
Topological Machine Learning (II):
Guiding ML models

1. Hierarchical and Mode Seeking Clustering

2. Topology-based Clustering

3. Topology-based Optimization

Topological Machine Learning (II):
Guiding ML models

1. Hierarchical and Mode Seeking Clustering

2. Topology-based Clustering

3. Topology-based Optimization

General clustering

Def: A partition of data into groups of similar data points. The data points
in each group, or cluster, are similar to each other and dissimilar to the ones
from other clusters.

General clustering

Def: A partition of data into groups of similar data points. The data points
in each group, or cluster, are similar to each other and dissimilar to the ones
from other clusters.

Input: a finite set of observations: point cloud embedded in an Euclidean
space (i.e., with well-defined coordinates) or a more general metric space
(pairwise distance or similarity) matrix.

General clustering

Def: A partition of data into groups of similar data points. The data points
in each group, or cluster, are similar to each other and dissimilar to the ones
from other clusters.

Input: a finite set of observations: point cloud embedded in an Euclidean
space (i.e., with well-defined coordinates) or a more general metric space
(pairwise distance or similarity) matrix.

Goal: partition the data into a relevant family of clusters.

General clustering

Def: A partition of data into groups of similar data points. The data points
in each group, or cluster, are similar to each other and dissimilar to the ones
from other clusters.

A variety of approaches:

• Variational (Bayes priors)

• Spectral (eigenvalues of Laplacian)

• Density-based (KDE, DTM)

• Hierarchical (dendrograms)

• etc...

Not a single or universal notion of cluster.

General clustering

Def: A partition of data into groups of similar data points. The data points
in each group, or cluster, are similar to each other and dissimilar to the ones
from other clusters.

A variety of approaches:

• Variational (Bayes priors)

• Spectral (eigenvalues of Laplacian)

• Density-based (KDE, DTM)

• Hierarchical (dendrograms)

• etc...

Not a single or universal notion of cluster.

We will see a few standard algo-
rithms and how they can be im-
proved with (0-dimensional) per-
sistent homology.

The k-means algorithm

Input: A (large) set of n points X and
an integer k < n.

Goal: Find a set of k points L = {y1, . . . , yk}
that minimizes

E =
n∑
i=1

d(xi, L)2

The k-means algorithm

Input: A (large) set of n points X and
an integer k < n.

Goal: Find a set of k points L = {y1, . . . , yk}
that minimizes

E =
n∑
i=1

d(xi, L)2

This is a NP hard problem!

Lloyd’s algorithm: a very simple local search algorithm.

The k-means algorithm

Lloyd’s algorithm

L1 ← {y1
1 , . . . , y

1
k} (initial seeds)

i← 1
while convergence not reached:

for j ∈ {1, . . . , k}:
Sij ← {x ∈ X : d(x, yij) achieves d(x, Li)}

for j ∈ {1, . . . , k}:
yi+1
j ← 1

|Sij |
∑
x∈Sij

x

i← i+ 1

The k-means algorithm

Lloyd’s algorithm

L1 ← {y1
1 , . . . , y

1
k} (initial seeds)

i← 1
while convergence not reached:

for j ∈ {1, . . . , k}:
Sij ← {x ∈ X : d(x, yij) achieves d(x, Li)}

for j ∈ {1, . . . , k}:
yi+1
j ← 1

|Sij |
∑
x∈Sij

x

i← i+ 1

The k-means algorithm

Lloyd’s algorithm

L1 ← {y1
1 , . . . , y

1
k} (initial seeds)

i← 1
while convergence not reached:

for j ∈ {1, . . . , k}:
Sij ← {x ∈ X : d(x, yij) achieves d(x, Li)}

for j ∈ {1, . . . , k}:
yi+1
j ← 1

|Sij |
∑
x∈Sij

x

i← i+ 1

The k-means algorithm

Lloyd’s algorithm

L1 ← {y1
1 , . . . , y

1
k} (initial seeds)

i← 1
while convergence not reached:

for j ∈ {1, . . . , k}:
Sij ← {x ∈ X : d(x, yij) achieves d(x, Li)}

for j ∈ {1, . . . , k}:
yi+1
j ← 1

|Sij |
∑
x∈Sij

x

i← i+ 1

The k-means algorithm

Lloyd’s algorithm

L1 ← {y1
1 , . . . , y

1
k} (initial seeds)

i← 1
while convergence not reached:

for j ∈ {1, . . . , k}:
Sij ← {x ∈ X : d(x, yij) achieves d(x, Li)}

for j ∈ {1, . . . , k}:
yi+1
j ← 1

|Sij |
∑
x∈Sij

x

i← i+ 1

The k-means algorithm

Lloyd’s algorithm

L1 ← {y1
1 , . . . , y

1
k} (initial seeds)

i← 1
while convergence not reached:

for j ∈ {1, . . . , k}:
Sij ← {x ∈ X : d(x, yij) achieves d(x, Li)}

for j ∈ {1, . . . , k}:
yi+1
j ← 1

|Sij |
∑
x∈Sij

x

i← i+ 1

The k-means algorithm

• Minimum is not necessarily global!

• Speed of convergence not guaranteed.

• Lack of stability: output is very sensitive
to initial seeds.

Warning:

Hierarchical clustering algorithms

Goal: Build a hierarchy of clusters (nested family of partitions).

Hierarchical clustering algorithms

Goal: Build a hierarchy of clusters (nested family of partitions).

Agglomerative (bottom-up)

Start with single point cluster and
recursively merge the most similar
clusters to one parent cluster until
reaching a stopping criterion (e.g.,
max distance or cluster number).

p3

p4 p5

p1

p2

p6

p1 p2 p3 p4 p5 p6

Hierarchical clustering algorithms

Goal: Build a hierarchy of clusters (nested family of partitions).

Agglomerative (bottom-up)

Start with single point cluster and
recursively merge the most similar
clusters to one parent cluster until
reaching a stopping criterion (e.g.,
max distance or cluster number).

p3

p4 p5

p1

p2

p6

p1 p2 p3 p4 p5 p6

Hierarchical clustering algorithms

Goal: Build a hierarchy of clusters (nested family of partitions).

Agglomerative (bottom-up)

Start with single point cluster and
recursively merge the most similar
clusters to one parent cluster until
reaching a stopping criterion (e.g.,
max distance or cluster number).

p3

p4 p5

p1

p2

p6

p1 p2 p3 p4 p5 p6

Hierarchical clustering algorithms

Goal: Build a hierarchy of clusters (nested family of partitions).

Agglomerative (bottom-up)

Start with single point cluster and
recursively merge the most similar
clusters to one parent cluster until
reaching a stopping criterion (e.g.,
max distance or cluster number).

p3

p4 p5

p1

p2

p6

p1 p2 p3 p4 p5 p6

Hierarchical clustering algorithms

Goal: Build a hierarchy of clusters (nested family of partitions).

Agglomerative (bottom-up)

Start with single point cluster and
recursively merge the most similar
clusters to one parent cluster until
reaching a stopping criterion (e.g.,
max distance or cluster number).

p3

p4 p5

p1

p2

p6

p1 p2 p3 p4 p5 p6

Hierarchical clustering algorithms

Goal: Build a hierarchy of clusters (nested family of partitions).

Agglomerative (bottom-up)

Start with single point cluster and
recursively merge the most similar
clusters to one parent cluster until
reaching a stopping criterion (e.g.,
max distance or cluster number).

p3

p4 p5

p1

p2

p6

p1 p2 p3 p4 p5 p6

Dendogram, i.e., a tree such that:
- each leaf node is a singleton,
- each node represents a cluster,
- the root node contains the whole data,
- each internal node has two daughters, cor-
responding to the clusters that were merged
to obtain it.

Hierarchical clustering algorithms

Goal: Build a hierarchy of clusters (nested family of partitions).

Agglomerative (bottom-up)

Start with single point cluster and
recursively merge the most similar
clusters to one parent cluster until
reaching a stopping criterion (e.g.,
max distance or cluster number).

Dividing (top-down)

Start with a single global cluster and
recursively split each cluster until
reaching a stopping criterion.

p3

p4 p5

p1

p2

p6

p1 p2 p3 p4 p5 p6

Hierarchical clustering algorithms

Goal: Build a hierarchy of clusters (nested family of partitions).

Agglomerative (bottom-up)

Start with single point cluster and
recursively merge the most similar
clusters to one parent cluster until
reaching a stopping criterion (e.g.,
max distance or cluster number).

Dividing (top-down)

Start with a single global cluster and
recursively split each cluster until
reaching a stopping criterion.

p3

p4 p5

p1

p2

p6

p1 p2 p3 p4 p5 p6

Hierarchical clustering algorithms

Goal: Build a hierarchy of clusters (nested family of partitions).

Agglomerative (bottom-up)

Start with single point cluster and
recursively merge the most similar
clusters to one parent cluster until
reaching a stopping criterion (e.g.,
max distance or cluster number).

Dividing (top-down)

Start with a single global cluster and
recursively split each cluster until
reaching a stopping criterion.

p3

p4 p5

p1

p2

p6

p1 p2 p3 p4 p5 p6

p1

p2

p6

p3 p4
p5

Hierarchical clustering algorithms

Goal: Build a hierarchy of clusters (nested family of partitions).

Agglomerative (bottom-up)

Start with single point cluster and
recursively merge the most similar
clusters to one parent cluster until
reaching a stopping criterion (e.g.,
max distance or cluster number).

Dividing (top-down)

Start with a single global cluster and
recursively split each cluster until
reaching a stopping criterion.

p3

p4 p5

p1

p2

p6

p1 p2 p3 p4 p5 p6

p1

p2

p6

p3 p4
p5

p6p1
p2 p3 p4

p5

Single linkage clustering

Input: A set Xn = {x1, . . . , xn} in a metric space (X, d) (or just a matrix
of pairwise dissimilarities ((di,j))i,j).

Given two clusters C,C ′ ⊆ Xn let d(C,C ′) = infx∈C,x′∈C′ d(x, x′).

Single linkage clustering

Input: A set Xn = {x1, . . . , xn} in a metric space (X, d) (or just a matrix
of pairwise dissimilarities ((di,j))i,j).

Given two clusters C,C ′ ⊆ Xn let d(C,C ′) = infx∈C,x′∈C′ d(x, x′).

1. Start with a clustering where
each xi is a cluster.

2. At each step, merge the two clos-
est clusters until it remains a single
cluster (containing all data points).

Output: the resulting dendrogram.

Agglomerative (bottom-up)

Single linkage clustering

Input: A set Xn = {x1, . . . , xn} in a metric space (X, d) (or just a matrix
of pairwise dissimilarities ((di,j))i,j).

Given two clusters C,C ′ ⊆ Xn let d(C,C ′) = infx∈C,x′∈C′ d(x, x′).

1. Start with a clustering where
each xi is a cluster.

2. At each step, merge the two clos-
est clusters until it remains a single
cluster (containing all data points).

Output: the resulting dendrogram.

sup: complete linkage
1

|C|·|C′|
∑

: average linkageAgglomerative (bottom-up)

Single linkage clustering

Input: A set Xn = {x1, . . . , xn} in a metric space (X, d) (or just a matrix
of pairwise dissimilarities ((di,j))i,j).

Given two clusters C,C ′ ⊆ Xn let d(C,C ′) = infx∈C,x′∈C′ d(x, x′).

1. Start with a clustering where
each xi is a cluster.

2. At each step, merge the two clos-
est clusters until it remains a single
cluster (containing all data points).

Output: the resulting dendrogram.

Agglomerative (bottom-up)

Single linkage clustering

Input: A set Xn = {x1, . . . , xn} in a metric space (X, d) (or just a matrix
of pairwise dissimilarities ((di,j))i,j).

Given two clusters C,C ′ ⊆ Xn let d(C,C ′) = infx∈C,x′∈C′ d(x, x′).

1. Start with a clustering where
each xi is a cluster.

2. At each step, merge the two clos-
est clusters until it remains a single
cluster (containing all data points).

Output: the resulting dendrogram.

Agglomerative (bottom-up)

Single linkage clustering

Input: A set Xn = {x1, . . . , xn} in a metric space (X, d) (or just a matrix
of pairwise dissimilarities ((di,j))i,j).

Given two clusters C,C ′ ⊆ Xn let d(C,C ′) = infx∈C,x′∈C′ d(x, x′).

1. Start with a clustering where
each xi is a cluster.

2. At each step, merge the two clos-
est clusters until it remains a single
cluster (containing all data points).

Output: the resulting dendrogram.

Agglomerative (bottom-up)

Single linkage clustering

Input: A set Xn = {x1, . . . , xn} in a metric space (X, d) (or just a matrix
of pairwise dissimilarities ((di,j))i,j).

Given two clusters C,C ′ ⊆ Xn let d(C,C ′) = infx∈C,x′∈C′ d(x, x′).

1. Start with a clustering where
each xi is a cluster.

2. At each step, merge the two clos-
est clusters until it remains a single
cluster (containing all data points).

Output: the resulting dendrogram.

Agglomerative (bottom-up)

Single linkage clustering

Input: A set Xn = {x1, . . . , xn} in a metric space (X, d) (or just a matrix
of pairwise dissimilarities ((di,j))i,j).

Given two clusters C,C ′ ⊆ Xn let d(C,C ′) = infx∈C,x′∈C′ d(x, x′).

1. Start with a clustering where
each xi is a cluster.

2. At each step, merge the two clos-
est clusters until it remains a single
cluster (containing all data points).

Output: the resulting dendrogram.

Agglomerative (bottom-up)

Single linkage clustering

Input: A set Xn = {x1, . . . , xn} in a metric space (X, d) (or just a matrix
of pairwise dissimilarities ((di,j))i,j).

Given two clusters C,C ′ ⊆ Xn let d(C,C ′) = infx∈C,x′∈C′ d(x, x′).

1. Start with a clustering where
each xi is a cluster.

2. At each step, merge the two clos-
est clusters until it remains a single
cluster (containing all data points).

Output: the resulting dendrogram.

Agglomerative (bottom-up)

The (in)stability of dendrograms

The (in)stability of dendrograms

The (in)stability of dendrograms

The (in)stability of dendrograms

The (in)stability of dendrograms

The (in)stability of dendrograms

The (in)stability of dendrograms

The (in)stability of dendrograms

dD(x, x′) := height of lowest common ancestor of x, x′ in dendrogram D.

Thm: dGH((X, dDX), (Y, dDY)) ≤ dGH((X, dX), (Y, dY)). ultrametric!

[Characterization, Stability and Convergence
of Hierarchical Clustering Methods, Carlsson,
Mémoli, J. Machine Learning Research, 2010]

The (in)stability of dendrograms

dD(x, x′) := height of lowest common ancestor of x, x′ in dendrogram D.

Thm: dGH((X, dDX), (Y, dDY)) ≤ dGH((X, dX), (Y, dY)).

This is actually not true for complete and average clustering.

ultrametric!

[Characterization, Stability and Convergence
of Hierarchical Clustering Methods, Carlsson,
Mémoli, J. Machine Learning Research, 2010]

The (in)stability of dendrograms

Small perturbations on the input data can induce wide changes in the structure
of the output dendrograms. However, the merging times (height of dendro-
gram nodes) remain stable.

The (in)stability of dendrograms

Small perturbations on the input data can induce wide changes in the structure
of the output dendrograms. However, the merging times (height of dendro-
gram nodes) remain stable.

Moreover, single linkage clustering keeps track of the evolution of the con-
nected components of the distance function to the data (for Euclidean data).

The (in)stability of dendrograms

Small perturbations on the input data can induce wide changes in the structure
of the output dendrograms. However, the merging times (height of dendro-
gram nodes) remain stable.

→ 0-dimensional persistent homology provides a stable output!

Moreover, single linkage clustering keeps track of the evolution of the con-
nected components of the distance function to the data (for Euclidean data).

The (in)stability of dendrograms

→ 0-dimensional persistent homology provides a stable output!

However, building a hierarchy based on spatial proximity is still not a great idea
when there are outliers, since there is no stability of merging times anymore.

The (in)stability of dendrograms

→ 0-dimensional persistent homology provides a stable output!

However, building a hierarchy based on spatial proximity is still not a great idea
when there are outliers, since there is no stability of merging times anymore.

The (in)stability of dendrograms

→ 0-dimensional persistent homology provides a stable output!

However, building a hierarchy based on spatial proximity is still not a great idea
when there are outliers, since there is no stability of merging times anymore.

δδ

The (in)stability of dendrograms

→ 0-dimensional persistent homology provides a stable output!

However, building a hierarchy based on spatial proximity is still not a great idea
when there are outliers, since there is no stability of merging times anymore.

Another way to build a hierarchy is with the sublevel sets of a density function.
Using density for clustering is at the core of mode-seeking algorithms.

δδ

Mode seeking clustering

In mode seeking, data points are sampled according to some (unknown) prob-
ability density, and clusters are given with its basins of attraction.

Two approaches:

• Iterative, such as, e.g., Mean Shift.

• Graph-based, such as, e.g.,

[Mean shift: a robust approach toward feature
space analysis, Comaniciu et al., IEEE Trans. on
Pattern Analysis and Machine Intelligence, 2002]

[A Graph-Theoretic Approach to Nonparametric
Cluster Analysis, Koontz et al., IEEE Trans. on
Computers, 1976].

Mean Shift (2002)

Mean Shift (2002)

1. Pick random guess x ∈ X.

Mean Shift (2002)

1. Pick random guess x ∈ X.

2. Compute
M(x) =

∑
xi∈N(x) K(x,xi)·xi∑
xi∈N(x) K(x,xi)

,

where N(x) is a neighborhood of x, and K is a kernel, e.g., Gaussian kernel

K(x, y) = exp
(
−‖x−y‖

2
2

2σ2

)
.

Mean Shift (2002)

1. Pick random guess x ∈ X.

2. Compute
M(x) =

∑
xi∈N(x) K(x,xi)·xi∑
xi∈N(x) K(x,xi)

,

where N(x) is a neighborhood of x, and K is a kernel, e.g., Gaussian kernel

K(x, y) = exp
(
−‖x−y‖

2
2

2σ2

)
.

3. Update x←M(x).

Mean Shift (2002)

1. Pick random guess x ∈ X.

2. Compute
M(x) =

∑
xi∈N(x) K(x,xi)·xi∑
xi∈N(x) K(x,xi)

,

where N(x) is a neighborhood of x, and K is a kernel, e.g., Gaussian kernel

K(x, y) = exp
(
−‖x−y‖

2
2

2σ2

)
.

3. Update x←M(x).

Do that for many random guesses, postprocess and merge similar centroids,
and use the distances to the centroids to decide clusters.

Mean Shift (2002)

1. Pick random guess x ∈ X.

2. Compute
M(x) =

∑
xi∈N(x) K(x,xi)·xi∑
xi∈N(x) K(x,xi)

,

where N(x) is a neighborhood of x, and K is a kernel, e.g., Gaussian kernel

K(x, y) = exp
(
−‖x−y‖

2
2

2σ2

)
.

3. Update x←M(x).

Do that for many random guesses, postprocess and merge similar centroids,
and use the distances to the centroids to decide clusters.

The Koonz, Narendra and Fukunaga algorithm (1976)

The Koonz, Narendra and Fukunaga algorithm (1976)

Density estimation

The Koonz, Narendra and Fukunaga algorithm (1976)

Density estimation

Neighborhood
graph

The Koonz, Narendra and Fukunaga algorithm (1976)

Density estimation

Neighborhood
graph

Discrete approximation of
the gradient; for each ver-
tex v, a gradient edge is
selected among the edges
adjacent to v.

The Koonz, Narendra and Fukunaga algorithm (1976)

Sort the vertex indices {1, 2, . . . , n} in decreasing order:

for i ∈ {1, . . . , n}:
Let N be the set of neighbors of i in G that have indices lower than i
if N = ∅:

Create a new entry e in U and attach vertex i to it: U .MakeSet(i)
r[e]← i (r[e] stores the root vertex associated with the entry e)

else:
g[i]← argmax{f̂(j) : j ∈ N} (g[i] stores the approximate gradient at vertex i)

ei ← U .Find(g[i])
Attach vertex i to the entry ei: U .Union(i, ei)

Output: The collection of entries e in U .

The algorithm:

Input: A neighborhood graph G with n vertices (the data points) and an

n-dimensional vector f̂ (density estimate).

f̂(1) ≥ · · · ≥ f̂(n).

Initialize a union-find data structure U and two lists g, r of length n.

The Koonz, Narendra and Fukunaga algorithm (1976)

Drawbacks:

One has as many clusters as local maxima of the density estimate, which are
very sensitive to noise and outliers.

The Koonz, Narendra and Fukunaga algorithm (1976)

Drawbacks:

One has as many clusters as local maxima of the density estimate, which are
very sensitive to noise and outliers.

The choice of the neighborhood graph (k-nearest neighbors, triangulations,
etc) may result in wide changes in the output.

The Koonz, Narendra and Fukunaga algorithm (1976)

Drawbacks:

Approaches to overcome these issues:

One has as many clusters as local maxima of the density estimate, which are
very sensitive to noise and outliers.

The choice of the neighborhood graph (k-nearest neighbors, triangulations,
etc) may result in wide changes in the output.

The Koonz, Narendra and Fukunaga algorithm (1976)

Drawbacks:

Approaches to overcome these issues:

One can smooth out the density estimate, but smoothing is usually data-driven
and hard to tune.

One has as many clusters as local maxima of the density estimate, which are
very sensitive to noise and outliers.

The choice of the neighborhood graph (k-nearest neighbors, triangulations,
etc) may result in wide changes in the output.

The Koonz, Narendra and Fukunaga algorithm (1976)

Drawbacks:

Approaches to overcome these issues:

One can smooth out the density estimate, but smoothing is usually data-driven
and hard to tune.

Build a hierarchy of clusters with 0-dimensional persistent homology!

One has as many clusters as local maxima of the density estimate, which are
very sensitive to noise and outliers.

The choice of the neighborhood graph (k-nearest neighbors, triangulations,
etc) may result in wide changes in the output.

Topological Machine Learning (II):
Guiding ML models

1. Hierarchical and Mode Seeking Clustering

2. Topology-based Clustering

3. Topology-based Optimization

Rd

R
t

Given a probability density f , we will consider the superlevel-set filtration
f−1([t,+∞)) for t from +∞ to −∞, instead of the sublevel-set filtration.

Reminder: 0-dimensional PH of density

Rd

R

Given a probability density f , we will consider the superlevel-set filtration
f−1([t,+∞)) for t from +∞ to −∞, instead of the sublevel-set filtration.

Reminder: 0-dimensional PH of density

Rd

R

Given a probability density f , we will consider the superlevel-set filtration
f−1([t,+∞)) for t from +∞ to −∞, instead of the sublevel-set filtration.

Reminder: 0-dimensional PH of density

Rd

R

Given a probability density f , we will consider the superlevel-set filtration
f−1([t,+∞)) for t from +∞ to −∞, instead of the sublevel-set filtration.

Reminder: 0-dimensional PH of density

Rd

R

Given a probability density f , we will consider the superlevel-set filtration
f−1([t,+∞)) for t from +∞ to −∞, instead of the sublevel-set filtration.

Reminder: 0-dimensional PH of density

Rd

R

Given a probability density f , we will consider the superlevel-set filtration
f−1([t,+∞)) for t from +∞ to −∞, instead of the sublevel-set filtration.

Reminder: 0-dimensional PH of density

Rd

R

Given a probability density f , we will consider the superlevel-set filtration
f−1([t,+∞)) for t from +∞ to −∞, instead of the sublevel-set filtration.

Reminder: 0-dimensional PH of density

Rd

R

Given a probability density f , we will consider the superlevel-set filtration
f−1([t,+∞)) for t from +∞ to −∞, instead of the sublevel-set filtration.

Reminder: 0-dimensional PH of density

Rd

R

α

β

Given a probability density f , we will consider the superlevel-set filtration
f−1([t,+∞)) for t from +∞ to −∞, instead of the sublevel-set filtration.

α

β

−∞ +∞

+∞

Reminder: 0-dimensional PH of density

Rd

R

−∞ +∞

+∞

db(Df , Df̂) ≤ ‖f − f̂‖∞.

Moreover, the stability theorem ensures that, given an underlying true density
f , and an estimator f̂ ot it, one has:

Reminder: 0-dimensional PH of density

X

R p

q

s

α

β

γ

δ

In addition to being stable, 0-dimensional PH also remembers the connected
components that were merged together during the filtration process and builds
a hierarchy out of this information.

Building a hierarchy of cluster with 0-dimensional PH

X

R p

q

s

α

β

γ

δ

In addition to being stable, 0-dimensional PH also remembers the connected
components that were merged together during the filtration process and builds
a hierarchy out of this information.

This means that, given a fixed threshold τ ≥ 0, one can even retrieve the
clusters associated to all the bars of length (or prominence) > τ !

0 ≤ τ ≤ α− β

Building a hierarchy of cluster with 0-dimensional PH

X

R

α

β

γ

δ

In addition to being stable, 0-dimensional PH also remembers the connected
components that were merged together during the filtration process and builds
a hierarchy out of this information.

This means that, given a fixed threshold τ ≥ 0, one can even retrieve the
clusters associated to all the bars of length (or prominence) > τ !

α− β < τ ≤ γ − δ

p

q

s

Building a hierarchy of cluster with 0-dimensional PH

X

R

α

β

γ

δ

In addition to being stable, 0-dimensional PH also remembers the connected
components that were merged together during the filtration process and builds
a hierarchy out of this information.

This means that, given a fixed threshold τ ≥ 0, one can even retrieve the
clusters associated to all the bars of length (or prominence) > τ !

γ − δ < τ ≤ +∞

p

q

s

Building a hierarchy of cluster with 0-dimensional PH

ToMATo: Topological Mode Analysis Tool
[Persistence-Based Clustering
in Riemannian Manifolds,
Chazal, Oudot, Skraba,
Guibas, J. ACM, 2013]

1. Define an order on the point cloud with a density estimator f̂ .

(sort data points by decreasing estimated density values)

ToMATo: Topological Mode Analysis Tool
[Persistence-Based Clustering
in Riemannian Manifolds,
Chazal, Oudot, Skraba,
Guibas, J. ACM, 2013]

1. Define an order on the point cloud with a density estimator f̂ .

(sort data points by decreasing estimated density values)

2. Extend order to the graph edges (i.e., compute the upper-star filtration).

(f̂([u, v]) = min{f̂(u), f̂(v)})

ToMATo: Topological Mode Analysis Tool
[Persistence-Based Clustering
in Riemannian Manifolds,
Chazal, Oudot, Skraba,
Guibas, J. ACM, 2013]

1. Define an order on the point cloud with a density estimator f̂ .

(sort data points by decreasing estimated density values)

2. Extend order to the graph edges (i.e., compute the upper-star filtration).

(f̂([u, v]) = min{f̂(u), f̂(v)})

3. Compute the 0-dimensional persistence diagram of this filtration.

(apply 0-dimensional persistence algorithm → union-find data structure)

ToMATo: Topological Mode Analysis Tool
[Persistence-Based Clustering
in Riemannian Manifolds,
Chazal, Oudot, Skraba,
Guibas, J. ACM, 2013]

→ Running time: O(n log n+ (n+m)α(n))

Given a neighborhood graph with n vertices and m edges:

→ Space complexity: O(n+m)

→ Main memory usage: O(n)

1. the algorithm sorts the vertices by decreasing density values,

2. and then makes a single pass through the vertex set, merging clusters
on the fly using a union-find data structure.

1. Define an order on the point cloud with a density estimator f̂ .

(sort data points by decreasing estimated density values)

2. Extend order to the graph edges (i.e., compute the upper-star filtration).

(f̂([u, v]) = min{f̂(u), f̂(v)})

3. Compute the 0-dimensional persistence diagram of this filtration.

(apply 0-dimensional persistence algorithm → union-find data structure)

Estimating the correct number of clusters

topological

noise

1. Define an order on the point cloud with a density estimator f̂ .

(sort data points by decreasing estimated density values)

2. Extend order to the graph edges (i.e., compute the upper-star filtration).

(f̂([u, v]) = min{f̂(u), f̂(v)})

3. Compute the 0-dimensional persistence diagram of this filtration.

(apply 0-dimensional persistence algorithm → union-find data structure)

Estimating the correct number of clusters

background noise

1. Define an order on the point cloud with a density estimator f̂ .

(sort data points by decreasing estimated density values)

2. Extend order to the graph edges (i.e., compute the upper-star filtration).

(f̂([u, v]) = min{f̂(u), f̂(v)})

3. Compute the 0-dimensional persistence diagram of this filtration.

(apply 0-dimensional persistence algorithm → union-find data structure)

Estimating the correct number of clusters

6 prominent
peaks

1. Define an order on the point cloud with a density estimator f̂ .

(sort data points by decreasing estimated density values)

2. Extend order to the graph edges (i.e., compute the upper-star filtration).

(f̂([u, v]) = min{f̂(u), f̂(v)})

3. Compute the 0-dimensional persistence diagram of this filtration.

(apply 0-dimensional persistence algorithm → union-find data structure)

Estimating the correct number of clusters

Any prominence threshold τ within the range of the prominence gap will separate the relevant peaks from the topological and background noise.τ

pr
om

in
en

ce
ga

p

1. Define an order on the point cloud with a density estimator f̂ .

(sort data points by decreasing estimated density values)

2. Extend order to the graph edges (i.e., compute the upper-star filtration).

(f̂([u, v]) = min{f̂(u), f̂(v)})

3. Compute the 0-dimensional persistence diagram of this filtration.

(apply 0-dimensional persistence algorithm → union-find data structure)

Estimating the correct number of clusters

Hypotheses:

• f : Rd → R a c-Lipschitz probability density function,

• P ⊂ Rd a finite set of n points sampled i.i.d. according to f ,

Note: Π is the prominence of the least prominent peak of f

• f̂ : P → R a density estimator s.t. η := maxp∈P |f̂(p)− f(p)| < Π/5,

• G = (P,E) the δ-neighborhood graph for some positive δ < Π−5η
5c .

Estimating the correct number of clusters

Hypotheses:

• f : Rd → R a c-Lipschitz probability density function,

• P ⊂ Rd a finite set of n points sampled i.i.d. according to f ,

Note: Π is the prominence of the least prominent peak of f

• f̂ : P → R a density estimator s.t. η := maxp∈P |f̂(p)− f(p)| < Π/5,

• G = (P,E) the δ-neighborhood graph for some positive δ < Π−5η
5c .

Thm: For any choice of τ such that 2(cδ + η) < τ < Π − 3(cδ + η), the
number of clusters computed by the algorithm is equal to the number of peaks
of f with probability at least 1− e−Ω(n). (the Ω notation hides factors depending on c, δ)

Estimating the correct number of clusters

Proof: Skipped. The main ingredient is the stability theorem.

Thm: For any choice of τ such that 2(cδ + η) < τ < Π − 3(cδ + η), the
number of clusters computed by the algorithm is equal to the number of peaks
of f with probability at least 1− e−Ω(n). (the Ω notation hides factors depending on c, δ)

-∞0
0 Π

Π

Df

Estimating the correct number of clusters

2(cδ + η)

Df̂

Π− 3(cδ + η)

2(cδ + η)

Π− 3(cδ + η)

-∞0

Proof: Skipped. The main ingredient is the stability theorem.

Input: A graph G with n vertices, an n-dimensional vector f̂ , and τ ≥ 0.

Output: the collection of entries e of U such that f̂(r(e)) ≥ τ .

with persistence

cluster merges

Pseudo-code

Sort the vertex indices {1, 2, . . . , n} in decreasing order:

Initialize a union-find data structure U and two lists g, r of length n.

f̂(1) ≥ · · · ≥ f̂(n).

for i ∈ {1, . . . , n}:
Let N be the set of neighbors of i in G that have indices lower than i
if N = ∅:

Create a new entry e in U and attach vertex i to it: U .MakeSet(i)
r[e]← i (r[e] stores the root vertex associated with the entry e)

else:
g[i]← argmax{f̂(j) : j ∈ N} (g[i] stores the approximate gradient at vertex i)

ei ← U .Find(g[i])
Attach vertex i to the entry ei: U .Union(i, ei)
for j ∈ N :

e← U .Find(j)
if e 6= ei and min{f̂(r[e]), f̂(r[ei])} < f̂(i) + τ :
U .Union(e, ei)
r[e ∪ ei]← argmax{f̂(r[e]), f̂(r[ei])}
ei ← e ∪ ei

Synthetic Data

1 2 3 4 5 6 7 8 9 10
0.98

0.982

0.984

0.986

0.988

0.99

0.992

0.994

0.996

0.998

1
Spectral clustering

(k-means in eigenspace)

Experimental results

Synthetic Data

−∞

τ = 0

ToMATo

Experimental results

Synthetic Data

τ
−∞

ToMATo

Experimental results

Synthetic Data

Experimental results

It is known that the energy of a conformation depends mainly on two specific bound angles, so the data can be projected down almost isometrically into the 2-d flat torus (Ramachandran plot), which we only use for visualization purposes.

Note: the PD is plotted on a log/log scale, to avoid scaling effects. So actual differences in prominence are orders of magnitude, as the next view shows.

Biological Data

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

-∞

Alanine-Dipeptide conformations (R21)

with RMSD distance (non-Euclidean).

Common belief: 6 metastable states.

PD shows anywhere between 4 and 7 clusters.

Experimental results

It is known that the energy of a conformation depends mainly on two specific bound angles, so the data can be projected down almost isometrically into the 2-d flat torus (Ramachandran plot), which we only use for visualization purposes.

Biological Data

Alanine-Dipeptide conformations (R21)

with RMSD distance (non-Euclidean).

Common belief: 6 metastable states.

PD shows anywhere between 4 and 7 clusters.
1 2 3 4 5 6 7 80

1

2

3

4

5

6

7

Number of clusters

M
et
as
ta
bi
lit
y

MetastabilityRank Prominence

1 +∞ 0.99982
2 3827 1.91865
3 1334 2.8813
4 557 3.76217
5 85 4.73838
6 32 5.65553
7 26 6.50757
8 7.2 6.8193
9 3.0 -

10 2.2 -

Measures of metastability confirm this insight.

Experimental results [Topological methods for exploring low-density states in biomolecular fold-
ing pathways, Yao, Sun, Huang, Bowman, Singh, Lesnick, Guibas, Pande,
Carlsson, J. Chem. Phys., 2009]

For reference on the sdata set and spectral approach, please refer to the following paper

It is known that the energy of a conformation depends mainly on two specific bound angles, so the data can be projected down almost isometrically into the 2-d flat torus (Ramachandran plot), which we only use for visualization purposes.

Biological Data

Alanine-Dipeptide conformations (R21)

with RMSD distance (non-Euclidean).

[Topological methods for exploring low-density states in biomolecular fold-
ing pathways, Yao, Sun, Huang, Bowman, Singh, Lesnick, Guibas, Pande,
Carlsson, J. Chem. Phys., 2009]

Note: Spectral Clustering takes a week
of tweaking, while ToMATo runs out-
of-the-box in a few minutes.

Experimental results

Image Segmentation

Density is estimated in 3D color space.

Neighborhood graph is built in image domain.

Distribution of prominences does not usually
show a clear unique gap.

Still, relationship between choice of τ and
number of obtained clusters remains explicit.

Experimental results

Application to non-rigid shape segmentation

X : a 3D shape
f = HKS function on X

5 prominent
peaks/clusters

[Persistence-Based Segmentation of Deformable Shapes,
Skraba, Ovsjanikov, Chazal, Guibas, Proc. CVPR 2010]

Application to non-rigid shape segmentation

X : a 3D shape
f = HKS function on X

5 prominent
peaks/clusters

Problem: cluster boundaries are unstable, which gives dirty segments.

[Persistence-Based Segmentation of Deformable Shapes,
Skraba, Ovsjanikov, Chazal, Guibas, Proc. CVPR 2010]

Application to non-rigid shape segmentation

X : a 3D shape
f = HKS function on X

5 prominent
peaks/clusters

Problem: cluster boundaries are unstable, which gives dirty segments.

[Persistence-Based Segmentation of Deformable Shapes,
Skraba, Ovsjanikov, Chazal, Guibas, Proc. CVPR 2010]

Topological Machine Learning (II):
Guiding ML models

1. Hierarchical and Mode Seeking Clustering

2. Topology-based Clustering

3. Topology-based Optimization

Persistence diagrams and optimization

persistence

∞

⊆ ⊆
Persistence diagram

H

Φk(·, ·) := 〈Φ(·),Φ(·)〉H

Etc.

• Classifier (RF, SVM, NN etc.)

• Dim. red. (PCA, MDS, UMAP, t-SNE)

• Clustering (DBSCAN, K-means, etc.)

What filtration to choose?

What representation to choose? → PersLay

Q: How to define ∇D?

Problem setting

Q: How to define ∇D?

Q: Given a parameterized family of functions F = {fθ : θ ∈ Θ}, how to
define ∇θDfθ?

Q: Given a point cloud X ⊆ Rd, how to define ∇XDRips(X)?

Problem setting

Q: How to define ∇D?

Q: Given a parameterized family of functions F = {fθ : θ ∈ Θ}, how to
define ∇θDfθ?

Q: Given a point cloud X ⊆ Rd, how to define ∇XDRips(X)?

Problem setting

Idea: Let’s go back to the PD construction...

1 2

3

4

56
7

simplicial filtrationInput:

Computation with matrix reduction

(Persistent) homology can be computed by us-
ing the fact that each simplex is either:

positive, i.e., it creates a new homology class

negative, i.e., it destroys an homology class

1 2

3

4

56
7

simplicial filtrationInput:

Computation with matrix reduction

1

(Persistent) homology can be computed by us-
ing the fact that each simplex is either:

positive, i.e., it creates a new homology class

negative, i.e., it destroys an homology class

1 2

3

4

56
7

simplicial filtrationInput:

Computation with matrix reduction

1 1 2

(Persistent) homology can be computed by us-
ing the fact that each simplex is either:

positive, i.e., it creates a new homology class

negative, i.e., it destroys an homology class

1 2

3

4

56
7

simplicial filtrationInput:

Computation with matrix reduction

1 1 2 1 2

3

(Persistent) homology can be computed by us-
ing the fact that each simplex is either:

positive, i.e., it creates a new homology class

negative, i.e., it destroys an homology class

1 2

3

4

56
7

simplicial filtrationInput:

Computation with matrix reduction

1 1 2 1 2

3

1 2

3

4

(Persistent) homology can be computed by us-
ing the fact that each simplex is either:

positive, i.e., it creates a new homology class

negative, i.e., it destroys an homology class

1 2

3

4

56
7

simplicial filtrationInput:

Computation with matrix reduction

1 1 2 1 2

3

1 2

3

4
1 2

3

4

5

(Persistent) homology can be computed by us-
ing the fact that each simplex is either:

positive, i.e., it creates a new homology class

negative, i.e., it destroys an homology class

1 2

3

4

56
7

simplicial filtrationInput:

Computation with matrix reduction

1 1 2 1 2

3

1 2

3

4
1 2

3

4

5

1 2

3

4

56

(Persistent) homology can be computed by us-
ing the fact that each simplex is either:

positive, i.e., it creates a new homology class

negative, i.e., it destroys an homology class

1 2

3

4

56
7

simplicial filtrationInput:

Computation with matrix reduction

1 1 2 1 2

3

1 2

3

4
1 2

3

4

5

1 2

3

4

56

1 2

3

4

56 7

(Persistent) homology can be computed by us-
ing the fact that each simplex is either:

positive, i.e., it creates a new homology class

negative, i.e., it destroys an homology class

1 2

3

4

56
7

1 2 3 4 5 6 7

1 ∗ ∗
2 ∗ ∗
3 ∗ ∗
4 ∗
5 ∗
6 ∗
7

1 2 3 4 5 6 7

1 ∗
2 1 ∗
3 1
4 ∗
5 ∗
6 1
7

simplicial filtration

Output: boundary matrix

Input:

simplex pairs give finite intervals:

unpaired simplices give infinite intervals: [1,+∞)

[2, 4), [3, 5), [6, 7)

reduced to column-echelon form

Computation with matrix reduction

1 2

3

4

56
7

1 2 3 4 5 6 7

1 ∗
2 1 ∗
3 1
4 ∗
5 ∗
6 1
7

simplicial filtration

Output: boundary matrix

Input:

simplex pairs give finite intervals:

unpaired simplices give infinite intervals: [1,+∞)

[2, 4), [3, 5), [6, 7)

reduced to column-echelon form

Computation with matrix reduction

A persistence diagram D is made of all
(F(σ+),F(σ−)) ∈ R2 where σ+ (resp.
σ−) is positive (resp. negative), and F is
the filtration function.

1 2

3

4

56
7

1 2 3 4 5 6 7

1 ∗
2 1 ∗
3 1
4 ∗
5 ∗
6 1
7

simplicial filtration

Output: boundary matrix

Input:

simplex pairs give finite intervals:

unpaired simplices give infinite intervals: [1,+∞)

[2, 4), [3, 5), [6, 7)

reduced to column-echelon form

Computation with matrix reduction

A persistence diagram D is made of all
(F(σ+),F(σ−)) ∈ R2 where σ+ (resp.
σ−) is positive (resp. negative), and F is
the filtration function.

Thus we can define the gradient of a point
p = (F(σ+),F(σ−)) ∈ D as

∇p = [∇F(σ+),∇F(σ−)]

Example: Vietoris-Rips gradient

Q: Define and compute Vietoris-Rips gradient?

Point cloud X̂n

Example: Vietoris-Rips gradient

Point cloud X̂n

Example: Vietoris-Rips gradient

Point cloud X̂n

Example: Vietoris-Rips gradient

Point cloud X̂n

Example: Vietoris-Rips gradient

Persistence barcode
Point cloud X̂n

Example: Vietoris-Rips gradient

Persistence barcode
Point cloud X̂n

Given k-dim. simplex σ = [v0, . . . , vk], one has

F(σ) = maxi,j‖vi − vj‖

Example: Vietoris-Rips gradient

Persistence barcode
Point cloud X̂n

Given k-dim. simplex σ = [v0, . . . , vk], one has

F(σ) = maxi,j‖vi − vj‖

Example: Vietoris-Rips gradient

Let p = (F(σ+),F(σ−)) ∈ DRips(X)

Persistence barcode
Point cloud X̂n

Given k-dim. simplex σ = [v0, . . . , vk], one has

F(σ) = maxi,j‖vi − vj‖

Example: Vietoris-Rips gradient

Let p = (F(σ+),F(σ−)) ∈ DRips(X)

with σ+ = {v0, . . . , vk} and σ− = {w0, . . . , wk+1}

Persistence barcode
Point cloud X̂n

Example: Vietoris-Rips gradient

Let p = (F(σ+),F(σ−)) ∈ DRips(X)

with σ+ = {v0, . . . , vk} and σ− = {w0, . . . , wk+1}

∇Xp =
[
∂
∂X ‖vi∗ − vj∗‖,

∂
∂X ‖wa∗ − wb∗‖

]

Persistence barcode
Point cloud X̂n

Example: Vietoris-Rips gradient

Let p = (F(σ+),F(σ−)) ∈ DRips(X)

with σ+ = {v0, . . . , vk} and σ− = {w0, . . . , wk+1}

∇Xp =
[
∂
∂X ‖vi∗ − vj∗‖,

∂
∂X ‖wa∗ − wb∗‖

]
∂

∂v
(d)
i

‖vi∗ − vj∗‖ = (−) 1
‖vi∗−vj∗‖

(v
(d)
i∗ − v

(d)
j∗) if i = i∗ (j∗) and 0 otherwise

Persistence barcode
Point cloud X̂n

Example: Vietoris-Rips gradient

∇Xp =
[
∂
∂X ‖vi∗ − vj∗‖,

∂
∂X ‖wa∗ − wb∗‖

]
∂

∂v
(d)
i

‖vi∗ − vj∗‖ = (−) 1
‖vi∗−vj∗‖

(v
(d)
i∗ − v

(d)
j∗) if i = i∗ (j∗) and 0 otherwise

With this gradient rule, one can do gradient descent with any function of
persistence!

Persistence barcode
Point cloud X̂n

Example: Vietoris-Rips gradient

Let’s say we want to maximize
the number of holes in that
point cloud.

Persistence barcode
Point cloud X̂n

Example: Vietoris-Rips gradient

Let’s say we want to maximize
the number of holes in that
point cloud.

We can use gradient descent to
minimize loss

L(X) = −
∑
p

‖p‖22,

with p ∈ DRips(X) (in hom. 1).

Persistence barcode
Point cloud X̂n

Example: Vietoris-Rips gradient

Let’s say we want to maximize
the number of holes in that
point cloud.

We can use gradient descent to
minimize loss

L(X) = −
∑
p

‖p‖22,

with p ∈ DRips(X) (in hom. 1).

Persistence barcode
Point cloud X̂n

Example: Vietoris-Rips gradient

Let’s say we want to maximize
the number of holes in that
point cloud.

We can use gradient descent to minimize
loss

L(X) = −
∑
p

‖p‖22 + d(X,C),

with p ∈ DRips(X) and C unit square.

Persistence barcode
Point cloud X̂n

Example: Vietoris-Rips gradient

Let’s say we want to maximize
the number of holes in that
point cloud.

We can use gradient descent to minimize
loss

L(X) = −
∑
p

‖p‖22 + d(X,C),

with p ∈ DRips(X) and C unit square.

Example: Sublevel sets

Given k-dim. simplex σ = [v0, . . . , vk], one has

F(σ) = maxi fθ(vi)

Example: Sublevel sets

Given k-dim. simplex σ = [v0, . . . , vk], one has

F(σ) = maxi fθ(vi)

∇θp =
[
∂
∂θfθ(vi∗),

∂
∂θfθ(wa∗)

]

Example: Sublevel sets

Given k-dim. simplex σ = [v0, . . . , vk], one has

F(σ) = maxi fθ(vi)

∇θp =
[
∂
∂θfθ(vi∗),

∂
∂θfθ(wa∗)

]
Let’s say we want to remove
the stains in that image.

Example: Sublevel sets

Given k-dim. simplex σ = [v0, . . . , vk], one has

F(σ) = maxi fθ(vi)

∇θp =
[
∂
∂θfθ(vi∗),

∂
∂θfθ(wa∗)

]
Let’s say we want to remove
the stains in that image.

We can use gradient descent to minimize
loss

L(X) =
∑
p

‖p‖22,

with p ∈ DPixel(I) (in hom. 0).

Example: Sublevel sets

Given k-dim. simplex σ = [v0, . . . , vk], one has

F(σ) = maxi fθ(vi)

∇θp =
[
∂
∂θfθ(vi∗),

∂
∂θfθ(wa∗)

]
Let’s say we want to remove
the stains in that image.

We can use gradient descent to minimize
loss

L(X) =
∑
p

‖p‖22,

with p ∈ DPixel(I) (in hom. 0).

Example: Sublevel sets

Given k-dim. simplex σ = [v0, . . . , vk], one has

F(σ) = maxi fθ(vi)

∇θp =
[
∂
∂θfθ(vi∗),

∂
∂θfθ(wa∗)

]
Let’s say we want to remove
the stains in that image.

We can use gradient descent to minimize
loss

L(X) =
∑
p

‖p‖22 +
∑
P∈I

max{|P |, |1−P |},

with p ∈ DPixel(I).

Example: Sublevel sets

Given k-dim. simplex σ = [v0, . . . , vk], one has

F(σ) = maxi fθ(vi)

∇θp =
[
∂
∂θfθ(vi∗),

∂
∂θfθ(wa∗)

]
Let’s say we want to remove
the stains in that image.

We can use gradient descent to minimize
loss

L(X) =
∑
p

‖p‖22 +
∑
P∈I

max{|P |, |1−P |},

with p ∈ DPixel(I).

Topological gradient descent [Optimizing persistent homology based func-
tions, C., Chazal, Glisse, Ike, Kanna, Umeda,
ICML, 2021]

Topological gradient descent

For a fixed ordering of the simplices in a simplicial complex K, the correspond-
ing persistence diagram always has the same number of points: its gradient
is well-defined!

[Optimizing persistent homology based func-
tions, C., Chazal, Glisse, Ike, Kanna, Umeda,
ICML, 2021]

Topological gradient descent

For a fixed ordering of the simplices in a simplicial complex K, the correspond-
ing persistence diagram always has the same number of points: its gradient
is well-defined!

If the ordering changes, the boundary matrix can have a new reduced form
and the persistence diagram can have a new, different number of points.

[Optimizing persistent homology based func-
tions, C., Chazal, Glisse, Ike, Kanna, Umeda,
ICML, 2021]

Topological gradient descent

For a fixed ordering of the simplices in a simplicial complex K, the correspond-
ing persistence diagram always has the same number of points: its gradient
is well-defined!

If the ordering changes, the boundary matrix can have a new reduced form
and the persistence diagram can have a new, different number of points.

Prop: Let K be a simplicial complex and let Φ : A→ R|K| a (parameterized)
filtration of K. There exists a partition A = S t O1 t · · · t Ok s.t. all the
restrictions Φ : Oi → R|K| are differentiable.

The Oi’s are the parts of A where the ordering of the simplices of K is
preserved, and S is the boundaries of all Oi’s.

[Optimizing persistent homology based func-
tions, C., Chazal, Glisse, Ike, Kanna, Umeda,
ICML, 2021]

Topological gradient descent

Def: The Clarke subdifferential ∂L of L is the set:

∂xL = conv{limxi→x∇L(xi) : L is diff. at xi},

where conv denotes the convex hull.

[Optimizing persistent homology based func-
tions, C., Chazal, Glisse, Ike, Kanna, Umeda,
ICML, 2021]

Topological gradient descent

Let {αk}k, {ζk}k s.t.

αk ≥ 0,
∑
k αk = +∞ and

∑
k α

2
k < +∞

ζk random variables s.t. E[ζk] = 0 and E[‖ζk‖2] < C for some C > 0

Thm: As long as L ◦ Pers ◦ Φ is locally Lipschitz, the sequence

ak+1 = ak − αk(gk + ζk),

where gk ∈ ∂ak(L ◦ Pers ◦ Φ), converges to a critical point of L ◦ Pers ◦ Φ.

[Optimizing persistent homology based func-
tions, C., Chazal, Glisse, Ike, Kanna, Umeda,
ICML, 2021]

Topological stratified gradient descent [A gradient sampling algorithm for
stratified maps with applications to
topological data analysis, Leygonie, C.,
Lacombe, Oudot, 2021]

Better guarantees can be obtained by smoothing the gradient definition.

Def: The smoothed topological gradient of Pers ◦ Φ is defined as:

∇̃a = argmin{‖g‖ : g ∈ conv(Sa)}
where Sa = {∇a′ : a′ ∈ Oi, Oi ∈ N (Oa)}, where Oa is the stratum associ-
ated to a, and N (Oa) is the set of strata that are close to Oa.

Intuitively, close strata means that their corresponding orderings are very sim-
ilar, e.g., they differ by single swaps, or their distance is bounded by ε > 0.

Topological stratified gradient descent [A gradient sampling algorithm for
stratified maps with applications to
topological data analysis, Leygonie, C.,
Lacombe, Oudot, 2021]

Better guarantees can be obtained by smoothing the gradient definition.

Def: The smoothed topological gradient of Pers ◦ Φ is defined as:

∇̃a = argmin{‖g‖ : g ∈ conv(Sa)}
where Sa = {∇a′ : a′ ∈ Oi, Oi ∈ N (Oa)}, where Oa is the stratum associ-
ated to a, and N (Oa) is the set of strata that are close to Oa.

Intuitively, close strata means that their corresponding orderings are very sim-
ilar, e.g., they differ by single swaps, or their distance is bounded by ε > 0.

Thm: Let ε > 0. As long as L ◦ Pers ◦ Φ is Lipschitz, the sequence

ak+1 = ak − ε · ∇̃ak/‖∇̃ak‖,

converges in finitely many iterations to ã s.t. ∃ā : ∇̃ā = 0 and ‖ã− ā‖ ≤ ε.

Example: filter selection

Assume we have a supervised classification task. The goal is to find a filtration
from a family F such that the corresponding persistence diagrams give the
best classification score.

Example: filter selection

Assume we have a supervised classification task. The goal is to find a filtration
from a family F such that the corresponding persistence diagrams give the
best classification score.

Ex: images fil-
tered by a direc-
tion parameter-
ized by angle.

Example: filter selection

Assume we have a supervised classification task. The goal is to find a filtration
from a family F such that the corresponding persistence diagrams give the
best classification score.

Idea: minimize:

L(f) =
∑
l

∑
yi=yj=l

dp(Df (xi), Df (xj))∑
yi=l

dp(Df (xi), Df (xj))
,

one can also use Sliced Wasserstein for speedup.

Example: filter selection

Assume we have a supervised classification task. The goal is to find a filtration
from a family F such that the corresponding persistence diagrams give the
best classification score.

Idea: minimize:

L(f) =
∑
l

∑
yi=yj=l

dp(Df (xi), Df (xj))∑
yi=l

dp(Df (xi), Df (xj))
,

one can also use Sliced Wasserstein for speedup.

Application: model regularization

[Topological autoencoders, Moor,
Horn, Rieck, Borgwardt, ICML, 2020]

[A Topological Regularizer for Classi-
fiers via Persistent Homology, Chen,
Ni, Bai, Wang, AISTATS, 2019]

Take home message
Topological Data Analysis is:

a mathematically grounded framework...

...that applies to a wide variety of data sets...

...for a wide variety of tasks.

Hk = Zk/Bk

Exploratory data analysis
Topological inference Topological machine learning

