clusters.
Experimental results

Biological Data

Alanine-Dipeptide conformations (\(\mathbb{R}^{21}\)) with RMSD distance (non-Euclidean).

<table>
<thead>
<tr>
<th>Rank</th>
<th>Prominence</th>
<th>Metastability</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+(\infty)</td>
<td>0.99982</td>
</tr>
<tr>
<td>2</td>
<td>3827</td>
<td>1.91865</td>
</tr>
<tr>
<td>3</td>
<td>1334</td>
<td>2.8813</td>
</tr>
<tr>
<td>4</td>
<td>557</td>
<td>3.76217</td>
</tr>
<tr>
<td>5</td>
<td>85</td>
<td>4.73838</td>
</tr>
<tr>
<td>6</td>
<td>32</td>
<td>5.65553</td>
</tr>
<tr>
<td>7</td>
<td>26</td>
<td>6.50757</td>
</tr>
<tr>
<td>8</td>
<td>7.2</td>
<td>6.8193</td>
</tr>
<tr>
<td>9</td>
<td>3.0</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>2.2</td>
<td>-</td>
</tr>
</tbody>
</table>

Common belief: 6 metastable states.
PD shows anywhere between 4 and 7 clusters.
Measures of metastability confirm this insight.

Experimental results

Biological Data

Alanine-Dipeptide conformations (\mathbb{R}^{21}) with RMSD distance (non-Euclidean).

Note: Spectral Clustering takes a week of tweaking, while ToMATo runs out-of-the-box in a few minutes.
Experimental results

Image Segmentation

Density is estimated in 3D color space.

Neighborhood graph is built in image domain.

Distribution of prominences does not usually show a clear unique gap.

Still, relationship between choice of \(\tau \) and number of obtained clusters remains explicit.
Application to non-rigid shape segmentation

X: a 3D shape
$f = \text{HKS function on } X$

Persistence diagram for david1 with $f = \text{HKS}(0.1)$

5 prominent peaks/clusters

Application to non-rigid shape segmentation

Problem: cluster boundaries are unstable, which gives dirty segments.
Application to non-rigid shape segmentation

X: a 3D shape

$f = \text{HKS function on } X$

Problem: cluster boundaries are unstable, which gives dirty segments.
Topological Machine Learning (II): Guiding ML models

1. Hierarchical and Mode Seeking Clustering
2. Topology-based Clustering
3. Topology-based Optimization
Persistence diagrams and optimization

- Classifier (RF, SVM, NN etc.)
- Dim. red. (PCA, MDS, UMAP, t-SNE)
- Clustering (DBSCAN, K-means, etc.)

Etc.

Φ,

H,

$Etc.$,

Φ,

What filtration to choose?

What representation to choose? → PersLay
Problem setting

Q: How to define \(\nabla D \)?
Problem setting

Q: How to define ∇D?

Q: Given a parameterized family of functions $\mathcal{F} = \{f_\theta : \theta \in \Theta\}$, how to define $\nabla_{\theta} D_{f_\theta}$?

Q: Given a point cloud $X \subseteq \mathbb{R}^d$, how to define $\nabla_X D_{\text{Rips}}(X)$?
Problem setting

Q: How to define ∇D?

Q: Given a parameterized family of functions $\mathcal{F} = \{f_\theta : \theta \in \Theta\}$, how to define $\nabla_\theta D_{f_\theta}$?

Q: Given a point cloud $X \subseteq \mathbb{R}^d$, how to define $\nabla_X D_{\text{Rips}}(X)$?

Idea: Let’s go back to the PD construction...
Computation with matrix reduction

Input: simplicial filtration

(Persistent) homology can be computed by using the fact that each simplex is either:

- *positive*, i.e., it *creates a new homology class*
- *negative*, i.e., it *destroys an homology class*
Computation with matrix reduction

Input: simplicial filtration

(Persistent) homology can be computed by using the fact that each simplex is either:

- **positive**, i.e., it *creates a new homology class*
- **negative**, i.e., it *destroys an homology class*
Computation with matrix reduction

Input: simplicial filtration

(Persistent) homology can be computed by using the fact that each simplex is either:

- **positive**, i.e., it *creates a new homology class*
- **negative**, i.e., it *destroys an homology class*
Computation with matrix reduction

Input: simplicial filtration

(Persistent) homology can be computed by using the fact that each simplex is either:

- positive, i.e., it *creates a new homology class*
- negative, i.e., it *destroys an homology class*
Computation with matrix reduction

Input: simplicial filtration

(Persistent) homology can be computed by using the fact that each simplex is either:
- **positive**, i.e., it *creates a new homology class*
- **negative**, i.e., it *destroys an homology class*
Computation with matrix reduction

Input: simplicial filtration

(Persistent) homology can be computed by using the fact that each simplex is either:

positive, i.e., it *creates a new homology class*

negative, i.e., it *destroys an homology class*
Computation with matrix reduction

Input: simplicial filtration

(Persistent) homology can be computed by using the fact that each simplex is either:

- **positive**, i.e., it *creates a new homology class*
- **negative**, i.e., it *destroys an homology class*
Computation with matrix reduction

Input: simplicial filtration

(Persistent) homology can be computed by using the fact that each simplex is either:

- **positive**, i.e., it *creates a new homology class*
- **negative**, i.e., it *destroys an homology class*
Computation with matrix reduction

Input: simplicial filtration

Output: boundary matrix
 reduced to column-echelon form

- simplex pairs give finite intervals:
 \[[2, 4), [3, 5), [6, 7) \]

- unpaired simplices give infinite intervals: \([1, +\infty)\)

\[
\begin{array}{ccccccc}
& 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
1 & * & * & & & & & \\
2 & & * & * & & & & \\
3 & & & * & * & & & \\
4 & & & & * & & & \\
5 & & & & & * & & \\
6 & & & & & & * & \\
7 & & & & & & & \\
\end{array}
\]

\[
\begin{array}{ccccccc}
& 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
1 & & & & & * & & & \\
2 & & & & & & & & * \\
3 & & & & & & & & \\
4 & & & & & & & & \\
5 & & & & & & & & \\
6 & & & & & & & & \\
7 & & & & & & & & \\
\end{array}
\]
Computation with matrix reduction

Input: simplicial filtration

Output: boundary matrix

- reduced to column-echelon form

<table>
<thead>
<tr>
<th>simplex pairs give finite intervals:</th>
</tr>
</thead>
<tbody>
<tr>
<td>[2, 4), [3, 5), [6, 7)</td>
</tr>
</tbody>
</table>

- unpaired simplices give infinite intervals: [1, +∞)

A persistence diagram D is made of all $(\mathcal{F}(\sigma_+), \mathcal{F}(\sigma_-)) \in \mathbb{R}^2$ where σ_+ (resp. σ_-) is positive (resp. negative), and \mathcal{F} is the filtration function.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Computation with matrix reduction

Input: simplicial filtration

Output: boundary matrix

reduced to column-echelon form

- simplex pairs give finite intervals:
 \([2, 4), [3, 5), [6, 7)\)
- unpaired simplices give infinite intervals: \([1, +\infty)\)

A persistence diagram \(D\) is made of all \((\mathcal{F}(\sigma_+), \mathcal{F}(\sigma_-))\) \(\in \mathbb{R}^2\) where \(\sigma_+\) (resp. \(\sigma_-\)) is positive (resp. negative), and \(\mathcal{F}\) is the filtration function.

Thus we can define the gradient of a point \(p = (\mathcal{F}(\sigma_+), \mathcal{F}(\sigma_-))\) \(\in D\) as

\[\nabla p = [\nabla \mathcal{F}(\sigma_+), \nabla \mathcal{F}(\sigma_-)]\]
Example: Vietoris-Rips gradient

Q: Define and compute Vietoris-Rips gradient?
Example: Vietoris-Rips gradient

Point cloud \hat{X}_n
Example: Vietoris-Rips gradient

Point cloud \hat{X}_n
Example: Vietoris-Rips gradient
Example: Vietoris-Rips gradient

Point cloud \hat{X}_n
Example: Vietoris-Rips gradient
Example: Vietoris-Rips gradient

Given k-dim. simplex $\sigma = [v_0, \ldots, v_k]$, one has

$$F(\sigma) = \max_{i,j} \|v_i - v_j\|$$
Example: Vietoris-Rips gradient

Given k-dim. simplex $\sigma = [v_0, \ldots, v_k]$, one has

$$ \mathcal{F}(\sigma) = \max_{i,j} \| v_i - v_j \| $$

Let $p = (\mathcal{F}(\sigma_+), \mathcal{F}(\sigma_-)) \in D_{\text{Rips}}(X)$
Example: Vietoris-Rips gradient

Given k-dim. simplex $\sigma = [v_0, \ldots, v_k]$, one has

$$F(\sigma) = \max_{i,j} \|v_i - v_j\|$$

Let $p = (F(\sigma_+), F(\sigma_-)) \in D_{\text{Rips}}(X)$

with $\sigma_+ = \{v_0, \ldots, v_k\}$ and $\sigma_- = \{w_0, \ldots, w_{k+1}\}$
Example: Vietoris-Rips gradient

Let \(p = (\mathcal{F}(\sigma_+), \mathcal{F}(\sigma_-)) \in D_{\text{Rips}}(X) \)

with \(\sigma_+ = \{v_0, \ldots, v_k\} \) and \(\sigma_- = \{w_0, \ldots, w_{k+1}\} \)

\[\nabla_X p = \left[\frac{\partial}{\partial X} \|v_i^* - v_j^*\|, \frac{\partial}{\partial X} \|w_a^* - w_b^*\| \right] \]
Example: Vietoris-Rips gradient

Let $p = (F(\sigma_+), F(\sigma_-)) \in D_{\text{Rips}}(X)$

with $\sigma_+ = \{v_0, \ldots, v_k\}$ and $\sigma_- = \{w_0, \ldots, w_{k+1}\}$

\[
\nabla_X p = \left[\frac{\partial}{\partial X} \|v_i^* - v_j^*\|, \frac{\partial}{\partial X} \|w_a^* - w_b^*\| \right]
\]

\[
\frac{\partial}{\partial v_i^{(d)}} \|v_i^* - v_j^*\| = (-) \frac{1}{\|v_i^* - v_j^*\|} (v_i^{(d)} - v_j^{(d)}) \text{ if } i = i^* (j^*) \text{ and } 0 \text{ otherwise}
\]
Example: Vietoris-Rips gradient

\[\nabla x p = \left[\frac{\partial}{\partial X} \|v_i^* - v_j^*\|, \frac{\partial}{\partial X} \|w_{a^*} - w_{b^*}\| \right] \]

\[\frac{\partial}{\partial v_i^{(d)}} \|v_i^* - v_j^*\| = (-) \frac{1}{\|v_i^* - v_j^*\|} \left(v_i^{(d)} - v_j^{(d)} \right) \text{ if } i = i^* (j^*) \text{ and } 0 \text{ otherwise} \]

With this gradient rule, one can do gradient descent with any function of persistence!
Example: Vietoris-Rips gradient

Let’s say we want to maximize the number of holes in that point cloud.
Example: Vietoris-Rips gradient

Let’s say we want to maximize the number of holes in that point cloud.

We can use gradient descent to minimize loss

$$\mathcal{L}(X) = -\sum_p \|p\|_2^2,$$

with $p \in D_{\text{Rips}}(X)$ (in hom. 1).
Example: Vietoris-Rips gradient

Let’s say we want to maximize the number of holes in that point cloud.

We can use gradient descent to minimize loss

\[\mathcal{L}(X) = -\sum_p \|p\|_2^2, \]

with \(p \in D_{\text{Rips}}(X) \) (in hom. 1).
Example: Vietoris-Rips gradient

Let’s say we want to maximize the number of holes in that point cloud.

We can use gradient descent to minimize loss

\[\mathcal{L}(X) = -\sum_p \|p\|^2_2 + d(X, C), \]

with \(p \in D_{\text{Rips}}(X) \) and \(C \) unit square.
Example: Vietoris-Rips gradient

Let’s say we want to maximize the number of holes in that point cloud.

We can use gradient descent to minimize loss

$$\mathcal{L}(X) = -\sum_{p} \|p\|^2_2 + d(X, C),$$

with $p \in D_{\text{Rips}}(X)$ and C unit square.
Example: Sublevel sets

Given \(k \)-dim. simplex \(\sigma = [v_0, \ldots, v_k] \), one has

\[
\mathcal{F}(\sigma) = \max_i f_\theta(v_i)
\]
Example: Sublevel sets

Given k-dim. simplex $\sigma = [v_0, \ldots, v_k]$, one has

$$F(\sigma) = \max_i f_\theta(v_i)$$

$$\nabla_\theta p = \left[\frac{\partial}{\partial \theta} f_\theta(v_i^*), \frac{\partial}{\partial \theta} f_\theta(w_\alpha^*) \right]$$
Example: Sublevel sets

Given k-dim. simplex $\sigma = [v_0, \ldots, v_k]$, one has

$$F(\sigma) = \max_i f_\theta(v_i)$$

$$\nabla_\theta p = \left[\frac{\partial}{\partial \theta} f_\theta(v_{i^*}), \frac{\partial}{\partial \theta} f_\theta(w_{a^*}) \right]$$

Let’s say we want to remove the stains in that image.
Example: Sublevel sets

Given k-dim. simplex $\sigma = [v_0, \ldots, v_k]$, one has

$$F(\sigma) = \max_i f_\theta(v_i)$$

$$\nabla_\theta p = [\frac{\partial}{\partial \theta} f_\theta(v_{i^*}), \frac{\partial}{\partial \theta} f_\theta(w_{\alpha^*})]$$

Let’s say we want to remove the stains in that image.

We can use gradient descent to minimize loss

$$L(X) = \sum_p \|p\|_2^2,$$

with $p \in D_{\text{Pixel}}(I)$ (in hom. 0).
Example: Sublevel sets

Given \(k \)-dim. simplex \(\sigma = [v_0, \ldots, v_k] \), one has

\[
\mathcal{F}(\sigma) = \max_i f_\theta(v_i)
\]

\[
\nabla_\theta p = \left[\frac{\partial}{\partial \theta} f_\theta(v_{i^*}), \frac{\partial}{\partial \theta} f_\theta(w_{a^*}) \right]
\]

Let’s say we want to remove the stains in that image.

We can use gradient descent to minimize loss

\[
\mathcal{L}(X) = \sum_p \|p\|_2^2,
\]

with \(p \in D_{\text{Pixel}}(I) \) (in hom. 0).
Example: Sublevel sets

Given k-dim. simplex $\sigma = [v_0, \ldots, v_k]$, one has

$$\mathcal{F}(\sigma) = \max_i f_\theta(v_i)$$

$$\nabla_\theta p = \left[\frac{\partial}{\partial \theta} f_\theta(v_i^*), \frac{\partial}{\partial \theta} f_\theta(w_{a^*}) \right]$$

Let’s say we want to remove the stains in that image.

We can use gradient descent to minimize loss

$$\mathcal{L}(X) = \sum_p \|p\|_2^2 + \sum_{P \in I} \max\{|P|, |1 - P|\},$$

with $p \in D_{\text{Pixel}}(I)$.

![Image at epoch 3000](image.png)
Example: Sublevel sets

Given k-dim. simplex $\sigma = [v_0, \ldots, v_k]$, one has

$$F(\sigma) = \max_i f_\theta(v_i)$$

$$\nabla_\theta p = \left[\frac{\partial}{\partial \theta} f_\theta(v_i^*), \frac{\partial}{\partial \theta} f_\theta(w_{a^*}) \right]$$

Let’s say we want to remove the stains in that image.

We can use gradient descent to minimize loss

$$L(X) = \sum_p \|p\|_2^2 + \sum_{P \in I} \max\{\|P\|, |1 - P|\},$$

with $p \in D_{\text{Pixel}}(I)$.
Topological gradient descent

[Optimizing persistent homology based functions, C., Chazal, Glisse, Ike, Kanna, Umeda, ICML, 2021]
Topological gradient descent

For a fixed ordering of the simplices in a simplicial complex K, the corresponding persistence diagram always has the same number of points: its gradient is well-defined!
Topological gradient descent

For a fixed ordering of the simplices in a simplicial complex K, the corresponding persistence diagram always has the same number of points: its gradient is well-defined!

If the ordering changes, the boundary matrix can have a new reduced form and the persistence diagram can have a new, different number of points.

[Optimizing persistent homology based functions, C., Chazal, Glisse, Ike, Kanna, Umeda, ICML, 2021]
Topological gradient descent

For a fixed ordering of the simplices in a simplicial complex K, the corresponding persistence diagram always has the same number of points: its gradient is well-defined!

If the ordering changes, the boundary matrix can have a new reduced form and the persistence diagram can have a new, different number of points.

Prop: Let K be a simplicial complex and let $\Phi : A \to \mathbb{R}^{|K|}$ a (parameterized) filtration of K. There exists a partition $A = S \sqcup O_1 \sqcup \cdots \sqcup O_k$ s.t. all the restrictions $\Phi : O_i \to \mathbb{R}^{|K|}$ are differentiable.

The O_i’s are the parts of A where the ordering of the simplices of K is preserved, and S is the boundaries of all O_i’s.
Def: The Clarke subdifferential $\partial\mathcal{L}$ of \mathcal{L} is the set:

$$\partial_x\mathcal{L} = \text{conv}\{\lim_{x_i \to x} \nabla \mathcal{L}(x_i) : \mathcal{L} \text{ is diff. at } x_i\},$$

where conv denotes the convex hull.
Topological gradient descent

Let \(\{\alpha_k\}_k, \{\zeta_k\}_k \) s.t.

\[
\alpha_k \geq 0, \sum_k \alpha_k = +\infty \text{ and } \sum_k \alpha_k^2 < +\infty
\]

\(\zeta_k \) random variables s.t. \(E[\zeta_k] = 0 \) and \(E[||\zeta_k||^2] < C \) for some \(C > 0 \)

Thm: As long as \(\mathcal{L} \circ \text{Pers} \circ \Phi \) is locally Lipschitz, the sequence

\[
a_{k+1} = a_k - \alpha_k (g_k + \zeta_k),
\]

where \(g_k \in \partial_{a_k} (\mathcal{L} \circ \text{Pers} \circ \Phi) \), converges to a critical point of \(\mathcal{L} \circ \text{Pers} \circ \Phi \).
Topological stratified gradient descent

Better guarantees can be obtained by smoothing the gradient definition.

Def: The *smoothed topological gradient* of $\text{Pers} \circ \Phi$ is defined as:

$$\tilde{\nabla}_a = \arg\min \{ \|g\| : g \in \text{conv}(S_a) \}$$

where $S_a = \{ \nabla_{a'} : a' \in O_i, O_i \in \mathcal{N}(O_a) \}$, where O_a is the stratum associated to a, and $\mathcal{N}(O_a)$ is the set of strata that are close to O_a.

Intuitively, close strata means that their corresponding orderings are very similar, e.g., they differ by single swaps, or their distance is bounded by $\epsilon > 0$.

Topological stratified gradient descent

Better guarantees can be obtained by smoothing the gradient definition.

Def: The *smoothed topological gradient* of $\text{Pers} \circ \Phi$ is defined as:

$$\tilde{\nabla} a = \arg\min\{\|g\| : g \in \text{conv}(S_a)\}$$

where $S_a = \{\nabla a' : a' \in O_i, O_i \in \mathcal{N}(O_a)\}$, where O_a is the stratum associated to a, and $\mathcal{N}(O_a)$ is the set of strata that are close to O_a.

Intuitively, close strata means that their corresponding orderings are very similar, e.g., they differ by single swaps, or their distance is bounded by $\epsilon > 0$.

Thm: Let $\epsilon > 0$. As long as $L \circ \text{Pers} \circ \Phi$ is Lipschitz, the sequence

$$a_{k+1} = a_k - \epsilon \cdot \tilde{\nabla} a_k / \|\tilde{\nabla} a_k\|,$$

converges in **finitely many** iterations to \tilde{a} s.t. $\exists \tilde{a} : \tilde{\nabla} \tilde{a} = 0$ and $\|\tilde{a} - \tilde{a}\| \leq \epsilon$.

[A gradient sampling algorithm for stratified maps with applications to topological data analysis, Leygonie, C., Lacombe, Oudot, 2021]
Example: filter selection

Assume we have a supervised classification task. The goal is to find a filtration from a family \mathcal{F} such that the corresponding persistence diagrams give the best classification score.
Example: filter selection

Assume we have a supervised classification task. The goal is to find a filtration from a family \mathcal{F} such that the corresponding persistence diagrams give the best classification score.

Ex: images filtered by a direction parameterized by angle.
Example: filter selection

Assume we have a supervised classification task. The goal is to find a filtration from a family \mathcal{F} such that the corresponding persistence diagrams give the best classification score.

Idea: minimize:

$$\mathcal{L}(f) = \sum_l \frac{\sum_{y_i=y_j=l} d_p(D_f(x_i), D_f(x_j))}{\sum_{y_i=l} d_p(D_f(x_i), D_f(x_j))},$$

one can also use Sliced Wasserstein for speedup.
Example: filter selection

Assume we have a supervised classification task. The goal is to find a filtration from a family \(\mathcal{F} \) such that the corresponding persistence diagrams give the best classification score.

Idea: minimize:

\[
\mathcal{L}(f) = \sum_{l} \frac{\sum_{y_i = y_j = l} d_p(D_f(x_i), D_f(x_j))}{\sum_{y_i = l} d_p(D_f(x_i), D_f(x_j))},
\]

one can also use Sliced Wasserstein for speedup.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Baseline</th>
<th>Before</th>
<th>After</th>
<th>Difference</th>
<th>Dataset</th>
<th>Baseline</th>
<th>Before</th>
<th>After</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>vs01</td>
<td>100.0</td>
<td>61.3</td>
<td>99.0</td>
<td>+37.6</td>
<td>vs26</td>
<td>99.7</td>
<td>98.8</td>
<td>98.2</td>
<td>-0.6</td>
</tr>
<tr>
<td>vs02</td>
<td>99.4</td>
<td>98.8</td>
<td>97.2</td>
<td>-1.6</td>
<td>vs28</td>
<td>99.1</td>
<td>96.8</td>
<td>96.8</td>
<td>0.0</td>
</tr>
<tr>
<td>vs06</td>
<td>99.4</td>
<td>87.3</td>
<td>98.2</td>
<td>+10.9</td>
<td>vs29</td>
<td>99.1</td>
<td>91.6</td>
<td>98.6</td>
<td>+7.0</td>
</tr>
<tr>
<td>vs09</td>
<td>99.4</td>
<td>86.8</td>
<td>98.3</td>
<td>+11.5</td>
<td>vs34</td>
<td>99.8</td>
<td>99.4</td>
<td>99.1</td>
<td>-0.3</td>
</tr>
<tr>
<td>vs16</td>
<td>99.7</td>
<td>89.0</td>
<td>97.3</td>
<td>+8.3</td>
<td>vs36</td>
<td>99.7</td>
<td>99.3</td>
<td>99.3</td>
<td>-0.1</td>
</tr>
<tr>
<td>vs19</td>
<td>99.6</td>
<td>84.8</td>
<td>98.0</td>
<td>+13.2</td>
<td>vs37</td>
<td>98.9</td>
<td>94.9</td>
<td>97.5</td>
<td>+2.6</td>
</tr>
<tr>
<td>vs24</td>
<td>99.4</td>
<td>98.7</td>
<td>98.7</td>
<td>0.0</td>
<td>vs57</td>
<td>99.7</td>
<td>90.5</td>
<td>97.2</td>
<td>+6.7</td>
</tr>
<tr>
<td>vs25</td>
<td>99.4</td>
<td>80.6</td>
<td>97.2</td>
<td>+16.6</td>
<td>vs79</td>
<td>99.1</td>
<td>85.3</td>
<td>96.9</td>
<td>+11.5</td>
</tr>
</tbody>
</table>
Application: model regularization

[Topological autoencoders, Moor, Horn, Rieck, Borgwardt, ICML, 2020]

[A Topological Regularizer for Classifiers via Persistent Homology, Chen, Ni, Bai, Wang, AISTATS, 2019]
Take home message

Topological Data Analysis is:

a mathematically grounded framework...

\[H_k = Z_k / B_k \]

...that applies to a wide variety of data sets...

...for a wide variety of tasks.