Foundations of Geometric Methods in Data Analysis
2021-2022

Computational Topology: Simplicial Complexes and (Persistent) Homology

Mathieu Carrière
INRIA Sophia-Antipolis
mathieu.carriere@inria.fr
Class outline: taking a step back...

My classes are about

Topological Data Analysis (TDA)
Class outline: taking a step back...

My classes are about

Topological Data Analysis (TDA)

Goal: Study geometric data sets with techniques coming from topology.
My classes are about

Topological Data Analysis (TDA)

Goal: Study geometric data sets with techniques coming from *topology*.

Question: What is topology?
Class outline: taking a step back...

My classes are about

Topological Data Analysis (TDA)

Goal: Study geometric data sets with techniques coming from topology.

Question: What is topology?

[Elements of Algebraic Topology, Munkres, CRC Press, 1984]

[Computational Topology: an introduction, Edelsbrunner, Harer, AMS, 2010]
Introduction: topological visualization
Introduction: topological visualization

visualize topology on the data directly
Introduction: topological visualization

Two types of applications:

- clustering
- feature selection

Principle: identify statistically relevant subpopulations through topological patterns (flares, loops).
Introduction: topological visualization

3d shapes classification

Introduction: topological visualization

[Topological Methods for Exploring Low-density States in Biomolecular Folding Pathways, Yao et al., J. Chemical Physics, 2009]

Data: conformations of molecules.

Goal: detect folding pathways.

Idea: 1 loop = 2 pathways.
Data: breast cancer patients that went through specific therapy.

Goal: detect variables that influence survival after therapy in breast cancer.
Introduction: topological descriptors built from data

We will see how to build new topological features from data sets...
Introduction: topological descriptors built from data

We will see how to build new topological features from data sets...

...but why is that interesting?
Introduction: topological descriptors built from data

Scans

3D shapes

Magnetometer

Galaxies
Introduction: topological descriptors built from data

Data often come as (sampling of) metric spaces or sets/spaces endowed with a similarity measure with, possibly complex, topological/geometric structure.

Data carrying geometric information is usually high dimensional.
Introduction: topological descriptors built from data

Features from Topological Data Analysis allow to:
- infer relevant topological and geometric features of these spaces.
- take advantage of topol./geom. information for further processing of data (classification, recognition, learning, clustering, parametrization...).
Challenges and advantages

Problem: how to define the *topology* of a data set?
Challenges and advantages

Problem: how to define the *topology* of a data set?

Challenges and goals:
→ no direct access to topological/geometric information: need of intermediate constructions with *simplicial complexes*;
→ distinguish topological “signal” from noise;
→ topological information may be multiscale;
→ statistical analysis of topological information.
Challenges and advantages

Advantages:
→ **coordinate invariance**: topological features/invariants do not rely on any coordinate system ⇒ no need to have data with coordinates, or to embed data in spaces with coordinates... but the metric (distance/similarity between data points) is important.
→ **deformation invariance**: topological features are invariant under homeomorphism and reparameterization.
→ **compressed representation**: topology offers a set of tools to summarize the data in compact ways while preserving its topological structure.
A brief look at topology

Roughly speaking, the goal of topology is to *classify spaces*.
A brief look at topology

Roughly speaking, the goal of topology is to classify spaces.

Q: What is the most basic brick (space) topology can work on?
A brief look at topology

Roughly speaking, the goal of topology is to classify spaces.

Q: What is the most basic brick (space) topology can work on?

A: The so-called topological spaces.

Def: A topological space is a set X equipped with a topology, i.e., a family \mathcal{O} of subsets of X, called the open sets of X, such that:

(i) the empty set \emptyset and X are elements of \mathcal{O},
(ii) any union of elements of \mathcal{O} is an element of \mathcal{O},
(iii) any finite intersection of elements of \mathcal{O} is an element of \mathcal{O}.

Open sets are the tools that allow to define continuity, which is the primary notion that allow to compare spaces in topology.
A brief look at topology

Roughly speaking, the goal of topology is to classify spaces.

Q: What is the most basic brick (space) topology can work on?

A: The so-called topological spaces.

Def: A topological space is a set X equipped with a topology, i.e., a family \mathcal{O} of subsets of X, called the open sets of X, such that:

(i) the empty set \emptyset and X are elements of \mathcal{O},
(ii) any union of elements of \mathcal{O} is an element of \mathcal{O},
(iii) any finite intersection of elements of \mathcal{O} is an element of \mathcal{O}.

Open sets are the tools that allow to define continuity, which is the primary notion that allow to compare spaces in topology.

Def: a map $f : X \rightarrow Y$ is continuous if and only if the pre-image $f^{-1}(O_Y) = \{x \in X : f(x) \in O_Y\}$ of any open set $O_Y \subseteq Y$ is an open set of X.
A brief look at topology

Roughly speaking, the goal of topology is to classify spaces.

A very common family of topological spaces is comprised of the metric spaces.

Def: A metric (or distance) on X is a map $d : X \times X \to [0, +\infty)$ such that:

(i) for any $x, y \in X$, $d(x, y) = d(y, x)$,

(ii) for any $x, y \in X$, $d(x, y) = 0$ if and only if $x = y$,

(iii) for any $x, y, z \in X$, $d(x, z) \leq d(x, y) + d(y, z)$.

The set X together with d is a metric space.

The smallest topology containing all the open balls $B(x, r) = \{y \in X : d(x, y) < r\}$ is called the metric topology on X induced by d.

Ex: the standard topology in an Euclidean space is the one induced by the metric defined by the norm: $d(x, y) = \|x - y\|$.

A brief look at topology

Roughly speaking, the goal of topology is to *classify spaces*.

In topology, two spaces are the same (i.e., belong to the same class) if one 'continuously deforms' onto the other.
A brief look at topology

Roughly speaking, the goal of topology is to classify spaces.

In topology, two spaces are the same (i.e., belong to the same class) if one 'continuously deforms' onto the other.

Def: Here are the main comparison tools of topology:

- Two maps \(f_0 : X \to Y \) and \(f_1 : X \to Y \) are **homotopic** if \(\exists \) a continuous map \(F : [0, 1] \times X \to Y \) s.t. \(\forall x \in X, F(0, x) = f_0(x) \) and \(F_1(1, x) = f_1(x) \).

 \(X \) and \(Y \) are **homotopy equivalent** if \(\exists \) continuous maps \(f : X \to Y \) and \(g : Y \to X \) s.t. \(g \circ f \) is homotopic to \(\text{id}_X \) and \(f \circ g \) is homotopic to \(\text{id}_Y \).

- \(X \) and \(Y \) are **homeomorphic** if \(\exists \) a bijection (homeomorphism) \(h : X \to Y \) s.t. \(h \) and \(h^{-1} \) are continuous.

- \(X \) and \(Y \) are **isotopic** if \(\exists \) a continuous map (isotopy) \(F : X \times [0, 1] \to Y \) s.t. \(F(., 0) = \text{id}_X \), \(F(X, 1) = Y \) and \(\forall t \in [0, 1], F(., t) \) is an homeomorphism.

Q: Which notion is stronger/weaker?
A brief look at topology

Roughly speaking, the goal of topology is to classify spaces.

In topology, two spaces are the same (i.e., belong to the same class) if one 'continuously deforms' onto the other.

\[f_0(x) = x \]
\[f_t(x) = (1 - t)x \]
\[f_1(x) = 0 \]

homotopy equiv.

(not homotopy equiv.)

homotopy equiv.

(not homeomorphic nor isotopic)
A brief look at topology

Roughly speaking, the goal of topology is to classify spaces.

In topology, two spaces are the same (i.e., belong to the same class) if one 'continuously deforms' onto the other.

Previous examples are particular homotopy equivalences called deformation retracts.

Def: If $Y \subseteq X$ and if there exists a continuous map $F : [0,1] \times X \rightarrow X$ s.t.:

(i) $\forall x \in X$, $F(0,x) = x$
(ii) $\forall x \in X$, $F(1,x) \in Y$
(iii) $\forall y \in Y$, $\forall t \in [0,1]$, $F(t,y) \in Y$

then X and Y are homotopy equivalent. If one replaces condition (iii) by $\forall y \in Y$, $\forall t \in [0,1]$, $H(t,y) = y$ then H is a deformation retract of X onto Y.
A brief look at topology

Roughly speaking, the goal of topology is to *classify spaces*.

In topology, two spaces are the same (i.e., belong to the same class) if one 'continuously deforms' onto the other.

Q: Can you find two spaces that are homeomorphic but not isotopic?
A brief look at topology

Roughly speaking, the goal of topology is to classify spaces.

In topology, two spaces are the same (i.e., belong to the same class) if one ’continuously deforms’ onto the other.

Q: Can you find two spaces that are homeomorphic but not isotopic?

A: Torus and trefoil knot.
A brief look at topology

Roughly speaking, the goal of topology is to *classify spaces*.

In topology, two spaces are the same (i.e., belong to the same class) if one 'continuously deforms' onto the other.

Q: Can you find an isotopy between these guys?
A brief look at topology

Roughly speaking, the goal of topology is to classify spaces.

In topology, two spaces are the same (i.e., belong to the same class) if one ‘continuously deforms’ onto the other.

Pb 1: How to encode topological spaces for computational purposes?
A brief look at topology

Roughly speaking, the goal of topology is to classify spaces.

In topology, two spaces are the same (i.e., belong to the same class) if one 'continuously deforms' onto the other.

Pb 1: How to encode topological spaces for computational purposes?

Pb 2: Looking for homotopy equivalences/homeomorphisms/isotopies is extremely difficult. Are there mathematical quantities that are invariant to homotopy equivalences and easy to compute?
A topological space fit for computation

\textbf{Pb 1:} How to encode topological spaces for computational purposes?
A topological space fit for computation

Pb 1: How to encode topological spaces for computational purposes?

A: Using spaces made of small convex bricks, namely the *simplicial complexes* made of *simplices.*
Simplex and simplicial complex
Simplex and simplicial complex

0-simplex: vertex
1-simplex: edge
2-simplex: triangle
3-simplex: tetrahedron

etc...
Simplex and simplicial complex

0-simplex: vertex
1-simplex: edge
2-simplex: triangle
3-simplex: tetrahedron

Def: Given a set \(P = \{p_0, \ldots, p_k\} \subset \mathbb{R}^d \) of \(k + 1 \) affinely independent points, the \(k \)-dimensional simplex \(\sigma \) (or \(k \)-simplex for short) spanned by \(P \) is the set of convex combinations

\[
\sum_{i=0}^{k} \lambda_i p_i, \quad \text{with} \quad \sum_{i=0}^{k} \lambda_i = 1 \quad \text{and} \quad \lambda_i \geq 0.
\]

The points \(p_0, \ldots, p_k \) are called the vertices of \(\sigma \).
Simplex and simplicial complex

Def: A simplicial complex K in \mathbb{R}^d is a collection of simplices s.t.:

- (i) any face of a simplex of K is a simplex of K,
- (ii) the intersection of any two simplices of K is either empty or a common face of both.

The underlying space of K (written $|K| \subseteq \mathbb{R}^d$) is the union of its simplices.
Simplex and simplicial complex

Def: A simplicial complex K in \mathbb{R}^d is a collection of simplices s.t.:

- (i) any face of a simplex of K is a simplex of K,
- (ii) the intersection of any two simplices of K is either empty or a common face of both.

The underlying space of K (written $|K| \subseteq \mathbb{R}^d$) is the union of its simplices.
Def: A simplicial complex of dimension d is **pure** if every simplex is the face of a d-simplex.
Triangulations

Def: A simplicial complex of dimension d is **pure** if every simplex is the face of a d-simplex.

Def: A **triangulation** of a point cloud $P \subset \mathbb{R}^d$ is a pure simplicial complex K s.t. $\text{vert}(K) = P$ and $|K| = \text{conv}(P)$.
Triangulations

Def: A simplicial complex of dimension d is **pure** if every simplex is the face of a d-simplex.

Def: A **triangulation** of a point cloud $P \subset \mathbb{R}^d$ is a pure simplicial complex K s.t. $\text{vert}(K) = P$ and $|K| = \text{conv}(P)$.

Def: A **triangulation** of a polygonal domain $\Omega \subset \mathbb{R}^d$ is a pure simplicial complex K s.t. $\text{vert}(K) = P$ and $|K| = \Omega$.
Triangulations

Def: A simplicial complex of dimension d is **pure** if every simplex is the face of a d-simplex.

Def: A **triangulation** of a point cloud $P \subset \mathbb{R}^d$ is a pure simplicial complex K s.t. $\text{vert}(K) = P$ and $|K| = \text{conv}(P)$.

Def: A **triangulation** of a polygonal domain $\Omega \subset \mathbb{R}^d$ is a pure simplicial complex K s.t. $\text{vert}(K) = P$ and $|K| = \Omega$.

Q: Triangulate
Abstract simplex and simplicial complex

Def: Let $P = \{p_1, \cdots, p_n\}$ be a (finite) set. An **abstract simplicial complex** K with vertex set P is a set of subsets of P satisfying the two conditions:

- (i) the elements of P belong to K,
- (ii) if $\tau \in K$ and $\sigma \subseteq \tau$, then $\sigma \in K$.

The elements of K are the **simplices**.
Abstract simplex and simplicial complex

Def: Let \(P = \{p_1, \ldots, p_n\} \) be a (finite) set. An abstract simplicial complex \(K \) with vertex set \(P \) is a set of subsets of \(P \) satisfying the two conditions:

- (i) the elements of \(P \) belong to \(K \),
- (ii) if \(\tau \in K \) and \(\sigma \subseteq \tau \), then \(\sigma \in K \).

The elements of \(K \) are the simplices.

IMPORTANT

Simplicial complexes can be seen at the same time as geometric/topological spaces (good for topological/geometrical inference) and as combinatorial objects (abstract simplicial complexes, good for computations).
Def: A realization of an abstract simplicial complex K is a geometric simplicial complex K' who is isomorphic to K, i.e., there exists a bijection

$$f : \text{vert}(K) \rightarrow \text{vert}(K'),$$

such that $\sigma \in K \iff f(\sigma) \in K'$.

Abstract simplex and simplicial complex
Abstract simplex and simplicial complex

Def: A realization of an abstract simplicial complex K is a geometric simplicial complex K' who is isomorphic to K, i.e., there exists a bijection

$$f : \text{vert}(K) \rightarrow \text{vert}(K'),$$

such that $\sigma \in K \iff f(\sigma) \in K'$.

Any abstract simplicial complex with n vertices can be realized in \mathbb{R}^n.

Q: Prove it.
Abstract simplex and simplicial complex

Def: A realization of an abstract simplicial complex K is a geometric simplicial complex K' who is isomorphic to K, i.e., there exists a bijection

$$f : \text{vert}(K) \rightarrow \text{vert}(K'),$$

such that $\sigma \in K \iff f(\sigma) \in K'$.

Any abstract simplicial complex with n vertices can be realized in \mathbb{R}^n.

Q: Prove it.

Abstract simplicial complexes and their realizations are *homeomorphic*.
Def: An open cover of a topological space X is a collection $\mathcal{U} = (U_i)_{i \in I}$ of open subsets $U_i \subseteq X$, $i \in I$ where I is a set, such that $X \subseteq \bigcup_{i \in I} U_i$.
Nerve complex

Def: An open cover of a topological space X is a collection $\mathcal{U} = (U_i)_{i \in I}$ of open subsets $U_i \subseteq X$, $i \in I$ where I is a set, such that $X \subseteq \bigcup_{i \in I} U_i$.
Nerve complex

Def: An open cover of a topological space X is a collection $\mathcal{U} = (U_i)_{i \in I}$ of open subsets $U_i \subseteq X$, $i \in I$ where I is a set, such that $X \subseteq \bigcup_{i \in I} U_i$.

Def: Given a cover of a topological space X, $\mathcal{U} = (U_i)_{i \in I}$, its nerve is the abstract simplicial complex $C(\mathcal{U})$ whose vertex set is \mathcal{U} and s.t.

$$\sigma = [U_{i_0}, U_{i_1}, \ldots, U_{i_k}] \in C(\mathcal{U}) \text{ if and only if } \bigcap_{j=0}^{k} U_{i_j} \neq \emptyset.$$
Nerve complex

Def: An open cover of a topological space X is a collection $\mathcal{U} = (U_i)_{i \in I}$ of open subsets $U_i \subseteq X$, $i \in I$ where I is a set, such that $X \subseteq \bigcup_{i \in I} U_i$.

Def: Given a cover of a topological space X, $\mathcal{U} = (U_i)_{i \in I}$, its nerve is the abstract simplicial complex $C(\mathcal{U})$ whose vertex set is \mathcal{U} and s.t.

$$\sigma = [U_{i_0}, U_{i_1}, \ldots, U_{i_k}] \in C(\mathcal{U}) \text{ if and only if } \bigcap_{j=0}^{k} U_{i_j} \neq \emptyset.$$
The Nerve Theorem: Let $\mathcal{U} = (U_i)_{i \in I}$ be a finite open cover of a subset X of \mathbb{R}^d such that any intersection of the U_i's is either empty or contractible. Then X and $\mathcal{C}(\mathcal{U})$ are homotopy equivalent.

In particular, every convex set is contractible.
Čech and (Vietoris)-Rips complexes

Def: Given a point cloud $P = \{P_1, \ldots, P_n\} \subset \mathbb{R}^d$, its Čech complex of radius $r > 0$ is the abstract simplicial complex $C(P, r)$ s.t. $\text{vert}(C(P, r)) = P$ and

$$\sigma = [P_{i_0}, P_{i_1}, \ldots, P_{i_k}] \in C(P, r) \iff \bigcap_{j=0}^{k} B(P_{i_j}, r) \neq \emptyset.$$
Čech and (Vietoris)-Rips complexes

Def: Given a point cloud $P = \{P_1, \ldots, P_n\} \subset \mathbb{R}^d$, its Čech complex of radius $r > 0$ is the abstract simplicial complex $C(P, r)$ s.t. $\text{vert}(C(P, r)) = P$ and

$$\sigma = [P_{i_0}, P_{i_1}, \ldots, P_{i_k}] \in C(P, r) \iff \bigcap_{j=0}^{k} B(P_{i_j}, r) \neq \emptyset.$$

Q: Does the Nerve Theorem apply to Čech complexes?
Čech and (Vietoris)-Rips complexes

Def: Given a point cloud $P = \{P_1, \ldots, P_n\} \subset \mathbb{R}^d$, its Čech complex of radius $r > 0$ is the abstract simplicial complex $C(P, r)$ s.t. $\text{vert}(C(P, r)) = P$ and

$$\sigma = [P_{i_0}, P_{i_1}, \ldots, P_{i_k}] \in C(P, r) \iff \bigcap_{j=0}^k B(P_{i_j}, r) \neq \emptyset.$$

Pbm: Čech complexes can be quite hard to compute.
Čech and (Vietoris)-Rips complexes

Def: Given a point cloud $P = \{P_1, \ldots, P_n\} \subset \mathbb{R}^d$, its Čech complex of radius $r > 0$ is the abstract simplicial complex $C(P, r)$ s.t. $\text{vert}(C(P, r)) = P$ and

$$\sigma = [P_{i_0}, P_{i_1}, \ldots, P_{i_k}] \in C(P, r) \iff \bigcap_{j=0}^{k} B(P_{i_j}, r) \neq \emptyset.$$

Pbm: Čech complexes can be quite hard to compute.

Def: Given a point cloud $P = \{P_1, \ldots, P_n\} \subset \mathbb{R}^d$, its Rips complex of radius $r > 0$ is the abstract simplicial complex $R(P, r)$ s.t. $\text{vert}(R(P, r)) = P$ and

$$\sigma = [P_{i_0}, P_{i_1}, \ldots, P_{i_k}] \in R(P, r) \iff \|P_{i_j} - P_{i_{j'}}\| \leq 2r, \forall 1 \leq j, j' \leq k.$$
Čech and (Vietoris)-Rips complexes

Def: Given a point cloud $P = \{P_1, \ldots, P_n\} \subset \mathbb{R}^d$, its Čech complex of radius $r > 0$ is the abstract simplicial complex $C(P, r)$ s.t. $\text{vert}(C(P, r)) = P$ and

$$\sigma = [P_{i_0}, P_{i_1}, \ldots, P_{i_k}] \in C(P, r) \iff \cap_{j=0}^k B(P_{i_j}, r) \neq \emptyset.$$
Čech and (Vietoris)-Rips complexes

Def: Given a point cloud $P = \{P_1, \ldots, P_n\} \subset \mathbb{R}^d$, its Čech complex of radius $r > 0$ is the abstract simplicial complex $C(P, r)$ s.t. $\text{vert}(C(P, r)) = P$ and

$$\sigma = [P_{i_0}, P_{i_1}, \ldots, P_{i_k}] \in C(P, r) \iff \bigcap_{j=0}^{k} B(P_{i_j}, r) \neq \emptyset.$$

Pbm: Čech complexes can be quite hard to compute.

Def: Given a point cloud $P = \{P_1, \ldots, P_n\} \subset \mathbb{R}^d$, its Rips complex of radius $r > 0$ is the abstract simplicial complex $R(P, r)$ s.t. $\text{vert}(R(P, r)) = P$ and

$$\sigma = [P_{i_0}, P_{i_1}, \ldots, P_{i_k}] \in R(P, r) \iff \|P_{i_j} - P_{i_{j'}}\| \leq 2r, \forall 1 \leq j, j' \leq k.$$

Good news is that Rips and Čech complexes are related:
Čech and (Vietoris)-Rips complexes

Def: Given a point cloud $P = \{P_1, \ldots, P_n\} \subset \mathbb{R}^d$, its Čech complex of radius $r > 0$ is the abstract simplicial complex $C(P, r)$ s.t. $\text{vert}(C(P, r)) = P$ and

$$\sigma = [P_{i_0}, P_{i_1}, \ldots, P_{i_k}] \in C(P, r) \text{ iff } \bigcap_{j=0}^k B(P_{i_j}, r) \neq \emptyset.$$

Pbm: Čech complexes can be quite hard to compute.

Def: Given a point cloud $P = \{P_1, \ldots, P_n\} \subset \mathbb{R}^d$, its Rips complex of radius $r > 0$ is the abstract simplicial complex $R(P, r)$ s.t. $\text{vert}(R(P, r)) = P$ and

$$\sigma = [P_{i_0}, P_{i_1}, \ldots, P_{i_k}] \in R(P, r) \text{ iff } \|P_{i_j} - P_{i_{j'}}\| \leq 2r, \forall 1 \leq j, j' \leq k.$$

Good news is that Rips and Čech complexes are related:

Prop: $R(P, r/2) \subseteq C(P, r) \subseteq R(P, r)$.

Q: Prove it.
Storing simplicial complexes

We want to store simplicial complexes with a data structure that allows to perform standard operations (insertion of a simplex, checking if a simplex is present, etc) in a fast and easy way.
Storing simplicial complexes

We want to store simplicial complexes with a data structure that allows to perform standard operations (insertion of a simplex, checking if a simplex is present, etc) in a fast and easy way.

Idea: store sorted simplices in a prefix tree (also called trie).

[The Simplex Tree: An Efficient Data Structure for General Simplicial Complexes, Boissonnat, Maria, Algorithmica, 2014]
Storing simplicial complexes

We want to store simplicial complexes with a data structure that allows to perform standard operations (insertion of a simplex, checking if a simplex is present, etc) in a fast and easy way.

Idea: store sorted simplices in a prefix tree (also called trie).

This is called the simplex tree.

It allows to store all simplices explicitly without storing all adjacency relations, while maintaining low complexity for basic operations.

[The Simplex Tree: An Efficient Data Structure for General Simplicial Complexes, Boissonnat, Maria, Algorithmica, 2014]
Storing simplicial complexes

We want to store simplicial complexes with a data structure that allows to perform standard operations (insertion of a simplex, checking if a simplex is present, etc) in a fast and easy way.

Q: build the simplex tree of
Storing simplicial complexes

We want to store simplicial complexes with a data structure that allows to perform standard operations (insertion of a simplex, checking if a simplex is present, etc) in a fast and easy way.

Q: build the simplex tree of

```
Number of nodes in simplex tree = number of simplices
Depth of simplex tree = 1 + dimension of complex
```
Storing simplicial complexes

We want to store simplicial complexes with a data structure that allows to perform standard operations (insertion of a simplex, checking if a simplex is present, etc) in a fast and easy way.

Unfortunately, the simplex tree also has redundancies.

[The Simplex Tree: An Efficient Data Structure for General Simplicial Complexes, Boissonnat, Maria, Algorithmica, 2014]
Storing simplicial complexes

We want to store simplicial complexes with a data structure that allows to perform standard operations (insertion of a simplex, checking if a simplex is present, etc) in a fast and easy way.

Unfortunately, the simplex tree also has redundancies.

[The Simplex Tree: An Efficient Data Structure for General Simplicial Complexes, Boissonnat, Maria, Algorithmica, 2014]
Pb 2: Looking for homotopy equivalences/homeomorphisms/isotopies is extremely difficult. Are there mathematical quantities that are invariant to homotopy equivalences and easy to compute?
Pb 2: Looking for homotopy equivalences/homeomorphisms/isotopies is extremely difficult. Are there mathematical quantities that are invariant to homotopy equivalences and easy to compute?

A: The holes, encoded in the homology groups H_k, $k \in \mathbb{N}$
The homology groups
The homology groups

Q: How to characterize a hole in a simplicial complex?
The homology groups

Q: How to characterize a hole in a simplicial complex?

A: A hole (in 1D) is a path whose first and end points are the same, a loop.
The homology groups

Q: How to characterize a hole in a simplicial complex?

A: A hole (in 1D) is a path whose first and end points are the same, a loop.

The sequence of 1-dimensional simplices \([v_0, v_1], [v_1, v_2], [v_2, v_3], [v_3, v_4], [v_4, v_5], [v_5, v_0]\) is a hole.
The homology groups

Q: How to characterize a hole in a simplicial complex?

A: A hole (in 1D) is a path whose first and end points are the same, a loop.

The sequence of 1-dimensional simplices \([v_0, v_1], [v_1, v_2], [v_2, v_3], [v_3, v_4], [v_4, v_5], [v_5, v_0]\) is a hole

But what about higher dimensional holes (like the inside of a tetrahedron)?
The homology groups

Q: How to characterize a hole in a simplicial complex?

A: A hole (in 1D) is a path whose first and end points are the same, a loop.

The sequence of 1-dimensional simplices \([v_0, v_1], [v_1, v_2], [v_2, v_3], [v_3, v_4], [v_4, v_5], [v_5, v_0]\) is a hole.

But what about higher dimensional holes (like the inside of a tetrahedron)?

A: A hole in dimension \(d\) is a simplicial complex in which each \((d-1)\)-simplex appears an even number of times.
The homology groups

Def: A *d-chain* is a formal sum of *d*-simplices with coefficients in $\mathbb{Z}/2\mathbb{Z}$.

$$C = [v_0, v_1] + [v_1, v_2] + [v_2, v_3] + [v_3, v_4] + [v_4, v_5] + [v_5, v_0].$$
The homology groups

Def: A \textit{d-chain} is a formal sum of \textit{d}-simplices with coefficients in \(\mathbb{Z}/2\mathbb{Z}\).

\[C = [v_0, v_1] + [v_1, v_2] + [v_2, v_3] + [v_3, v_4] + [v_4, v_5] + [v_5, v_0]. \]

Def: The \textit{boundary} of a \textit{d}-simplex is the chain made of its \((d - 1)\)-simplices.
The homology groups

Def: A \(d \)-chain is a formal sum of \(d \)-simplices with coefficients in \(\mathbb{Z}/2\mathbb{Z} \).

\[C = [v_0, v_1] + [v_1, v_2] + [v_2, v_3] + [v_3, v_4] + [v_4, v_5] + [v_5, v_0]. \]

Def: The boundary of a \(d \)-simplex is the chain made of its \((d - 1)\)-simplices.

\[\partial_n [v_1, \ldots, v_{n+1}] = \sum_{i=1}^{n+1} [v_1, \ldots, v_{i-1}, v_{i+1}, \ldots, v_{n+1}] \]
The homology groups

Def: A *d-chain* is a formal sum of *d*-simplices with coefficients in $\mathbb{Z}/2\mathbb{Z}$.

\[C = [v_0, v_1] + [v_1, v_2] + [v_2, v_3] + [v_3, v_4] + [v_4, v_5] + [v_5, v_0]. \]

Def: The *boundary* of a *d*-simplex is the chain made of its \((d - 1)\)-simplices.

\[\partial_1 C = \partial_1 [v_0, v_1] + \partial_1 [v_1, v_2] + \partial_1 [v_2, v_3] + \partial_1 [v_3, v_4] + \partial_1 [v_4, v_5] + \partial_1 [v_5, v_0] \]
The homology groups

Def: A \(d\)-chain is a formal sum of \(d\)-simplices with coefficients in \(\mathbb{Z}/2\mathbb{Z}\).

\[
C = [v_0, v_1] + [v_1, v_2] + [v_2, v_3] + [v_3, v_4] + [v_4, v_5] + [v_5, v_0].
\]

Def: The boundary of a \(d\)-simplex is the chain made of its \((d-1)\)-simplices.

\[
\partial_1 C = \partial_1 [v_0, v_1] + \partial_1 [v_1, v_2] + \partial_1 [v_2, v_3] + \partial_1 [v_3, v_4] + \partial_1 [v_4, v_5] + \partial_1 [v_5, v_0]
= [v_0] + [v_1] + [v_1] + [v_2] + [v_2] + [v_3] + [v_3] + [v_4] + [v_4] + [v_5] + [v_5] + [v_0].
\]
The homology groups

Def: A *d-chain* is a formal sum of *d*-simplices with coefficients in $\mathbb{Z}/2\mathbb{Z}$.

\[C = [v_0, v_1] + [v_1, v_2] + [v_2, v_3] + [v_3, v_4] + [v_4, v_5] + [v_5, v_0]. \]

Def: The *boundary* of a *d*-simplex is the chain made of its $(d-1)$-simplices.

\[\partial_1 C = \partial_1 [v_0, v_1] + \partial_1 [v_1, v_2] + \partial_1 [v_2, v_3] + \partial_1 [v_3, v_4] + \partial_1 [v_4, v_5] + \partial_1 [v_5, v_0] \]

\[= [v_0] + [v_1] + [v_1] + [v_2] + [v_2] + [v_3] + [v_3] + [v_4] + [v_4] + [v_5] + [v_5] + [v_0] \]

\[= [v_0] + [v_0] = 0. \]

Def: A *d-cycle* is a *d*-chain C s.t. $\partial C = 0$.

\[\partial_n [v_1, \ldots, v_{n+1}] = \sum_{i=1}^{n+1} [v_1, \ldots, v_{i-1}, v_i+1, \ldots, v_{n+1}] \]
The homology groups

Def: A \textit{d-chain} is a formal sum of \textit{d}-simplices with coefficients in $\mathbb{Z}/2\mathbb{Z}$.

\[
C = [v_0, v_1] + [v_1, v_2] + [v_2, v_3] + [v_3, v_4] + [v_4, v_5] + [v_5, v_0].
\]

Def: The \textit{boundary} of a \textit{d}-simplex is the chain made of its \((d-1)\)-simplices.

\[
\partial_1 C = \partial_1 [v_0, v_1] + \partial_1 [v_1, v_2] + \partial_1 [v_2, v_3] + \partial_1 [v_3, v_4] + \partial_1 [v_4, v_5] + \partial_1 [v_5, v_0]
= [v_0] + [v_1] + [v_1] + [v_2] + [v_2] + [v_3] + [v_3] + [v_4] + [v_4] + [v_5] + [v_5] + [v_0]
= [v_0] + [v_0] = 0.
\]

Def: A \textit{d-cycle} is a \textit{d-chain} C s.t. $\partial C = 0$.

Pb: Cycles are not holes!!
The homology groups

Lemma: $\partial_{n-1} \circ \partial_n = 0.$

Q: Prove it.
The homology groups

Lemma: \(\partial_{n-1} \circ \partial_n = 0 \).

Def: Two cycles are the same (homologous) if their difference is in \(\text{im}(\partial) \):
\[
C \sim C' \iff C + C' \in \text{im}(\partial)
\]

Q: Prove it.
The homology groups

Lemma: $\partial_{n-1} \circ \partial_n = 0$.

Q: Prove it.

Def: Two cycles are the same (homologous) if 'their difference is in $\text{im}(\partial)$':

\[C \sim C' \iff C + C' \in \text{im}(\partial) \]
The homology groups

Lemma: \(\partial_{n-1} \circ \partial_n = 0. \)

Q: Prove it.

Def: Two cycles are the same (homologous) if 'their difference is in \(\text{im}(\partial) \)':

\[
C \sim C' \iff C + C' \in \text{im}(\partial)
\]

\[
\begin{align*}
\text{ purple cycle } & \quad = \quad \text{ blue cycle } \quad + \quad \text{ black cycle } \\
\Rightarrow & \quad \text{ purple cycle } \sim \text{ blue cycle } \\
\Rightarrow & \quad \text{ purple cycle } + \text{ blue cycle } \in \text{im}(\partial) \\
\Rightarrow & \quad \text{ purple cycle } \sim \text{ blue cycle } \quad \quad \quad \quad \text{ (prove it)}
\end{align*}
\]
The homology groups

Lemma: \(\partial_{n-1} \circ \partial_n = 0. \)

Q: Prove it.

Def: Two cycles are the same (homologous) if 'their difference is in \(\text{im}(\partial) \):'

\[C \sim C' \iff C + C' \in \text{im}(\partial) \]

\(H_k = Z_k / B_k \)

\[= \partial(\quad) \]
The homology groups

Lemma: $\partial_{n-1} \circ \partial_n = 0$.

Q: Prove it.

Def: Two cycles are the same (homologous) if 'their difference is in $\text{im}(\partial)$':

$$C \sim C' \iff C + C' \in \text{im}(\partial)$$

$H_k = \mathbb{Z}_k / B_k$

H_k = group of k-cycles

$\text{im}(\partial_{k+1})$ = group of 'cycles minus boundaries'

$= \partial(\text{im}(\partial_{k+1}))$
The homology groups

Lemma: $\partial_{n-1} \circ \partial_n = 0$.

Q: Prove it.

Def: Two cycles are the same (homologous) if their difference is in $\text{im}(\partial)$:

$$C \sim C' \iff C + C' \in \text{im}(\partial)$$

$$H_k = \{ [C] : C \in Z_k \}$$

where

$$[C] = \{ C' : C \sim C' \}$$

$$\partial(\text{pink shaded area})$$
The homology groups

H_k is a group (vector space) in which each element is an equivalence class of cycles associated to the same hole.

Def: The dimension of H_k is called the *Betti number* β_k.

Minimum number of (classes of) cycles needed to create a basis, i.e., to be able to write *any* cycle as a linear combination of cycles in the basis.

β_0 counts the connected components, β_1 counts the loops, β_2 counts the cavities, and so on...
The homology groups

H_k is a group (vector space) in which each element is an equivalence class of cycles associated to the same hole.

Def: The dimension of H_k is called the *Betti number* β_k.

Q: What are the Betti numbers of:

- sphere: $\beta_0 = 1, \beta_1 = 0, \beta_2 = 1$
- torus: $\beta_0 = 1, \beta_1 = 2, \beta_2 = 1$
- cube: $\beta_0 = 1, \beta_1 = 5, \beta_2 = 0$
The homology groups

H_k is a group (vector space) in which each element is an equivalence class of cycles associated to the same hole.

Def: The dimension of H_k is called the *Betti number* β_k.

Q: What are the Betti numbers of:

- sphere: $\beta_0 = 1$, $\beta_1 = 0$, $\beta_2 = 1$
- torus: $\beta_0 = 1$, $\beta_1 = 2$, $\beta_2 = 1$
- cube: $\beta_0 = 1$, $\beta_1 = 5$, $\beta_2 = 0$

The whole point of homology groups and Betti numbers is that they satisfy:

$$H_k(X) \not\sim H_k(Y) \implies X \not\sim Y$$
Computation with filtrations and matrix reduction

Algorithms to compute the homology groups of a simplicial complex work by decomposing the simplicial complex, with a so-called filtration.
Computation with filtrations and matrix reduction

Algorithms to compute the homology groups of a simplicial complex work by decomposing the simplicial complex, with a so-called filtration.

Def: A filtered simplicial complex S is a family $\{S_a\}_{a \in \mathbb{R}}$ of subcomplexes of some fixed simplicial complex S s.t. $S_a \subseteq S_b$ for any $a \leq b$.
Algorithms to compute the homology groups of a simplicial complex work by decomposing the simplicial complex, with a so-called filtration.

Def: A filtered simplicial complex S is a family $\{S_a\}_{a \in \mathbb{R}}$ of subcomplexes of some fixed simplicial complex S s.t. $S_a \subseteq S_b$ for any $a \leq b$.

Def: Let f be a real valued function defined on the vertices of K. For $\sigma = [v_0, \ldots, v_k] \in K$, let $f(\sigma) = \max_{i=0, \ldots, k} f(v_i)$, and order the simplices of K in increasing order w.r.t. the function f values (and break ties with dimension in case some simplices have the same function value).

Q: Show that this is a filtration.
Computation with filtrations and matrix reduction

Input: simplicial filtration

Homology can be computed by using the fact that each simplex is either:

- *positive*, i.e., it *creates a new homology class*
- *negative*, i.e., it *destroys an homology class*
Computation with filtrations and matrix reduction

Input: simplicial filtration

Homology can be computed by using the fact that each simplex is either:

positive, i.e., it creates a new homology class

negative, i.e., it destroys an homology class
Computation with filtrations and matrix reduction

Input: simplicial filtration

Homology can be computed by using the fact that each simplex is either:

- **positive**, i.e., it *creates a new homology class*
- **negative**, i.e., it *destroys an homology class*
Computation with filtrations and matrix reduction

Input: simplicial filtration

Homology can be computed by using the fact that each simplex is either:

- *positive*, i.e., it *creates a new homology class*
- *negative*, i.e., it *destroys an homology class*
Computation with filtrations and matrix reduction

Input: simplicial filtration

Homology can be computed by using the fact that each simplex is either:

- **positive**, i.e., it *creates a new homology class*
- **negative**, i.e., it *destroys an homology class*
Computation with filtrations and matrix reduction

Input: simplicial filtration

Homology can be computed by using the fact that each simplex is either:

positive, i.e., it *creates a new homology class*

negative, i.e., it *destroys an homology class*
Computation with filtrations and matrix reduction

Input: simplicial filtration

Homology can be computed by using the fact that each simplex is either:

positive, i.e., it *creates a new homology class*

negative, i.e., it *destroys an homology class*
Computation with filtrations and matrix reduction

Input: simplicial filtration

Homology can be computed by using the fact that each simplex is either:

- **positive**, i.e., it *creates a new homology class*
- **negative**, i.e., it *destroys an homology class*

The Betti number is equal to the number of bars that are still alive when the full complex is reached in the filtration.
Computation with filtrations and matrix reduction

Input: simplicial filtration

Homology can be computed by using the fact that each simplex is either:

- **positive**, i.e., it *creates a new homology class*
- **negative**, i.e., it *destroys an homology class*

Q: Do the same for the homology of the cube.
Computation with filtrations and matrix reduction

Input: simplicial filtration

given as *boundary matrix*

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>12</td>
<td>34</td>
<td>56</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>

![Diagram of a simplicial complex](image-url)
Computation with filtrations and matrix reduction

Input: simplicial filtration

given as *boundary matrix*

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Computation with filtrations and matrix reduction

Input: simplicial filtration
given as boundary matrix

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>🌟</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>🌟</td>
<td>🌟</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>🌟</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Computation with filtrations and matrix reduction

Input: simplicial filtration
given as *boundary matrix*

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>●</td>
<td></td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>2</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Computation with filtrations and matrix reduction

Input: simplicial filtration

given as *boundary matrix*

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>•</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>•</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>•</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>•</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>•</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>•</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td>•</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Diagram with vertices 1, 2, 3, 4, 5, 6, 7 and edges connecting them forming a triangle]
Computation with filtrations and matrix reduction

Input: simplicial filtration
given as *boundary matrix*

\[
\begin{array}{ccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
1 & & & & & & \\
2 & & & & & & \\
3 & & & & & & \\
4 & & & & & & \\
5 & & & & & & \\
6 & & & & & & \\
7 & & & & & & \\
\end{array}
\]

for \(j=1 \) to \(m \) do:

\[
\text{while } \exists k < j \text{ s.t. } \text{low}(k) == \text{low}(j) \text{ do:}
\]

\[
\text{col}(j) = \text{col}(j) + \text{col}(k)
\]
Computation with filtrations and matrix reduction

Input: simplicial filtration
given as *boundary matrix*

```
<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>•</td>
<td>•</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>•</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>•</td>
<td>•</td>
<td></td>
<td>•</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>•</td>
<td></td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>•</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

for \(j = 1 \) to \(m \) do:

\[
\text{while } \exists k < j \text{ s.t. } \text{low}(k) = \text{low}(j) \text{ do:} \\
\text{col}(j) = \text{col}(j) + \text{col}(k) \\
\text{low}(j) = j' \\
\]

...
Computation with filtrations and matrix reduction

Input: simplicial filtration
given as *boundary matrix*

\[
\begin{array}{ccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
1 & \bullet & \bullet & \bullet & & & \\
2 & & \bullet & \bullet & & & \\
3 & & & \bullet & \bullet & & \\
4 & & & & \bullet & & \\
5 & & & & & \bullet & \\
6 & & & & & & \bullet \\
7 & & & & & & \\
\end{array}
\]

for \(j = 1 \) to \(m \) do:

\[
\text{while } \exists k < j \text{ s.t. } \text{low}(k) = \text{low}(j) \text{ do:}
\]

\[
\text{col}(j) = \text{col}(j) + \text{col}(k)
\]

\[
6 = 6 + 5
\]

\[
\text{low}(j) = j'
\]
Computation with filtrations and matrix reduction

Input: simplicial filtration
given as *boundary matrix*

\[
\begin{array}{ccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
1 & & & & & & \\
2 & & & & & & \\
3 & & & & & & \\
4 & & & & & & \\
5 & & & & & & \\
6 & & & & & & \\
7 & & & & & & \\
\end{array}
\]

\[
\begin{array}{c}
5 & 6 \\
& & \\
& & \\
& & \\
& & \\
\end{array}
\]

\[
\begin{array}{c}
\text{for } j=1 \text{ to } m \text{ do:} \\
\text{while } \exists k < j \text{ s.t. } \text{low}(k) = \text{low}(j) \text{ do:} \\
\text{col}(j) = \text{col}(j) + \text{col}(k) \\
\end{array}
\]

\[
6 = 6 + 5 \quad \text{low}(j) = j'
\]
Computation with filtrations and matrix reduction

Input: simplicial filtration

given as *boundary matrix*

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

for \(j = 1 \) to \(m \) do:

while \(\exists k < j \) s.t. \(\text{low}(k) = \text{low}(j) \) do:

\[
\text{col}(j) = \text{col}(j) + \text{col}(k)
\]

\(j' = \text{low}(j) \)

\(6 = 6 + 5 \)

\(6 = 6 + 4 \)
Computation with filtrations and matrix reduction

Input: simplicial filtration
given as boundary matrix

for $j=1$ to m do:
 while $\exists k < j$ s.t. $\text{low}(k) == \text{low}(j)$ do:
 $\text{col}(j) = \text{col}(j) + \text{col}(k)$

$6 = 6 + 5$
$6 = 6 + 4$
Computation with filtrations and matrix reduction

Input: simplicial filtration

Output: boundary matrix

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Computation with filtrations and matrix reduction

Input: simplicial filtration

Output: boundary matrix

reduced to column-echelon form

Input:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*</td>
</tr>
</tbody>
</table>

Output:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>1</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
Computation with filtrations and matrix reduction

Input: simplicial filtration

Output: boundary matrix reduced to column-echelon form

- Some positive-negative simplices are paired: $[2, 4), [3, 5), [6, 7)$
- Unpaired simplices provide homology basis: $[1, +\infty)$

Table

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>*</td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>*</td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>*</td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Matrix Reduction

```
<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Reduced to column-echelon form.
Computation with filtrations and matrix reduction

Input: simplicial filtration

Output: boundary matrix

- reduced to column-echelon form

Q: Complexity?
Computation with filtrations and matrix reduction

Input: simplicial filtration

Output: boundary matrix
 reduced to column-echelon form

PLU factorization:

- Gaussian elimination
- fast matrix multiplication (divide-and-conquer)
- random projections?

Q: Complexity?
Computation with filtrations and matrix reduction

Input: simplicial filtration

Output: boundary matrix reduced to column-echelon form

Q: Complexity?

PLU factorization:

- Gaussian elimination
 - Dionysus (http://www.mrzv.org/software/dionysus/)
 - Perseus (http://www.sas.upenn.edu/~vnanda/perseus/)
 - PHAT (https://bitbucket.org/phat-code/phat)
 - DIPHA (https://github.com/DIPHA/dipha/)
 - CTL (https://github.com/appliedtopology/ctl)
Q: Triangulate and compute homology of dunce cap: