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in each group, or cluster, are similar to each other and dissimilar to the ones
from other clusters.

A variety of approaches:

• Variational (Bayes priors)

• Spectral (eigenvalues of Laplacian)

• Density-based (KDE, DTM)

• Hierarchical (dendrograms)

• etc...

Not a single or universal notion of cluster.

We will see a few standard algo-
rithms and how they can be im-
proved with (0-dimensional) per-
sistent homology.



The k-means algorithm

Input: A (large) set of n points X and
an integer k < n.

Goal: Find a set of k points L = {y1, . . . , yk}
that minimizes

E =
n∑
i=1

d(xi, L)2
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Input: A (large) set of n points X and
an integer k < n.

Goal: Find a set of k points L = {y1, . . . , yk}
that minimizes

E =
n∑
i=1

d(xi, L)2

This is a NP hard problem!

Lloyd’s algorithm: a very simple local search algorithm.
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The k-means algorithm

• Minimum is not necessarily global!

• Speed of convergence not guaranteed.

• Lack of stability: output is very sensitive
to initial seeds.

Warning:
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Dendogram, i.e., a tree such that:
- each leaf node is a singleton,
- each node represents a cluster,
- the root node contains the whole data,
- each internal node has two daughters, cor-
responding to the clusters that were merged
to obtain it.
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dD(x, x′) := height of lowest common ancestor of x, x′ in dendrogram D.

Thm: dGH((X, dDX ), (Y, dDY )) ≤ dGH((X, dX), (Y, dY )).

This is actually not true for complete and average clustering.

ultrametric!

[Characterization, Stability and Convergence
of Hierarchical Clustering Methods, Carlsson,
Mémoli, J. Machine Learning Research, 2010]
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The (in)stability of dendrograms

→ 0-dimensional persistent homology provides a stable output!

However, building a hierarchy based on spatial proximity is still not a great idea
when there are outliers, since there is no stability of merging times anymore.

Another way to build a hierarchy is with the sublevel sets of a density function.
Using density for clustering is at the core of mode-seeking algorithms.

δδ



Mode seeking clustering

In mode seeking, data points are sampled according to some (unknown) prob-
ability density, and clusters are given with its basins of attraction.

Two approaches:

• Iterative, such as, e.g., Mean Shift.

• Graph-based, such as, e.g.,

[Mean shift: a robust approach toward feature
space analysis, Comaniciu et al., IEEE Trans. on
Pattern Analysis and Machine Intelligence, 2002]

[A Graph-Theoretic Approach to Nonparametric
Cluster Analysis, Koontz et al., IEEE Trans. on
Computers, 1976].
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The Koonz, Narendra and Fukunaga algorithm (1976)

Density estimation

Neighborhood
graph

Discrete approximation of
the gradient; for each ver-
tex v, a gradient edge is
selected among the edges
adjacent to v.



The Koonz, Narendra and Fukunaga algorithm (1976)

Sort the vertex indices {1, 2, . . . , n} in decreasing order:

for i ∈ {1, . . . , n}:
Let N be the set of neighbors of i in G that have indices lower than i
if N = ∅:

Create a new entry e in U and attach vertex i to it: U .MakeSet(i)
r[e]← i (r[e] stores the root vertex associated with the entry e)

else:
g[i]← argmax{f̂(j) : j ∈ N} (g[i] stores the approximate gradient at vertex i)

ei ← U .Find(g[i])
Attach vertex i to the entry ei: U .Union(i, ei)

Output: The collection of entries e in U .

The algorithm:

Input: A neighborhood graph G with n vertices (the data points) and an

n-dimensional vector f̂ (density estimate).

f̂(1) ≥ · · · ≥ f̂(n).

Initialize a union-find data structure U and two lists g, r of length n.
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The Koonz, Narendra and Fukunaga algorithm (1976)

Drawbacks:

Approaches to overcome these issues:

One can smooth out the density estimate, but smoothing is usually data-driven
and hard to tune.

Build a hierarchy of clusters with 0-dimensional persistent homology!

One has as many clusters as local maxima of the density estimate, which are
very sensitive to noise and outliers.

The choice of the neighborhood graph (k-nearest neighbors, triangulations,
etc) may result in wide changes in the output.
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Given a probability density f , we will consider the superlevel-set filtration
f−1([t,+∞)) for t from +∞ to −∞, instead of the sublevel-set filtration.
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β
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Reminder: 0-dimensional PH of density
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+∞

db(Df , Df̂ ) ≤ ‖f − f̂‖∞.

Moreover, the stability theorem ensures that, given an underlying true density
f , and an estimator f̂ ot it, one has:

Reminder: 0-dimensional PH of density
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In addition to being stable, 0-dimensional PH also remembers the connected
components that were merged together during the filtration process and builds
a hierarchy out of this information.

This means that, given a fixed threshold τ ≥ 0, one can even retrieve the
clusters associated to all the bars of length (or prominence) > τ !
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In addition to being stable, 0-dimensional PH also remembers the connected
components that were merged together during the filtration process and builds
a hierarchy out of this information.

This means that, given a fixed threshold τ ≥ 0, one can even retrieve the
clusters associated to all the bars of length (or prominence) > τ !

γ − δ < τ ≤ +∞

p

q

s

Building a hierarchy of cluster with 0-dimensional PH



ToMATo: Topological Mode Analysis Tool
[Persistence-Based Clustering
in Riemannian Manifolds,
Chazal, Oudot, Skraba,
Guibas, J. ACM, 2013]

1. Define an order on the point cloud with a density estimator f̂ .

(sort data points by decreasing estimated density values)



ToMATo: Topological Mode Analysis Tool
[Persistence-Based Clustering
in Riemannian Manifolds,
Chazal, Oudot, Skraba,
Guibas, J. ACM, 2013]

1. Define an order on the point cloud with a density estimator f̂ .

(sort data points by decreasing estimated density values)

2. Extend order to the graph edges (i.e., compute the upper-star filtration).

(f̂([u, v]) = min{f̂(u), f̂(v)})



ToMATo: Topological Mode Analysis Tool
[Persistence-Based Clustering
in Riemannian Manifolds,
Chazal, Oudot, Skraba,
Guibas, J. ACM, 2013]

1. Define an order on the point cloud with a density estimator f̂ .

(sort data points by decreasing estimated density values)
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ToMATo: Topological Mode Analysis Tool
[Persistence-Based Clustering
in Riemannian Manifolds,
Chazal, Oudot, Skraba,
Guibas, J. ACM, 2013]

→ Running time: O(n log n+ (n+m)α(n))

Given a neighborhood graph with n vertices and m edges:

→ Space complexity: O(n+m)

→ Main memory usage: O(n)

1. the algorithm sorts the vertices by decreasing density values,

2. and then makes a single pass through the vertex set, merging clusters
on the fly using a union-find data structure.



1. Define an order on the point cloud with a density estimator f̂ .

(sort data points by decreasing estimated density values)

2. Extend order to the graph edges (i.e., compute the upper-star filtration).

(f̂([u, v]) = min{f̂(u), f̂(v)})

3. Compute the 0-dimensional persistence diagram of this filtration.

(apply 0-dimensional persistence algorithm → union-find data structure)

Estimating the correct number of clusters
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1. Define an order on the point cloud with a density estimator f̂ .

(sort data points by decreasing estimated density values)

2. Extend order to the graph edges (i.e., compute the upper-star filtration).

(f̂([u, v]) = min{f̂(u), f̂(v)})

3. Compute the 0-dimensional persistence diagram of this filtration.

(apply 0-dimensional persistence algorithm → union-find data structure)

Estimating the correct number of clusters



background noise

1. Define an order on the point cloud with a density estimator f̂ .

(sort data points by decreasing estimated density values)

2. Extend order to the graph edges (i.e., compute the upper-star filtration).

(f̂([u, v]) = min{f̂(u), f̂(v)})

3. Compute the 0-dimensional persistence diagram of this filtration.

(apply 0-dimensional persistence algorithm → union-find data structure)

Estimating the correct number of clusters



6 prominent
peaks

1. Define an order on the point cloud with a density estimator f̂ .

(sort data points by decreasing estimated density values)

2. Extend order to the graph edges (i.e., compute the upper-star filtration).

(f̂([u, v]) = min{f̂(u), f̂(v)})

3. Compute the 0-dimensional persistence diagram of this filtration.

(apply 0-dimensional persistence algorithm → union-find data structure)

Estimating the correct number of clusters



Any prominence threshold τ within the range of the prominence gap will separate the relevant peaks from the topological and background noise.τ
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1. Define an order on the point cloud with a density estimator f̂ .

(sort data points by decreasing estimated density values)

2. Extend order to the graph edges (i.e., compute the upper-star filtration).

(f̂([u, v]) = min{f̂(u), f̂(v)})

3. Compute the 0-dimensional persistence diagram of this filtration.

(apply 0-dimensional persistence algorithm → union-find data structure)

Estimating the correct number of clusters



Hypotheses:

• f : Rd → R a c-Lipschitz probability density function,

• P ⊂ Rd a finite set of n points sampled i.i.d. according to f ,

Note: Π is the prominence of the least prominent peak of f

• f̂ : P → R a density estimator s.t. η := maxp∈P |f̂(p)− f(p)| < Π/5,

• G = (P,E) the δ-neighborhood graph for some positive δ < Π−5η
5c .

Estimating the correct number of clusters
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• f : Rd → R a c-Lipschitz probability density function,
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Note: Π is the prominence of the least prominent peak of f

• f̂ : P → R a density estimator s.t. η := maxp∈P |f̂(p)− f(p)| < Π/5,

• G = (P,E) the δ-neighborhood graph for some positive δ < Π−5η
5c .

Thm: For any choice of τ such that 2(cδ + η) < τ < Π − 3(cδ + η), the
number of clusters computed by the algorithm is equal to the number of peaks
of f with probability at least 1− e−Ω(n). (the Ω notation hides factors depending on c, δ)

Estimating the correct number of clusters

Proof: Skipped. The main ingredient is the stability theorem.



Thm: For any choice of τ such that 2(cδ + η) < τ < Π − 3(cδ + η), the
number of clusters computed by the algorithm is equal to the number of peaks
of f with probability at least 1− e−Ω(n). (the Ω notation hides factors depending on c, δ)
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Estimating the correct number of clusters

2(cδ + η)

Df̂

Π− 3(cδ + η)

2(cδ + η)

Π− 3(cδ + η)

-∞0

Proof: Skipped. The main ingredient is the stability theorem.



Input: A graph G with n vertices, an n-dimensional vector f̂ , and τ ≥ 0.

Output: the collection of entries e of U such that f̂(r(e)) ≥ τ .

with persistence

cluster merges

Pseudo-code

Sort the vertex indices {1, 2, . . . , n} in decreasing order:

Initialize a union-find data structure U and two lists g, r of length n.

f̂(1) ≥ · · · ≥ f̂(n).

for i ∈ {1, . . . , n}:
Let N be the set of neighbors of i in G that have indices lower than i
if N = ∅:

Create a new entry e in U and attach vertex i to it: U .MakeSet(i)
r[e]← i (r[e] stores the root vertex associated with the entry e)

else:
g[i]← argmax{f̂(j) : j ∈ N} (g[i] stores the approximate gradient at vertex i)

ei ← U .Find(g[i])
Attach vertex i to the entry ei: U .Union(i, ei)
for j ∈ N :

e← U .Find(j)
if e 6= ei and min{f̂(r[e]), f̂(r[ei])} < f̂(i) + τ :
U .Union(e, ei)
r[e ∪ ei]← argmax{f̂(r[e]), f̂(r[ei])}
ei ← e ∪ ei
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Spectral clustering

(k-means in eigenspace)

Experimental results
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It is known that the energy of a conformation depends mainly on two specific bound angles, so the data can be projected down almost isometrically into the 2-d flat torus (Ramachandran plot), which we only use for visualization purposes.

Note: the PD is plotted on a log/log scale, to avoid scaling effects. So actual differences in prominence are orders of magnitude, as the next view shows.

Biological Data
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Alanine-Dipeptide conformations (R21)

with RMSD distance (non-Euclidean).

Common belief: 6 metastable states.

PD shows anywhere between 4 and 7 clusters.
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It is known that the energy of a conformation depends mainly on two specific bound angles, so the data can be projected down almost isometrically into the 2-d flat torus (Ramachandran plot), which we only use for visualization purposes.

Biological Data

Alanine-Dipeptide conformations (R21)

with RMSD distance (non-Euclidean).

Common belief: 6 metastable states.

PD shows anywhere between 4 and 7 clusters.
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MetastabilityRank Prominence

1 +∞ 0.99982
2 3827 1.91865
3 1334 2.8813
4 557 3.76217
5 85 4.73838
6 32 5.65553
7 26 6.50757
8 7.2 6.8193
9 3.0 -

10 2.2 -

Measures of metastability confirm this insight.

Experimental results [Topological methods for exploring low-density states in biomolecular fold-
ing pathways, Yao, Sun, Huang, Bowman, Singh, Lesnick, Guibas, Pande,
Carlsson, J. Chem. Phys., 2009]



For reference on the sdata set and spectral approach, please refer to the following paper

It is known that the energy of a conformation depends mainly on two specific bound angles, so the data can be projected down almost isometrically into the 2-d flat torus (Ramachandran plot), which we only use for visualization purposes.

Biological Data

Alanine-Dipeptide conformations (R21)

with RMSD distance (non-Euclidean).

[Topological methods for exploring low-density states in biomolecular fold-
ing pathways, Yao, Sun, Huang, Bowman, Singh, Lesnick, Guibas, Pande,
Carlsson, J. Chem. Phys., 2009]

Note: Spectral Clustering takes a week
of tweaking, while ToMATo runs out-
of-the-box in a few minutes.

Experimental results



Image Segmentation

Density is estimated in 3D color space.

Neighborhood graph is built in image domain.

Distribution of prominences does not usually
show a clear unique gap.

Still, relationship between choice of τ and
number of obtained clusters remains explicit.

Experimental results



Application to non-rigid shape segmentation

X : a 3D shape
f = HKS function on X

5 prominent
peaks/clusters

[Persistence-Based Segmentation of Deformable Shapes,
Skraba, Ovsjanikov, Chazal, Guibas, Proc. CVPR 2010]
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Problem: cluster boundaries are unstable, which gives dirty segments.
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Application to non-rigid shape segmentation

X : a 3D shape
f = HKS function on X

5 prominent
peaks/clusters

Problem: cluster boundaries are unstable, which gives dirty segments.

[Persistence-Based Segmentation of Deformable Shapes,
Skraba, Ovsjanikov, Chazal, Guibas, Proc. CVPR 2010]



Topological Machine Learning (II):
Guiding ML models

1. Hierarchical and Mode Seeking Clustering

2. Topology-based Clustering

3. Topology-based Optimization



Persistence diagrams and optimization

persistence

∞

⊆ ⊆
Persistence diagram

H

Φk(·, ·) := 〈Φ(·),Φ(·)〉H

Etc.

• Classifier (RF, SVM, NN etc.)

• Dim. red. (PCA, MDS, UMAP, t-SNE)

• Clustering (DBSCAN, K-means, etc.)

What filtration to choose?

What representation to choose? → PersLay



Q: How to define ∇D?

Problem setting
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Q: Given a parameterized family of functions F = {fθ : θ ∈ Θ}, how to
define ∇θDfθ?

Q: Given a point cloud X ⊆ Rd, how to define ∇XDRips(X)?

Problem setting



Q: How to define ∇D?

Q: Given a parameterized family of functions F = {fθ : θ ∈ Θ}, how to
define ∇θDfθ?

Q: Given a point cloud X ⊆ Rd, how to define ∇XDRips(X)?

Problem setting

Idea: Let’s go back to the PD construction...
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reduced to column-echelon form

Computation with matrix reduction
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Computation with matrix reduction

A persistence diagram D is made of all
(F(σ+),F(σ−)) ∈ R2 where σ+ (resp.
σ−) is positive (resp. negative), and F is
the filtration function.
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1 2 3 4 5 6 7

1 ∗
2 1 ∗
3 1
4 ∗
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6 1
7

simplicial filtration

Output: boundary matrix

Input:

simplex pairs give finite intervals:

unpaired simplices give infinite intervals: [1,+∞)

[2, 4), [3, 5), [6, 7)

reduced to column-echelon form

Computation with matrix reduction

A persistence diagram D is made of all
(F(σ+),F(σ−)) ∈ R2 where σ+ (resp.
σ−) is positive (resp. negative), and F is
the filtration function.

Thus we can define the gradient of a point
p = (F(σ+),F(σ−)) ∈ D as

∇p = [∇F(σ+),∇F(σ−)]



Example: Vietoris-Rips gradient

Q: Define and compute Vietoris-Rips gradient?
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Persistence barcode
Point cloud X̂n

Example: Vietoris-Rips gradient

∇Xp =
[
∂
∂X ‖vi∗ − vj∗‖,

∂
∂X ‖wa∗ − wb∗‖

]
∂

∂v
(d)
i

‖vi∗ − vj∗‖ = (−) 1
‖vi∗−vj∗‖

(v
(d)
i∗ − v

(d)
j∗ ) if i = i∗ (j∗) and 0 otherwise

With this gradient rule, one can do gradient descent with any function of
persistence!
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Let’s say we want to maximize
the number of holes in that
point cloud.
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We can use gradient descent to
minimize loss

L(X) = −
∑
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with p ∈ DRips(X) (in hom. 1).
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Persistence barcode
Point cloud X̂n

Example: Vietoris-Rips gradient

Let’s say we want to maximize
the number of holes in that
point cloud.

We can use gradient descent to minimize
loss

L(X) = −
∑
p

‖p‖22 + d(X,C),

with p ∈ DRips(X) and C unit square.
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Example: Vietoris-Rips gradient

Let’s say we want to maximize
the number of holes in that
point cloud.

We can use gradient descent to minimize
loss

L(X) = −
∑
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with p ∈ DRips(X) and C unit square.
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with p ∈ DPixel(I).
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Given k-dim. simplex σ = [v0, . . . , vk], one has
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∂
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Topological gradient descent [Optimizing persistent homology based func-
tions, C., Chazal, Glisse, Ike, Kanna, Umeda,
ICML, 2021]



Topological gradient descent

For a fixed ordering of the simplices in a simplicial complex K, the correspond-
ing persistence diagram always has the same number of points: its gradient
is well-defined!
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Topological gradient descent

For a fixed ordering of the simplices in a simplicial complex K, the correspond-
ing persistence diagram always has the same number of points: its gradient
is well-defined!

If the ordering changes, the boundary matrix can have a new reduced form
and the persistence diagram can have a new, different number of points.

Prop: Let K be a simplicial complex and let Φ : A→ R|K| a (parameterized)
filtration of K. There exists a partition A = S t O1 t · · · t Ok s.t. all the
restrictions Φ : Oi → R|K| are differentiable.

The Oi’s are the parts of A where the ordering of the simplices of K is
preserved, and S is the boundaries of all Oi’s.

[Optimizing persistent homology based func-
tions, C., Chazal, Glisse, Ike, Kanna, Umeda,
ICML, 2021]



Topological gradient descent

Def: The Clarke subdifferential ∂L of L is the set:

∂xL = conv{limxi→x∇L(xi) : L is diff. at xi},

where conv denotes the convex hull.

[Optimizing persistent homology based func-
tions, C., Chazal, Glisse, Ike, Kanna, Umeda,
ICML, 2021]



Topological gradient descent

Let {αk}k, {ζk}k s.t.

αk ≥ 0,
∑
k αk = +∞ and

∑
k α

2
k < +∞

ζk random variables s.t. E[ζk] = 0 and E[‖ζk‖2] < C for some C > 0

Thm: As long as L ◦ Pers ◦ Φ is locally Lipschitz, the sequence

ak+1 = ak − αk(gk + ζk),

where gk ∈ ∂ak(L ◦ Pers ◦ Φ), converges to a critical point of L ◦ Pers ◦ Φ.

[Optimizing persistent homology based func-
tions, C., Chazal, Glisse, Ike, Kanna, Umeda,
ICML, 2021]



Topological stratified gradient descent [A gradient sampling algorithm for
stratified maps with applications to
topological data analysis, Leygonie, C.,
Lacombe, Oudot, 2021]

Better guarantees can be obtained by smoothing the gradient definition.

Def: The smoothed topological gradient of Pers ◦ Φ is defined as:

∇̃a = argmin{‖g‖ : g ∈ conv(Sa)}
where Sa = {∇a′ : a′ ∈ Oi, Oi ∈ N (Oa)}, where Oa is the stratum associ-
ated to a, and N (Oa) is the set of strata that are close to Oa.

Intuitively, close strata means that their corresponding orderings are very sim-
ilar, e.g., they differ by single swaps, or their distance is bounded by ε > 0.



Topological stratified gradient descent [A gradient sampling algorithm for
stratified maps with applications to
topological data analysis, Leygonie, C.,
Lacombe, Oudot, 2021]

Better guarantees can be obtained by smoothing the gradient definition.

Def: The smoothed topological gradient of Pers ◦ Φ is defined as:

∇̃a = argmin{‖g‖ : g ∈ conv(Sa)}
where Sa = {∇a′ : a′ ∈ Oi, Oi ∈ N (Oa)}, where Oa is the stratum associ-
ated to a, and N (Oa) is the set of strata that are close to Oa.

Intuitively, close strata means that their corresponding orderings are very sim-
ilar, e.g., they differ by single swaps, or their distance is bounded by ε > 0.

Thm: Let ε > 0. As long as L ◦ Pers ◦ Φ is Lipschitz, the sequence

ak+1 = ak − ε · ∇̃ak/‖∇̃ak‖,

converges in finitely many iterations to ã s.t. ∃ā : ∇̃ā = 0 and ‖ã− ā‖ ≤ ε.



Example: filter selection

Assume we have a supervised classification task. The goal is to find a filtration
from a family F such that the corresponding persistence diagrams give the
best classification score.
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tion parameter-
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Example: filter selection

Assume we have a supervised classification task. The goal is to find a filtration
from a family F such that the corresponding persistence diagrams give the
best classification score.

Idea: minimize:

L(f) =
∑
l

∑
yi=yj=l

dp(Df (xi), Df (xj))∑
yi=l

dp(Df (xi), Df (xj))
,

one can also use Sliced Wasserstein for speedup.
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Application: model regularization

[Topological autoencoders, Moor,
Horn, Rieck, Borgwardt, ICML, 2020]

[A Topological Regularizer for Classi-
fiers via Persistent Homology, Chen,
Ni, Bai, Wang, AISTATS, 2019]



Take home message
Topological Data Analysis is:

a mathematically grounded framework...

...that applies to a wide variety of data sets...

...for a wide variety of tasks.

Hk = Zk/Bk

Exploratory data analysis
Topological inference Topological machine learning


