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General clustering

Def: A partition of data into groups offsimilar data points] The data points
In each group, or cluster, arelsimilar to each other and dissimilar to the ones

Not a single or universal notion of cluster.

A variety of approaches:
We will see a few standard algo-
rithms and how they can be im-

e Spectral (eigenvalues of Laplacian) proved with (0-dimensional) per-
sistent homology.

e Variational (Bayes priors)

e Density-based (KDE, DTM)
e Hierarchical (dendrograms)

® ctcC...



The k-means algorithm

Input: A (large) set of n points X and
an integer k < n.

Goal: Find a set of £ points L = {y, ...

that minimizes

b = En: d(ilfz, L)2
1=1
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The k-means algorithm

Input: A (large) set of n points X and
an integer k < n. o

Goal: Find a set of k points L = {y1,...,yx}
that minimizes

b = En: d(ilfz, L)2
1=1

This is a NP hard problem!

Lloyd's algorithm: a very simple local search algorithm.
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The k-means algorithm

Warning:
e Minimum is not necessarily global!

e Speed of convergence not guaranteed.

o Lack of stability: output is very sensitive
to initial seeds.
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Goal: Build a hierarchy of clusters (nested family of partitions).
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Hierarchical clustering algorithms

Goal: Build a hierarchy of clusters (nested family of partitions).

Acol . Dendogram, i.e., a tree such that:
gglomerative (bottom-up) - each leaf node is a singleton,

Start with single point cluster and |- each node represents a cluster,

recursively merge the most similar |- the root node contains the whole data,
clusters to one parent cluster until |- each internal node has two daughters, cor-

reaching a stopping criterion (e.g., responding to the clusters that were merged

max distance or cluster number). to obtain it. \
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Hierarchical clustering algorithms

Goal: Build a hierarchy of clusters (nested family of partitions).

Agglomerative (bottom-up) Dividing (top-down)

Start with single point cluster and
recursively merge the most similar
clusters to one parent cluster until
reaching a stopping criterion (e.g.,
max distance or cluster number).

Start with a single global cluster and
recursively split each cluster until
reaching a stopping criterion.
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Hierarchical clustering algorithms

Goal: Build a hierarchy of clusters (nested family of partitions).

Agglomerative (bottom-up) Dividing (top-down)

Start with single point cluster and
recursively merge the most similar
clusters to one parent cluster until
reaching a stopping criterion (e.g.,
max distance or cluster number).

Start with a single global cluster and
recursively split each cluster until
reaching a stopping criterion.
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Single linkage clustering

Input: A set X,, = {x1,...,z,} in a metric space (X,d) (or just a matrix
of pairwise dissimilarities ((d; ;))i ;).

Given two clusters C,C" C X, let d(C,C") = inf copecr d(x, 2').
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. “1: [Characterization, Stability and Convergence
T h e ( I n )Sta bl | Ity Of d e n d rOg ra m S of Hierarchical Clustering Methods, Carlsson,

Mémoli, J. Machine Learning Research, 2010]

dp(x,x") := height of lowest common ancestor of z,x" in dendrogram D.

Thm: dgy((X,dpy ), (Y,dpy)) < dar((X,dx), (Y, dy)). ultrametric!



. “1: [Characterization, Stability and Convergence
T h e ( I n )Sta bl | Ity Of d e n d rOg ra m S of Hierarchical Clustering Methods, Carlsson,

Mémoli, J. Machine Learning Research, 2010]

dp(x,x") := height of lowest common ancestor of z,x" in dendrogram D.

Thm: dgy((X,dpy ), (Y,dpy)) < dar((X,dx), (Y, dy)). ultrametric!

This is actually not true for complete and average clustering.
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— 0-dimensional persistent homology provides a stable output!




The (in)stability of dendrograms
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However, building a hierarchy based on spatial proximity is still not a great idea
when there are outliers, since there is no stability of merging times anymore.

Another way to build a hierarchy is with the sublevel sets of a density function.
Using density for clustering is at the core of mode-seeking algorithms.

— O-dimensional persistent homology provides a stable output!



Mode seeking clustering

In mode seeking, data points are sampled according to some (unknown) prob-
ability density, and clusters are given with its basins of attraction.

Two approaches:

[Mean shift: a robust approach toward feature

o Iterative SUCh as. e g Mean Shlft space analysis, Comaniciu et al., IEEE Trans. on

Pattern Analysis and Machine Intelligence, 2002]

[A Graph-Theoretic Approach to Nonparametric

® Graph-baSEd, SUCh aS, e.g., Cluster Analysis, Koontz et al., IEEE Trans. on
Computers, 1976].
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where N(x) is a neighborhood of x, and K is a kernel, e.g., Gaussian kernel

K(z,y) = exp (—12412).
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Mean Shift (2002)

1. Pick random guess x € X.

where N (x) is a neighborhood of x, and K is a kernel, e.g., Gaussian kernel

K(z,y) = exp (—12412).

3. Update x + M (x).

2. Compute M(z) =

Do that for many random guesses, postprocess and merge similar centroids,
and use the distances to the centroids to decide clusters.



Mean Shift (2002)

1. Pick i )
 Regionof
2. Com interest
Center of
where [ i n kernel
K(z,y)
[ Mean Shift ]
3. Upd: vecor
Do that ntroids,
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The Koonz, Narendra and Fukunaga algorithm (1976

Density estimation

graph

Discrete approximation of
the gradient; for each ver-
tex v, a gradient edge Is
selected among the edges
adjacent to v.

-




The Koonz, Narendra and Fukunaga algorithm (1976)

The algorithm:

Input: A neighborhood graph G with n vertices (the data points) and an
n-dimensional vector f (density estimate).

Sort the vertex indices {1,2,...,n} in decreasing order: f(1) > --- > f(n).

Initialize a union-find data structure I/ and two lists g, r of length n.

fori e {1,...,n}:
Let NV be the set of neighbors of 7 in G that have indices lower than i
if N =@
Create a new entry e in U and attach vertex ¢ to it: U.MakeSet(i)
7“[6] <— 1 (r[e] stores the root vertex associated with the entry ¢)
else: )
g [Z] < argmax{f( 9 ) ] € N } (g[i] stores the approximate gradient at vertex i)
e; < U.Find(gli])
Attach vertex ¢ to the entry e;: U.Union(z,e;)

Output: The collection of entries e in U.



The Koonz, Narendra and Fukunaga algorithm (1976)

Drawbacks:

estimated
density

One has as many clusters as local maxima of the density estimate, which are
very sensitive to noise and outliers.
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The Koonz, Narendra and Fukunaga algorithm (1976)

Drawbacks:

One has as many clusters as local maxima of the density estimate, which are
very sensitive to noise and outliers.

The choice of the neighborhood graph (k-nearest neighbors, triangulations,
etc) may result in wide changes in the output.

Approaches to overcome these issues:

One can smooth out the density estimate, but smoothing is usually data-driven
and hard to tune.

Build a hierarchy of clusters with O-dimensional persistent homology!
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Given a probability density f, we will consider the superlevel-set filtration
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Reminder: O-dimensional PH of density

Moreover, the stability theorem ensures that, given an underlying true density
f, and an estimator f ot it, one has:

dy(Dy, D) < || f = flloo
R A

+ oo




Building a hierarchy of cluster with 0-dimensional PH

In addition to being stable, O-dimensional PH also remembers the connected
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a hierarchy out of this information.
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Building a hierarchy of cluster with 0-dimensional PH

In addition to being stable, O-dimensional PH also remembers the connected
components that were merged together during the filtration process and builds
a hierarchy out of this information.

This means that, given a fixed threshold 7 > 0, one can even retrieve the
clusters associated to all the bars of length (or prominence) > 7!

v —0 < T< +00




[Persistence-Based Clustering

ToMATo: Topological Mode Analysis Tool i fememian - wanieras
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(sort data points by decreasing estimated density values)
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(sort data points by decreasing estimated density values)

2. Extend order to the graph edges (i.e., compute the upper-star filtration).
(f([w, v]) = min{f(u), f(v)})

3. Compute the O-dimensional persistence diagram of this filtration.

(apply O-dimensional persistence algorithm — union-find data structure)




[Persistence-Based Clustering

ToMATo: Topological Mode Analysis Tool i fememian - wanieras

Guibas, J. ACM, 2013]

Given a neighborhood graph with n vertices and m edges:

1. the algorithm sorts the vertices by decreasing density values,

2. and then makes a single pass through the vertex set, merging clusters
on the fly using a union-find data structure.

— Running time: O(nlogn + (n +m)a(n))
— Space complexity: O(n + m)
— Main memory usage: O(n)
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1. Define an order on the point cloud with a density estimator f
(sort data points by decreasing estimated density values)
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(apply O-dimensional persistence algorithm — union-find data structure)




Estimating the correct number of clusters

Hypotheses:

o f:RY— R a c-Lipschitz probability density function,

e P C R? a finite set of n points sampled i.i.d. according to f,
e f: P — R a density estimator s.t. 77 := max,ep |f(p) — f(p)| < II/5,
e G = (P, E) the -neighborhood graph for some positive § < == 577

Note: II is the prominence of the least prominent peak of f



Estimating the correct number of clusters

Hypotheses:

o f:RY— R a c-Lipschitz probability density function,
e P C R? a finite set of n points sampled i.i.d. according to f,

e f: P — R a density estimator s.t. 77 := max,ep |f(p) — f(p)| < II/5,
I1— 577

e G = (P, E) the d-neighborhood graph for some positive § <

Note: II is the prominence of the least prominent peak of f

Thm: For any choice of 7 such that 2(cd +1n) < 7 < II — 3(cd + 1), the
number of clusters computed by the algorithm is equal to the number of peaks
Of f W|th probab”rty at Ieast 1 — e_Q(n) (the €2 notation hides factors depending on c, &)

Proof: Skipped. The main ingredient is the stability theorem.



Estimating the correct number of clusters

| 2(co +m)

LI —3(cd +n)

2(05:+ n) 11 —:3(65 +n)

Thm: For any choice of 7 such that 2(cd + 1) < 7 < II — 3(cd + 1), the

number of clusters computed by the algorithm is equal to the number of peaks
Of f W|th probab|||ty at Ieast 1 — e_ﬂ(n) (the €2 notation hides factors depending on ¢, §)

Proof: Skipped. The main ingredient is the stability theorem.



Pseudo-code

Input: A graph G with n vertices, an n-dimensional vector f and 7 > 0.
Sort the vertex indices {1,2,...,n} in decreasing order: (1) > --- > f(n).
Initialize a union-find data structure U/ and two lists g, r of length n.

for i € {1,...,n}:
Let A be the set of neighbors of 7 in G that have indices lower than ¢
if N =o:
Create a new entry e in U and attach vertex i to it: U .MakeSet(i)
T [6] <{— 1 (r[e] stores the root vertex associated with the entry )
else: )
g[@] < argmax{f(j) ] = N} (g[i] stores the approximate gradient at vertex )
e; < U.Find(g|i|)
Attach vertex ¢ to the entry e;: U.Union(i,e;)
for j € N:
e < U.Find(y)
if e # e; and min{f(rle]), f(rle)} < fi) + T cluster merges
U .Union(e, e;) with persistence
rleUei] < argmax{f(rle]), f(rlei])}
e; < el e;

Output: the collection of entries e of U such that f(r(e)) > 7.
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Experimental results

Biological Data
Alanine-Dipeptide conformations (R*!)
with RMSD distance (non-Euclidean).

Common belief: 6 metastable states. 3|

PD shows anywhere between 4 and 7 clusters. ?|




E h t | |t [ Topological methods for exploring low-density states in biomolecular fold-
Xpe” I I len a reSU S ing pathways, Yao, Sun, Huang, Bowman, Singh, Lesnick, Guibas, Pande,
Carlsson, J. Chem. Phys., 2009]

BiOlOgicaI Data Rank Prominence Metastability
1 +00 0.99982
Alanine-Dipeptide conformations (R?!) 2 3827 1.91865
3 1334 2.8813
. . . 4 557 3.76217
with RMSD distance (non-Euclidean). : o 173838
6 32 5.65553
7 26 6.50757
38 7.2 6.8193
9 3.0 -
10 2.2 -

N (68 ~ o1 (@) ~
T T T T T

Metastability

Common belief: 6 metastable states.

PD shows anywhere between 4 and 7 clusters.

- _ 00— 3 4 5 6 7 8
Measures of metastability confirm this insight. Number of clusters



[ Topological methods for exploring low-density states in biomolecular fold-

EXpe” menta | reSU |tS ing pathways, Yao, Sun, Huang, Bowman, Singh, Lesnick, Guibas, Pande,

Carlsson, J. Chem. Phys., 2009]

Biological Data
Alanine-Dipeptide conformations (R?!)

with RMSD distance (non-Euclidean).

Note: Spectral Clustering takes a week
of tweaking, while ToMATo runs out-
of-the-box in a few minutes.

t L e .




Experimental results

Image Segmentation
Density is estimated in 3D color space.

Neighborhood graph is built in image domain

Distribution of prominences does not usually
show a clear unique gap.

Still, relationship between choice of 7 and

] (.5 1.5 2 25

number of obtained clusters remains explicit.



Application to non-rigid shape segmentation

[Persistence-Based Segmentation of Deformable Shapes,
Skraba, Ovsjanikov, Chazal, Guibas, Proc. CVPR 2010]

Persistence diagram for david1 with f = HKS(0.1)

80+

*
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50
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10+

X 3 3 D Sh a p e 00 1|0 2|o 50 4|0 5|o éo ?Io slo

f = HKS function on X
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Skraba, Ovsjanikov, Chazal, Guibas, Proc. CVPR 2010]
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Problem: cluster boundaries are unstable, which gives dirty segments.



Application to non-rigid shape segmentation

[Persistence-Based Segmentation of Deformable Shapes,
Skraba, Ovsjanikov, Chazal, Guibas, Proc. CVPR 2010]

Persistence diagram for david1 with f = HKS(0.1)

80+

\4

60 -

50

40 - ,
T 5  prominent
o, peaks/clusters
10+

X 3 3 D Sh a p e 00 1|0 2|o 50 4|0 5|o éo ?Io slo

f = HKS function on X

Problem: cluster boundaries are unstable, which gives dirty segments.



Topological Machine Learning (11):
Guiding ML models

3. Topology-based Optimization



Persistence diagrams and optimization

BBB What filtration to choose?
.e persistence
. o C
e ° Persistence diagram
e Classifier (RF, SVM, NN etc.) k(o5 0) = (D), () > o
e Dim. red. (PCA, MDS, UMAP, t-SNE) A o o o o
e Clustering (DBSCAN, K-means, etc.) - >0 °
o o H
Etc. >
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Q: How to define VD7



Problem setting

Q: How to define VD7

Q: Given a parameterized family of functions F = {fy : 0 € ©}, how to
define Vo Dy,7?

Q: Given a point cloud X C R?, how to define V x DRips(X)?



Problem setting

Q: How to define VD7

Q: Given a parameterized family of functions F = {fy : 0 € ©}, how to
define Vo Dy,7?

Q: Given a point cloud X C R?, how to define V x DRips(X)?

Idea: Let's go back to the PD construction...



Computation with matrix reduction

Input: simplicial filtration

(Persistent) homology can be computed by us-
ing the fact that each simplex is either:

positive, 1.e., it creates a new homology class |

negative, I.e., it destroys an homology class
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Computation with matrix reduction

Input: simplicial filtration

(Persistent) homology can be computed by us-
ing the fact that each simplex is either:

positive, 1.e., it creates a new homology class |

negative, I.e., it destroys an homology class
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Computation with matrix reduction

Input: simplicial filtration

(Persistent) homology can be computed by us-
ing the fact that each simplex is either:

positive, 1.e., it creates a new homology class |

negative, I.e., it destroys an homology class
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Computation with matrix reduction

Input: simplicial filtration

(Persistent) homology can be computed by us-
ing the fact that each simplex is either:

positive, 1.e., it creates a new homology class |

negative, I.e., it destroys an homology class
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Computation with matrix reduction

Input: simplicial filtration

(Persistent) homology can be computed by us-
ing the fact that each simplex is either:

positive, 1.e., it creates a new homology class

negative, I.e., it destroys an homology class

—e
—e
Noe

e

—e
s
Noe
—e
s
DO

1

Noe



Computation with matrix reduction ;

Input: simplicial filtration

6 5
(Persistent) homology can be computed by us- 7
ing the fact that each simplex is either:
positive, 1.e., it creates a new homology class | 1 5

negative, I.e., it destroys an homology class

; III‘

—e
—e
Noe
e
Noe

—e
s
NOe
—e
D
(N
—
2
DO



Computation with matrix reduction ;

Input: simplicial filtration

6 5
(Persistent) homology can be computed by us- 7
ing the fact that each simplex is either:
positive, 1.e., it creates a new homology class | 1 5

negative, I.e., it destroys an homology class

3 l I

® ®
2 1 2

3 3 3 3
A 3 A T )

—@
—@

—e
i

Noe

—e



Computation with matrix reduction

Input: simplicial filtration

Output: boundary matrix
reduced to column-echelon form

O simplex pairs give finite intervals:
2,4), 3,9), [6,7)

unpaired simplices give infinite intervals: |1, +00)

1121314567
1 * *
2 * | %
3 * | %
4 *
D *
0 *
7

3
5
7
1 4
112(3]4|5 7
! -
2 @*
3 (1)
4 *
: *
; ©
7




Computation with matrix reduction

Input: simplicial filtration

Output: boundary matrix
reduced to column-echelon form

O simplex pairs give finite intervals:
2,4), 3,9), [6,7)

A persistence diagram D is made of all
(F(oy),F(o_)) € R? where o (resp.
o_) is positive (resp. negative), and F is
the filtration function.

unpaired simplices give infinite intervals: |1, +00)

3
5

7

1 4
112]3 D 7

(r—\:;% H~

O,

(—) * | *

J| | Y | W[ DN =




Computation with matrix reduction

Input: simplicial filtration

Output: boundary matrix
reduced to column-echelon form

O simplex pairs give finite intervals:
2,4), 3,9), [6,7)

A persistence diagram D is made of all
(F(oy),F(o_)) € R* where o (resp.
o_) is positive (resp. negative), and F is
the filtration function.

Thus we can define the gradient of a point
p=(F(o4),F(o-)) €D as

Vp = [VF(04), VF(0-)

unpaired simplices give infinite intervals: |1, +00)

1

2

3

(r—\:;% H~

O,

(—) * | *

J| | Y | W[ DN =




Example: Vietoris-Rips gradient

Q: Define and compute Vietoris-Rips gradient?
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Point cloud Xn
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Example: Vietoris-Rips gradient

Persistence barcode

2., .

Given k-dim. simplex o = |vg, ..., vg|, one has

F (o) = max; j||v; — vj|]

Let p = (F(04), F(0-)) € Drips(X)

with o = {vg,..., v} and o_ = {wyg, ..., wks+1}



€.

Exampl

...........

Persistence barcode

2., .

|

y 8% Hwa* — Whp=

Vxp = |5xllvic —vje

Let p = (F(04), F(0-)) € Drips(X)

with o = {vg,..., v} and o_ = {wyg, ..., wks+1}



€.

Exampl

...........

Persistence barcode

2., .

|

= (=)t (v(d) — fu(.il)) if i =¢* (5°) and 0 otherwise

v —vj || X727 J

y 8% Hwa* — Whp=

Vxp = |5xllvic —vje

%@Hvi* — Uy

Let p = (F(04), F(0-)) € Drips(X)

with o = {vg,..., v} and o_ = {wyg, ..., wks+1}



.....

Example: Vietoris-Rips gradient

Persistence barcode

2., .

|

= () L ” (v§f) — fuj(.il)) if i =¢* (5°) and 0 otherwise

y 8% Hwa* — Whp=

Vxp = [a_XHUi* — Uy

%@Hvi* — Uy

With this gradient rule, one can do gradient descent with any function of
persistence!



the number of holes In that
point cloud.

Persistence barcode
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the number of holes in that

point cloud.

We can use gradient descent to

minimize loss

LX) == |lpl3,

with p € Dgips(X) (in hom. 1).
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Exampl

........

.....

the number of holes in that

e, .

point cloud.

We can use gradient descent to

minimize loss

LX) == |lpl3,

Pomt cloud X,

Persistence barcode

Point cloud at epoch 1000
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with p € Dgips(X) (in hom. 1).




Example: V

........

.....

Pomt cloud X,

Persistence barcode

., .

Point cloud at epoch 1000

the number of holes in that )
point cloud. ) e
We can use gradient descent to minimize
loss .
L(X) - _ZHPHS‘I—CZ(X, C)v 21 . o o o
P | o o o °® | e o ©

with p € Drips(X) and C' unit square.




Example: V
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i}'--:‘fi‘::-.,_’Point cloud X,

the number of holes in that

point cloud.

i

Persistence barcode

Point cloud at epoch 1000
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We can use gradient descent to minimize |

loss

LX) ==Y ol +d(X,0),

with p € DRips(X) and C unit square.
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Example: Sublevel sets

Given k-dim. simplex o = |vg, ..., vg|, one has

F(o) = max; fo(vi)
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Given k-dim. simplex o = |vg, ..., vg|, one has
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Let's say we want to remove
the stains in that image.

Image at epoch 0




Example: Sublevel sets

Given k-dim. simplex o = |vg, ..., vg|, one has
.F(O) — IMax; f@(vi)
Vop = [ fo(vis), 25 fo(wg-)]

Let's say we want to remove
the stains in that image.

Image at epoch 0

We can use gradient descent to minimize
loss
L(X)=>_llpll3.
p

with p € Dpixel(I) (in hom. 0).




Example: Sublevel sets

Given k-dim. simplex o = |vg, ..., vg|, one has
.F(O) — IMax; f@(vi)
Vop = [ fo(vis), 25 fo(wg-)]

Let's say we want to remove
the stains in that image.

Image at epoch 3000

We can use gradient descent to minimize
loss
L(X)=>_llpll3.
p

with p € Dpixel(I) (in hom. 0).




Example: Sublevel sets

Given k-dim. simplex o = |vg, ..., vg|, one has
.F(O) — IMax; f@(vi)
Vop = [ fo(vis), 25 fo(wg-)]

Let's say we want to remove
the stains in that image.

Image at epoch 3000

We can use gradient descent to minimize
loss

L(X) =) lpll3+ ) max{|P|,[1—-P[},

Pel

with D < DPixel(l)-



Example: Sublevel sets

Given k-dim. simplex o = |vg, ..., vg|, one has
.F(O) — IMax; f@(vi)
Vop = [ fo(vis), 25 fo(wg-)]

Let's say we want to remove
the stains in that image.

Image at epoch 3000

We can use gradient descent to minimize
loss

L(X) =) lpll3+ ) max{|P|,[1—-P[},

Pel

with D < DPixel(l)-
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For a fixed ordering of the simplices in a simplicial complex K, the correspond-
ing persistence diagram always has the same number of points: its gradient
is well-defined!
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For a fixed ordering of the simplices in a simplicial complex K, the correspond-
ing persistence diagram always has the same number of points: its gradient

Is well-defined!

If the ordering changes, the boundary matrix can have a new reduced form
and the persistence diagram can have a new, different number of points.



[Optimizing persistent homology based func-

TOpOlogical gradient descent tions, C., Chazal, Glisse, lke, Kanna, Umeda,

ICML, 2021]

For a fixed ordering of the simplices in a simplicial complex K, the correspond-
ing persistence diagram always has the same number of points: its gradient
is well-defined!

If the ordering changes, the boundary matrix can have a new reduced form
and the persistence diagram can have a new, different number of points.

Prop: Let K be a simplicial complex and let ® : A — RI¥| a (parameterized)
filtration of K. There exists a partition A = SO U--- U O s.t. all the
restrictions ® : O, — RI¥ 1 are differentiable.

The O;'s are the parts of A where the ordering of the simplices of K is
preserved, and S is the boundaries of all O;'’s.



[Optimizing persistent homology based func-

TOpOlogical gradient descent tions, C., Chazal, Glisse, lke, Kanna, Umeda,

ICML, 2021]

Def: The Clarke subdifferential OL of L is the set:
0L = conv{lim,, ,,VL(x;) : L is diff. at x;},

where conv denotes the convex hull.

/\
f
/
/
/" nearby
/ gradients
- -
~ - -~ = subgradients
- I e B
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[Optimizing persistent homology based func-

TOpOlogical gradient descent tions, C., Chazal, Glisse, lke, Kanna, Umeda,

ICML, 2021]

Let {Ozk}k, {Ck}k S.t.
ap >0, > ar =400 and >, a5 < 400

(x random variables s.t. E[(;] = 0 and E[||(x||?] < C for some C > 0

Thm: As long as £ o Pers o ® is locally Lipschitz, the sequence

a1 = ar — ax(gr + Ck),

where g € O, (L o Pers o ®), converges to a critical point of L o Pers o .



- (" - [A gradient sampling algorithm for
Topological stratified gradient descent swatics mas v spoictions «
topological data analysis, Leygonie, C.,

Lacombe, Oudot, 2021]

Better guarantees can be obtained by smoothing the gradient definition.
Def: The smoothed topological gradient of Pers o ® is defined as:

V, = argmin{||g|| : g € conv(S,)}

where S, = {Vy : d € O;,0; € N(O,)}, where O, is the stratum associ-
ated to a, and MV (O,) is the set of strata that are close to O,.

Intuitively, close strata means that their corresponding orderings are very sim-
ilar, e.g., they differ by single swaps, or their distance is bounded by ¢ > 0.



[A gradient sampling algorithm for

Topological stratified gradient descent s ma win sapicatons

topological data analysis, Leygonie, C.,
Lacombe, Oudot, 2021]

Better guarantees can be obtained by smoothing the gradient definition.
Def: The smoothed topological gradient of Pers o ® is defined as:

V, = argmin{||g|| : g € conv(S,)}

where S, = {Vy : d € O;,0; € N(O,)}, where O, is the stratum associ-
ated to a, and MV (O,) is the set of strata that are close to O,.

Intuitively, close strata means that their corresponding orderings are very sim-
ilar, e.g., they differ by single swaps, or their distance is bounded by ¢ > 0.

Thm: Let ¢ > 0. As long as £ o Pers o ® is Lipschitz, the sequence
Ap+1 — A — €~ @ak/H@ak H?

converges in finitely many iterations to @ s.t. 3a : V; =0 and ||a —al| < e.



Example: filter selection

Assume we have a supervised classification task. The goal is to find a filtration
from a family F such that the corresponding persistence diagrams give the
best classification score.



Example: filter selection

Assume we have a supervised classification task. The goal is to find a filtration
from a family F such that the corresponding persistence diagrams give the
best classification score.
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Example: filter selection

Assume we have a supervised classification task. The goal is to find a filtration

from a family F such that the corresponding persistence diagrams give the
best classification score.

Idea: minimize:

_ Zyi:yj:l dp(Df(mZ)7 Df (x]))
“h= zz: > i1 dp(Dy (i), Dy(xj))

one can also use Sliced Wasserstein for speedup.



Example: filter selection

Assume we have a supervised classification task. The goal is to find a filtration
from a family F such that the corresponding persistence diagrams give the
best classification score.

Idea: minimize:

_ Zyi:yj:l dP(Df(ajZ)7 Df (mj))
“h= zz: > i1 dp(Dy(wi), Dy(x5))

one can also use Sliced Wasserstein for speedup.

Dataset || Baseline || Before After Difference Dataset || Baseline || Before After Difference
vs01l 100.0 61.3 99.0 +37.6 vs26 99.7 08.8 98.2 -0.6
vs02 99.4 08.8 97.2 -1.6 vs28 90.1 96.8 96.8 0.0
vs06 09.4 87.3 08.2 +10.9 vs29 99.1 91.6 98.6 +7.0
vs09 994 86.8 98.3 +11.5 vs34 99.8 9904 90.1 -0.3
vslé 99.7 89.0 97.3 +8.3 vs36 99.7 990.3 99.3 -0.1
vs1l9 99.6 84.8 98.0 +13.2 vs37 98.9 94.9 97.5 +2.6
vs24 09.4 08.7 08.7 0.0 vs57 99.7 90.5 97.2 +6.7
vs25 99.4 80.6 97.2 +16.6 vs79 90.1 85.3 96.9 +11.5



[A Topological Regularizer for Classi-

Application: model regularization fers v Persistent Homology, Chen,

Ni, Bai, Wang, AISTATS, 2019]
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Take home message

Topological Data Analysis is:
a mathematically grounded framework...
H; = 7,/ By

...that applies to a wide variety of data sets...
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Topological inference Topological machine learning

Exploratory data analysis



