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Topological inference setting

X̂n Fn

DFn(X̂n)

(X, d) metric space
µ probability measure with compact support Xµ

Sample n points
according to µ.

Examples:
- Fn = Rips(X̂n)

- Fn = Čech(X̂n)
- Fn = sublevelset filtration of d(., Xµ).

Questions: Statistical properties of DFn(X̂n) ? DFn(X̂n)→? as n→ +∞?



Topological inference setting

X̂n Fn

DFn(X̂n)

(X, d) metric space
µ probability measure with compact support Xµ

Sample n points
according to µ.

Examples:
- Fn = Rips(X̂n)

- Fn = Čech(X̂n)
- Fn = sublevelset filtration of d(., Xµ).

Stability thm: db(DF (Xµ), DFn(X̂n)) ≤ dH(Xµ, X̂n)

P
(

db

(
DF (Xµ), DFn(X̂n)

)
> ε
)
≤ P

(
dH(Xµ, X̂n) > ε

)So, for any ε > 0,



Deviation inequality

X̂n F(X̂n)

(X, d, µ)

X1, X2, . . . , Xn
i.i.d. sampled

according to µ.

For a, b > 0, µ satisfies the (a, b)-standard assumption if for any x ∈ Xµ and
any r > 0, we have µ(B(x, r)) ≥ min(arb, 1).

Xµ compact

[Convergence rates for persistence diagram estima-
tion in Topological Data Analysis, Chazal, Glisse,
Labruère, Michel ICML, 2014]



Deviation inequality

X̂n F(X̂n)

(X, d, µ)

X1, X2, . . . , Xn
i.i.d. sampled

according to µ.

For a, b > 0, µ satisfies the (a, b)-standard assumption if for any x ∈ Xµ and
any r > 0, we have µ(B(x, r)) ≥ min(arb, 1).

Thm: If µ satisfies the (a, b)-standard assumption, then for any ε > 0:

P
(

db

(
DF (Xµ), DFn(X̂n)

)
> ε
)
≤ min

{
8b

aεb
exp

(
−naεb

)
, 1

}
.

Moreover, limn→∞ P
(

db(DF (Xµ), DFn(X̂n)) ≤ C
(

logn
n

)1/b
)

= 1, where

C is a constant that only depends on a and b.

Xµ compact

[Convergence rates for persistence diagram estima-
tion in Topological Data Analysis, Chazal, Glisse,
Labruère, Michel ICML, 2014]



Minimax rate of convergence

Let P be the set of all the probability measures on the metric space (X, d)
satisfying the (a, b)-standard assumption on X.

[Convergence rates for persistence diagram estima-
tion in Topological Data Analysis, Chazal, Glisse,
Labruère, Michel ICML, 2014]



Minimax rate of convergence

Let P be the set of all the probability measures on the metric space (X, d)
satisfying the (a, b)-standard assumption on X.

Thm: One has the following:

sup
µ∈P

E
[
db(DF (Xµ), DFn(X̂n))

]
≤ C

(
log n

n

)1/b

where the constant C depends only on a and b. Assume moreover that there
exists a non isolated point x in X and let {xn}n be a sequence in X \ {x}
such that d(x, xn) ∼ (an)−1/b . Then for any estimator D̂n of DF (Xµ):

sup
µ∈P

E
[
db(DF (Xµ), D̂n)

]
≥ C ′d(x, xn)

where C ′ is an absolute constant.

[Convergence rates for persistence diagram estima-
tion in Topological Data Analysis, Chazal, Glisse,
Labruère, Michel ICML, 2014]



Minimax rate of convergence

Let P be the set of all the probability measures on the metric space (X, d)
satisfying the (a, b)-standard assumption on X.

[Convergence rates for persistence diagram estima-
tion in Topological Data Analysis, Chazal, Glisse,
Labruère, Michel ICML, 2014]

Proof: Apply Le Cam’s lemma:

sup
µ∈P

E
[
db(DF (Xµ), D̂n)

]
≥ 1

8
db(DF (Xµ0), DF (Xµ1))(1− TV(µ0, µ1))2n

with µ0 = δx and µ1 = 1
nδxn + (1− 1

n )δx.



Numerical illustrations

- µ: unif. measure on Lissajous curve Xµ.
- F : distance to Xµ in R2.
- sample 300 sets of n points for various n.
- compute Ên = Ê[db(DF (Xµ), DFn(X̂n))].
- plot log(Ên) as a function of log(log(n)/n).

[Convergence rates for persistence diagram estima-
tion in Topological Data Analysis, Chazal, Glisse,
Labruère, Michel ICML, 2014]



Numerical illustrations

- µ: unif. measure on a torus Xµ.
- F : distance to Xµ in R3.
- sample 300 sets of n points for various n.
- compute Ên = Ê[db(DF (Xµ), DFn(X̂n))].
- plot log(Ên) as a function of log(log(n)/n).

[Convergence rates for persistence diagram estima-
tion in Topological Data Analysis, Chazal, Glisse,
Labruère, Michel ICML, 2014]
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this one possible solution among othersPros:

• information of a different nature

• strong invariance and stability:

Persistence diagrams as data descriptors

• flexible and versatile

dataset 1-parameter family of spaces persistence diagram
(geometry) (algebraic

topology)

Cons:

• space of diagrams is not linear

• positive intrinsic curvature

• slow to compare

db(DRips(X), DRips(Y )) ≤ dGH(X,Y )



Persistence diagrams as data descriptors

dataset 1-parameter family of spaces persistence diagram
(geometry) (algebraic

topology)

Solution: use representations = embeddings of PDs into Hilbert space

D

H

Φ

k(·, ·) := 〈Φ(·),Φ(·)〉H

(ideally: Φ quasi-isometry)



diagrams are turned into families of 1-d functions

diagrams are turned into pixelized images → finite-dimensional vectors• images

State of the Art: define φ via:

Representations of persistence diagrams

[Persistence Images: A Stable Vector
Representation of Persistent Homol-
ogy, Adams et al., JMLR, 2017]
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diagrams are turned into sequences of values

diagrams are turned into finite-dimensional vectors

diagrams are turned into pixelized images → finite-dimensional vectors• images

State of the Art: define φ via:

Representations of persistence diagrams

• finite metric spaces
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[Stable topological signatures for
points on 3D shapes, C., Oudot,
Ovsjanikov, SGP, 2015]
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• polynomial roots or evaluations
{p1, . . . , pn} 7→ (P1(p1, . . . , pn), . . . , Pr(p1, . . . , pn), . . . )

[Stable topological signatures for
points on 3D shapes, C., Oudot,
Ovsjanikov, SGP, 2015]

[Persistence Images: A Stable Vector
Representation of Persistent Homol-
ogy, Adams et al., JMLR, 2017]

[Tropical coordinates on the space
of persistence barcodes, Kalisnik,
FoCM, 2018]
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diagrams are turned into 2-d density functions

diagrams are turned into families of 1-d functions

diagrams are turned into sequences of values

diagrams are turned into finite-dimensional vectors

diagrams are turned into pixelized images → finite-dimensional vectors

• landscapes

• images

• discrete measures:

→ Fisher information

→ heat diffusion

→ convolution with weighted kernel

State of the Art: define φ via:

Representations of persistence diagrams

• finite metric spaces

5
4

3

a

b

c
 0 4 5

4 0 3
5 3 0


a b c

a
b
c

• polynomial roots or evaluations
{p1, . . . , pn} 7→ (P1(p1, . . . , pn), . . . , Pr(p1, . . . , pn), . . . )

[Stable topological signatures for
points on 3D shapes, C., Oudot,
Ovsjanikov, SGP, 2015]

[Statistical Topological Data Anal-
ysis using Persistence Landscapes,
Bubenik, JMLR, 2015]

[Persistence weighted Gaussian kernel for
topological data analysis, Kusano, Hiraoka,
Fukumizu, ICML, 2016]

[A stable multi-scale kernel for topologi-
cal machine learning, Reininghaus et al.,
CVPR, 2015]

[Persistence Images: A Stable Vector
Representation of Persistent Homol-
ogy, Adams et al., JMLR, 2017]

[Persistence Fisher kernel: a Riemannian
manifold kernel for persistence diagrams,
Le, Yamada, NeurIPS, 2018]

[Tropical coordinates on the space
of persistence barcodes, Kalisnik,
FoCM, 2018]



Persistence image [Persistence Images: A Stable Vector
Representation of Persistent Homol-
ogy, Adams et al., JMLR, 2017]

Compute PD Rotate PD DiscretizationPixelate
+ concatenate into vector



Persistence image [Persistence Images: A Stable Vector
Representation of Persistent Homol-
ogy, Adams et al., JMLR, 2017]

Compute PD Rotate PD DiscretizationDiscretization

Discretize plane into a grid:

For each grid pixel P , compute I(P ) =
∑
p∈D

∫ ∫
P
w(p) · φp.

Concatenate all I(P ) into a single vector PI(D).

Pixelate
+ concatenate into vector

Ex: φp = N (p, σ).



Persistence image [Persistence Images: A Stable Vector
Representation of Persistent Homol-
ogy, Adams et al., JMLR, 2017]

Compute PD Rotate PD Discretization

Weight functions that preserve stability
must satisfy w(p)→ 0 when d(p,∆)→ 0. 1

t
y

Pixelate
+ concatenate into vector

wt(x, y)

[Understanding the topology and the
geometry of the persistence diagram
space via optimal partial transport,
Divol, Lacombe, JACT, 2020]



Persistence image [Persistence Images: A Stable Vector
Representation of Persistent Homol-
ogy, Adams et al., JMLR, 2017]

Compute PD Rotate PD Discretization

Prop: The following inequalities hold:

• ‖PI(D)− PI(D′)‖∞ ≤ C(w, φp) d1(D,D′).

• ‖PI(D)− PI(D′)‖2 ≤
√
dC(w, φp) d1(D,D′).

Pixelate
+ concatenate into vector



Persistence landscape

[Statistical Topological Data Analysis using
Persistence Landscapes, Bubenik, JMLR, 2015]

Rotate PD
Compute rank function

Use boundaries of
rank function



Persistence landscape

[Statistical Topological Data Analysis using
Persistence Landscapes, Bubenik, JMLR, 2015]

Rotate PD
Compute rank function

Use boundaries of
rank function

Rotate PD
Compute rank function

Rank function is defined as λ(x, y) = rank ιyx

ιyx : H(f−1(−∞, x))→ H(f−1(−∞, y)) induced linear map

x ≤ y =⇒ f−1(−∞, x) ⊆ f−1(−∞, y)



Persistence landscape

[Statistical Topological Data Analysis using
Persistence Landscapes, Bubenik, JMLR, 2015]

Rotate PD
Compute rank function

Use boundaries of
rank function
Use boundaries of
rank function

Landscape Λ : R2 → R is defined as: Λ(i, t) = λbic(t)

Boundaries of rank function: λi(t) = sup{s ≥ 0 : λ(t− s, t+ s) ≥ i}

They can equivalently be defined as: Λ(i, t) = i-th max{λj(t)}



Persistence landscape

[Statistical Topological Data Analysis using
Persistence Landscapes, Bubenik, JMLR, 2015]

Rotate PD
Compute rank function

Use boundaries of
rank function

Prop: The following inequalities hold:

• ‖Λ(D)− Λ(D′)‖∞ ≤ db(D,D
′).

• min{1, C(D,D′)‖Λ(D)− Λ(D′)‖2} ≤ d2(D,D′).



X̂n F(X̂n)

(X, d, µ)

X1, X2, . . . , Xn
i.i.d. sampled

according to µ.

Xµ compact

λ
Xµ
k (t)

Statistics with landscapes

E
[
λX̂nk (t)

]
λX̂nk (t)



X̂n F(X̂n)

(X, d, µ)

X1, X2, . . . , Xn
i.i.d. sampled

according to µ.

Xµ compact

λ
Xµ
k (t)

Statistics with landscapes

E
[
λX̂nk (t)

]
E
[
λX̂nk (t)− λXµk (t)

]
→ 0 as n→ +∞

λX̂nk (t)



X̂n F(X̂n)

(X, d, µ)

X1, X2, . . . , Xn
i.i.d. sampled

according to µ.

Xµ compact

λ
Xµ
k (t)

Statistics with landscapes

E
[
λX̂nk (t)

]
E
[
λX̂nk (t)− λXµk (t)

]
→ 0 as n→ +∞

λX̂nk (t) λ
X̂1
n

k (t) λ
X̂2
n

k (t) λ
X̂mn
k (t)

λ̄mk (t) := 1
m

∑m
i=1 λ

X̂in
k (t)

. . .λ
X̂3
n

k (t)



X̂n F(X̂n)

(X, d, µ)

X1, X2, . . . , Xn
i.i.d. sampled

according to µ.

Xµ compact

λ
Xµ
k (t)

Statistics with landscapes

E
[
λX̂nk (t)

]
E
[
λX̂nk (t)− λXµk (t)

]
→ 0 as n→ +∞

λX̂nk (t) λ
X̂1
n

k (t) λ
X̂2
n

k (t) λ
X̂mn
k (t)

λ̄mk (t) := 1
m

∑m
i=1 λ

X̂in
k (t)

. . .λ
X̂3
n

k (t)

?



Bootstrapping landscapes

Thm: Suppose that var(λ̄mk (t)) > c > 0 in an interval [t∗ , t
∗] ⊂ [0, T ], for

some constant c. Then, given a confidence level 1− α, one has:

P
(∣∣∣E [λX̂nk (t)

]
− λ̄mk (t)

∣∣∣ ≤ ZB,α√
m
∀t ∈ [t∗ , t

∗]
)
≥ 1−α−O

(
(logm)7/8

m1/8

)
,

[Stochastic convergence of persistence
landscapes and silhouettes, Chazal et
al., JoCG, 2015]

where ZB,α is a quantile of a multiplier bootstrap distribution.
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Bootstrapping landscapes

Thm: Suppose that var(λ̄mk (t)) > c > 0 in an interval [t∗ , t
∗] ⊂ [0, T ], for

some constant c. Then, given a confidence level 1− α, one has:

P
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]
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m
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(
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)
,

[Stochastic convergence of persistence
landscapes and silhouettes, Chazal et
al., JoCG, 2015]

where ZB,α is a quantile of a multiplier bootstrap distribution.



Stability of the mean landscape

X̂n F(X̂n)(X, d, µ)
X1, X2, · · · , Xn

i.i.d. sampled
according to µ.

Xµ compact

Λµ,n(t) = EPµ
[
λX̂nk (t)

]



Stability of the mean landscape

X̂n F(X̂n)(X, d, µ)
X1, X2, · · · , Xn

i.i.d. sampled
according to µ.

Xµ compact

Λµ,n(t) = EPµ
[
λX̂nk (t)

]
How bad is the dependence in µ?



Stability of the mean landscape

X̂n F(X̂n)(X, d, µ)
X1, X2, · · · , Xn

i.i.d. sampled
according to µ.

Xµ compact

Λµ,n(t) = EPµ
[
λX̂nk (t)

]
How bad is the dependence in µ?

Thm: Let (X, d) be a metric space and let µ, ν be probability measures on
X with compact supports. Then one has:

‖Λµ,n − Λν,n‖∞ ≤ n
1
pWp(µ, ν),

where Wp denotes the Wasserstein distance with cost function d(·, ·)p.

[Subsampling methods for persistent
homology, Chazal et al., ICML, 2015]



Example: Circle with one outlier.

Numerical illustrations: confidence for landscapes



Example: 3D shapes

Numerical illustrations: confidence for landscapes



Example: Accelerometer data from smartphone.

Numerical illustrations: confidence for landscapes
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Q: What happens in general when one embeds PDs in Hilbert?

Def: Two metrics d,d′ are equivalent if

∃0 < A,B < +∞ s.t. Ad(·, ·) ≤ d′(·, ·) ≤ B d(·, ·)

The space of persistence diagrams [On the Metric Distortion of Embedding Persis-
tence Diagrams into separable Hilbert Spaces,
Bauer, C., SoCG, 2019]



Q: What happens in general when one embeds PDs in Hilbert?

Prop: H Hilbert with dot product 〈·, ·〉H and distance ‖ ·‖H. Assume
dH and d∞ or dp are equivalent.

(i) H = Rd ⇒ Impossible

even if the PDs are included in [−L,L]2 and have less than N points

(ii) H separable, p = 1 ⇒ either A→ 0 or B → +∞
when L,N → +∞

Def: Two metrics d,d′ are equivalent if

∃0 < A,B < +∞ s.t. Ad(·, ·) ≤ d′(·, ·) ≤ B d(·, ·)

The space of persistence diagrams [On the Metric Distortion of Embedding Persis-
tence Diagrams into separable Hilbert Spaces,
Bauer, C., SoCG, 2019]



Q: What happens in general when one embeds PDs in Hilbert?

Def: Two metrics d,d′ are equivalent if

∃0 < A,B < +∞ s.t. Ad(·, ·) ≤ d′(·, ·) ≤ B d(·, ·)

Proof:

(ii) The space of PDs with possibly infinite number of points
is not separable with respect to d1

Consider S = {Du}u∈{0,1}N

where Du =
{(
k, k + 1

k

)
: uk = 1

}
S is not countable with d1

k

1/k1/k

The space of persistence diagrams [On the Metric Distortion of Embedding Persis-
tence Diagrams into separable Hilbert Spaces,
Bauer, C., SoCG, 2019]



Q: What happens in general when one embeds PDs in Hilbert?

Def: Two metrics d,d′ are equivalent if

∃0 < A,B < +∞ s.t. Ad(·, ·) ≤ d′(·, ·) ≤ B d(·, ·)

Proof:

k

1/k1/k

S = {Du}u∈{0,1}N

Indeed, let S′ ⊆ S be a dense set and ε > 0

The space of persistence diagrams [On the Metric Distortion of Embedding Persis-
tence Diagrams into separable Hilbert Spaces,
Bauer, C., SoCG, 2019]



Q: What happens in general when one embeds PDs in Hilbert?

Def: Two metrics d,d′ are equivalent if

∃0 < A,B < +∞ s.t. Ad(·, ·) ≤ d′(·, ·) ≤ B d(·, ·)

Proof:
S = {Du}u∈{0,1}N

Indeed, let S′ ⊆ S be a dense set and ε > 0

∀Du ∈ S, ∃Du′ ∈ S′ : d1(Du, Du′) ≤ ε

The space of persistence diagrams [On the Metric Distortion of Embedding Persis-
tence Diagrams into separable Hilbert Spaces,
Bauer, C., SoCG, 2019]



Q: What happens in general when one embeds PDs in Hilbert?

Def: Two metrics d,d′ are equivalent if

∃0 < A,B < +∞ s.t. Ad(·, ·) ≤ d′(·, ·) ≤ B d(·, ·)

Proof:
S = {Du}u∈{0,1}N

Indeed, let S′ ⊆ S be a dense set and ε > 0

∀Du ∈ S, ∃Du′ ∈ S′ : d1(Du, Du′) ≤ ε

Supports of u′ and u must differ on a finite
number of terms only

The space of persistence diagrams [On the Metric Distortion of Embedding Persis-
tence Diagrams into separable Hilbert Spaces,
Bauer, C., SoCG, 2019]



Q: What happens in general when one embeds PDs in Hilbert?

Def: Two metrics d,d′ are equivalent if

∃0 < A,B < +∞ s.t. Ad(·, ·) ≤ d′(·, ·) ≤ B d(·, ·)

Proof:
S = {Du}u∈{0,1}N

Indeed, let S′ ⊆ S be a dense set and ε > 0

∀Du ∈ S, ∃Du′ ∈ S′ : d1(Du, Du′) ≤ ε

Supports of u′ and u must differ on a finite
number of terms only

⇒ card(S′) ≥ card(S/ ∼)

where Du ∼ Dv ⇔ supp(u) 4 supp(v) <∞

The space of persistence diagrams [On the Metric Distortion of Embedding Persis-
tence Diagrams into separable Hilbert Spaces,
Bauer, C., SoCG, 2019]



Q: What happens in general when one embeds PDs in Hilbert?

Def: Two metrics d,d′ are equivalent if

∃0 < A,B < +∞ s.t. Ad(·, ·) ≤ d′(·, ·) ≤ B d(·, ·)

Proof:
S = {Du}u∈{0,1}N

Indeed, let S′ ⊆ S be a dense set and ε > 0

∀Du ∈ S, ∃Du′ ∈ S′ : d1(Du, Du′) ≤ ε

Supports of u′ and u must differ on a finite
number of terms only

⇒ card(S′) ≥ card(S/ ∼)

where Du ∼ Dv ⇔ supp(u) 4 supp(v) <∞

uncountable!

The space of persistence diagrams [On the Metric Distortion of Embedding Persis-
tence Diagrams into separable Hilbert Spaces,
Bauer, C., SoCG, 2019]



Q: What happens in general when one embeds PDs in Hilbert?

Def: Two metrics d,d′ are equivalent if

∃0 < A,B < +∞ s.t. Ad(·, ·) ≤ d′(·, ·) ≤ B d(·, ·)

Ex: Persistence surface Φ(D) =
∑
p∈D w(p) · exp

(
−‖·−p‖

2
2

2σ2

)
where w((x, y)) = arctan (C|y − x|α) with C,α > 0

The space of persistence diagrams [On the Metric Distortion of Embedding Persis-
tence Diagrams into separable Hilbert Spaces,
Bauer, C., SoCG, 2019]



Q: What happens in general when one embeds PDs in Hilbert?

Def: Two metrics d,d′ are equivalent if

∃0 < A,B < +∞ s.t. Ad(·, ·) ≤ d′(·, ·) ≤ B d(·, ·)

Ex: Persistence surface Φ(D) =
∑
p∈D w(p) · exp

(
−‖·−p‖

2
2

2σ2

)
where w((x, y)) = arctan (C|y − x|α) with C,α > 0

If α ≥ 2, S is in the domain of Φ.

The space of persistence diagrams [On the Metric Distortion of Embedding Persis-
tence Diagrams into separable Hilbert Spaces,
Bauer, C., SoCG, 2019]



Q: What happens in general when one embeds PDs in Hilbert?

Def: Two metrics d,d′ are equivalent if

∃0 < A,B < +∞ s.t. Ad(·, ·) ≤ d′(·, ·) ≤ B d(·, ·)

Proof:

(i) is a little more tricky

Def: Let (X, d) be a metric space. Given a subset E ⊂ X and r > 0,
let Nr(E) be the least number of open balls of radius ≤ r that can cover
E. The Assouad dimension of (X, d) is:

dimA(X, d) = inf{α : ∃C s.t. supxNβr(B(x, r)) ≤ Cβ−α, 0 < β ≤ 1}

The space of persistence diagrams [On the Metric Distortion of Embedding Persis-
tence Diagrams into separable Hilbert Spaces,
Bauer, C., SoCG, 2019]
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Q: What happens in general when one embeds PDs in Hilbert?

Def: Two metrics d,d′ are equivalent if

∃0 < A,B < +∞ s.t. Ad(·, ·) ≤ d′(·, ·) ≤ B d(·, ·)

Proof:

dimA(D, dp) = +∞ whereas dimA(Rd) = d

dimA is preserved for equivalent metrics

r

r

βr

Idea: Consider the ball of radius r
around the empty diagram and dia-
grams with single points at distance
r from ∆ and from each other

The number of such diagrams in-
creases to +∞ as β goes to 0

The space of persistence diagrams [On the Metric Distortion of Embedding Persis-
tence Diagrams into separable Hilbert Spaces,
Bauer, C., SoCG, 2019]



Illustrations:

We generate diagrams by
uniformly sampling into the
upper unit half-square

The space of persistence diagrams [On the Metric Distortion of Embedding Persis-
tence Diagrams into separable Hilbert Spaces,
Bauer, Carrière, SoCG, 2019]



Illustrations:

We generate diagrams by
uniformly sampling into the
upper unit half-square

The space of persistence diagrams [On the Metric Distortion of Embedding Persis-
tence Diagrams into separable Hilbert Spaces,
Bauer, Carrière, SoCG, 2019]

Idea: Stay in Euclidean space Rd but
learn best vectorization with Neural Net



Deep Set is a novel neural net architecture that is able to handle sets instead
of finite dimensional vectors

Input: {x1, ..., xn} ⊂ Rd instead of x ∈ Rd

The Deep Set architecture [Deep Sets, Zaheer, Kottur, Ravanbakhsh, Poc-
zos, Salakhutdinov, Smola, NeurIPS, 2017]



Deep Set is a novel neural net architecture that is able to handle sets instead
of finite dimensional vectors

Input: {x1, ..., xn} ⊂ Rd instead of x ∈ Rd

Network is permutation invariant: F (X) = ρ (
∑
i φ(xi))

x1
x2
x3

xn

x1
x2
x3 ...

...

sum

X

⇒ F ({x1, ..., xn}) = F ({xσ(1), ..., xσ(n)}), ∀σ

φ

In practice:

ρ

φ(xi) = W · xi + b

The Deep Set architecture [Deep Sets, Zaheer, Kottur, Ravanbakhsh, Poc-
zos, Salakhutdinov, Smola, NeurIPS, 2017]



Deep Set is a novel neural net architecture that is able to handle sets instead
of finite dimensional vectors

Input: {x1, ..., xn} ⊂ Rd instead of x ∈ Rd

Network is permutation invariant: F (X) = ρ (
∑
i φ(xi))

Universality theorem

Thm: A function f is permutation invariant iif f(X) = ρ (
∑
i φ(xi))

for some ρ and φ, whenever X is included in a countable space.

The Deep Set architecture [Deep Sets, Zaheer, Kottur, Ravanbakhsh, Poc-
zos, Salakhutdinov, Smola, NeurIPS, 2017]
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Permutation invariant layers generalize several TDA approaches

→ persistence images → landscapes

But not all of them since R2 is not countable

Using any permutation invariant operation (such as max, min, kth largest
value) allows to generalize other TDA approaches

→ Betti curves

PersLay(D) = ρ (op{w(p) · φ(p)}p∈D)

Application to PDs [PersLay: A Neural Network Layer for Persis-
tence Diagrams and New Graph Topological
Signatures, C., Chazal, Ike, Lacombe, Royer,
Umeda, AISTATS, 2019]
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Permutation invariant layers generalize several TDA approaches

→ persistence images → landscapes

But not all of them since R2 is not countable

Using any permutation invariant operation (such as max, min, kth largest
value) allows to generalize other TDA approaches

→ Betti curves

Weight function

PersLay(D) = ρ (op{w(p) · φ(p)}p∈D)

Permutation-invariant
operation

Application to PDs [PersLay: A Neural Network Layer for Persis-
tence Diagrams and New Graph Topological
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Umeda, AISTATS, 2019]
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Permutation invariant layers generalize several TDA approaches

→ persistence images → landscapes

But not all of them since R2 is not countable

Using any permutation invariant operation (such as max, min, kth largest
value) allows to generalize other TDA approaches

→ Betti curves

Weight function

Point transformation

PersLay(D) = ρ (op{w(p) · φ(p)}p∈D)

Permutation-invariant
operation

Application to PDs [PersLay: A Neural Network Layer for Persis-
tence Diagrams and New Graph Topological
Signatures, C., Chazal, Ike, Lacombe, Royer,
Umeda, AISTATS, 2019]

[Time Series Classifica-
tion via Topological Data
Analysis, Umeda, Trans.
Jap. Soc. for AI, 2017]



Λp1

Λp2

Λp3

p1

p2

p3

p4

φΛ : p 7→


Λp(t1)
Λp(t2)

...
Λp(tq)


Parameters t1, · · · , tq ∈ R

w(p) = 1 op = top-k

Application to PDs [PersLay: A Neural Network Layer for Persis-
tence Diagrams and New Graph Topological
Signatures, C., Chazal, Ike, Lacombe, Royer,
Umeda, AISTATS, 2019]



Γp1

Γp2

Γp3

Γp4

φΓ : p 7→


Γp(t1)
Γp(t2)

...
Γp(tq)


Parameters t1, · · · , tq ∈ R2

w(p) = wt((x, y)) op = sum

Application to PDs [PersLay: A Neural Network Layer for Persis-
tence Diagrams and New Graph Topological
Signatures, C., Chazal, Ike, Lacombe, Royer,
Umeda, AISTATS, 2019]



[φL(p1)]1

[φL(p1)]2 [φL(p3)]2 [φL(p2)]2

[φL(p2)]1

[φL(p3)]1

∆1

∆2

p1

p2

p3

p4

φL : p 7→


〈p, e∆1〉+ b∆1

〈p, e∆2〉+ b∆2

...
〈p, e∆q

〉+ b∆q


Parameters ∆1, · · · ,∆q ∈

[
−π2 ,

π
2

]
b∆1 , · · · , b∆q ∈ R

op = top-k

w(p) = 1

Application to PDs [PersLay: A Neural Network Layer for Persis-
tence Diagrams and New Graph Topological
Signatures, C., Chazal, Ike, Lacombe, Royer,
Umeda, AISTATS, 2019]



features

w(·)φ(·) op

op

op
ρ

w(·)φ(·)

w(·)φ(·)

opw(·)φ(·)

data

Application to PDs [PersLay: A Neural Network Layer for Persis-
tence Diagrams and New Graph Topological
Signatures, C., Chazal, Ike, Lacombe, Royer,
Umeda, AISTATS, 2019]



Let G = (V,E) be a graph, A its adjacency matrix

D its degree matrix

and Lw(G) = I −D−1/2AD−1/2 its normalized Laplacian.

Application to graph classification [PersLay: A Neural Network Layer for Persis-
tence Diagrams and New Graph Topological
Signatures, C., Chazal, Ike, Lacombe, Royer,
Umeda, AISTATS, 2019]
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D its degree matrix

and Lw(G) = I −D−1/2AD−1/2 its normalized Laplacian.

Lw(G) decomposes on a orthonormal basis φ1 . . . φn

with eigenvalues 0 ≤ λ1 ≤ · · · ≤ λn ≤ 2

Def: Let t ≥ 0, and define the Heat Kernel Signature of param t:

hksG,t : v 7→
∑n
k=1 exp(−λkt)φk(v)2
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Def: Let t ≥ 0, and define the Heat Kernel Signature of param t:

hksG,t : v 7→
∑n
k=1 exp(−λkt)φk(v)2

1

1

1 3

2

2 1

1
Sublevel graphs (increasing values of hks)

superlevel graphs (decreasing values of hks)

Application to graph classification [PersLay: A Neural Network Layer for Persis-
tence Diagrams and New Graph Topological
Signatures, C., Chazal, Ike, Lacombe, Royer,
Umeda, AISTATS, 2019]



Graph from the Corresponding
persistence diagramPROTEINS dataset

α

β

Application to graph classification [PersLay: A Neural Network Layer for Persis-
tence Diagrams and New Graph Topological
Signatures, C., Chazal, Ike, Lacombe, Royer,
Umeda, AISTATS, 2019]



Application to graph classification

Weight function learnt

(after training on the
MUTAG dataset)

[PersLay: A Neural Network Layer for Persis-
tence Diagrams and New Graph Topological
Signatures, C., Chazal, Ike, Lacombe, Royer,
Umeda, AISTATS, 2019]



Summary

In this class, I introduced the basics of persistence representations.

We have seen that we can derive confidence regions on persistence diagrams
using the stability theorem and (a, b)-standard measures.

We have seen that we turn persistence diagrams into vectors using persistence
images and persistence landscapes.

We have seen how to automatically learn representations using PersLay and
how to use it for graph classification.

In the next class, we will study how to guide models with persistence diagrams,
with examples in clustering and regularization.



One kernel to rule them all... [Sliced Wasserstein Kernel for
persistence diagrams, Carrière,
Cuturi, Oudot, ICML, 2017]

Provably stable

Provably discriminative

Mimicks the Gaussian kernel

View diagrams as discrete measures w/o density functions

Sliced Wasserstein Kernel



Persistence diagrams as discrete measures

δx

x

birth birth

de
at

h

de
at

h

∆

µD :=
∑
x∈D δx

Pb: dp(D,D
′) 6∝ Wp(µD, µD′) (Wp does not even make sense here)

∆



this is a quasi-isometric embedding

Persistence diagrams as discrete measures

δx

x

birth birth

de
at

h

de
at

h

∆

µD :=
∑
x∈D δx

→ given D,D′, let µ̄D :=
∑
x∈D

δx+
∑
y∈D′

δπ∆(y)

µ̄D′ :=
∑
y∈D′

δy+
∑
x∈D

δπ∆(x)

Then, dp(D,D
′) ≤Wp(µ̄D, µ̄D′) ≤ 2 dp(D,D

′)

Pb: dp(D,D
′) 6∝ Wp(µD, µD′) (Wp does not even make sense here)

π∆(x)

∆
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Persistence diagrams as discrete measures

δx

x

birth birth

de
at

h

de
at

h

∆

µD :=
∑
x∈D δx

→ given D,D′, let µ̄D :=
∑
x∈D

δx+
∑
y∈D′

δπ∆(y)

µ̄D′ :=
∑
y∈D′

δy+
∑
x∈D

δπ∆(x)

Then, dp(D,D
′) ≤Wp(µ̄D, µ̄D′) ≤ 2 dp(D,D

′)

Pb: dp(D,D
′) 6∝ Wp(µD, µD′) (Wp does not even make sense here)

Pb: µ̄D depends on D′

π∆(x)

∆



Persistence diagrams as discrete measures

δx

x

birth birth

de
at

h

de
at

h

∆

µD :=
∑
x∈D δx

Pb: dp(D,D
′) 6∝ Wp(µD, µD′) (Wp does not even make sense here)

∆

Solution: transfer mass negatively to µD:

µ̃D :=
∑
x∈D

δx −
∑
x∈D

δπ∆(x) ∈M0(R2)

π∆(x)

→ signed discrete measure of total mass zero



Persistence diagrams as discrete measures

δx

x

birth birth

de
at

h

de
at

h

∆

µD :=
∑
x∈D δx

Pb: dp(D,D
′) 6∝ Wp(µD, µD′) (Wp does not even make sense here)

∆

Solution: transfer mass negatively to µD:

µ̃D :=
∑
x∈D

δx −
∑
x∈D

δπ∆(x) ∈M0(R2)

π∆(x)

→ signed discrete measure of total mass zero

metric: Kantorovich norm ‖ · ‖K



P is a positive set for µ

N is a negative set for µ

Persistence diagrams as discrete measures

Hahn decomp. thm: For any µ ∈ M0(X,Σ) there
exist measurable sets P,N such that:

(i) P ∪N = X and P ∩N = ∅
(ii) µ(B) ≥ 0 for every measureable set B ⊆ P
(iii) µ(B) ≤ 0 for every measureable set B ⊆ N

Moreover, the decomposition is essentially unique.

∆P

N

∀B ∈ Σ, let µ+(B) := µ(B ∩ P ) and µ−(B) := −µ(B ∩N) ∈M+(X)

Prop: ∀µ, ν ∈M0(X), W1(µ+ + ν−, ν+ + µ−) = ‖µ− ν‖K

‖µ‖K := W1(µ+, µ−)Def:



P is a positive set for µ

N is a negative set for µ

Persistence diagrams as discrete measures

Hahn decomp. thm: For any µ ∈ M0(X,Σ) there
exist measurable sets P,N such that:

(i) P ∪N = X and P ∩N = ∅
(ii) µ(B) ≥ 0 for every measureable set B ⊆ P
(iii) µ(B) ≤ 0 for every measureable set B ⊆ N

Moreover, the decomposition is essentially unique.

∆P

N

∀B ∈ Σ, let µ+(B) := µ(B ∩ P ) and µ−(B) := −µ(B ∩N) ∈M+(X)

Prop: ∀µ, ν ∈M0(X), W1(µ+ + ν−, ν+ + µ−) = ‖µ− ν‖K
µ̄D µ̄D′

µ̃D µ̃D′
for persistence diagrams:

W1(µ̄D, µ̄D′) = ‖µ̃D − µ̃D′‖K

‖µ‖K := W1(µ+, µ−)Def:



A Wasserstein Gaussian kernel for PDs?

Pb: W1 is not cnsd, neither is d1

Solutions:

• relax the measures (e.g. convolution)

• relax the metric (e.g. regularization, slicing)

Thm:
If d : X ×X → R+ symmetric is conditionally negative semidefinite, i.e.:

∀n ∈ N, ∀x1, . . . , xn ∈ X,
n∑
i=1

αi = 0 =⇒
n∑
i=1

n∑
j=1

αiαj d(xi, xj) ≤ 0,

then k(x, y) := exp
(
− d(x,y)

2σ2

)
is positive semidefinite.



Sliced Wasserstein metric

Special case: X = R, µ, ν discrete measures of mass n

µ :=
∑n
i=1 δxi , ν :=

∑n
i=1 δyi

Sort the atoms of µ, ν along the real line: xi ≤ xi+1 and yi ≤ yi+1 for all i

Then: W1(µ, ν) =
∑n
i=1 |xi − yi| = ‖(x1, · · · , xn)− (y1, · · · , yn)‖1

µ

ν

[Sliced Wasserstein Kernel for
persistence diagrams, Carrière,
Cuturi, Oudot, ICML, 2017]



Sliced Wasserstein metric

Special case: X = R, µ, ν discrete measures of mass n

µ :=
∑n
i=1 δxi , ν :=

∑n
i=1 δyi

Sort the atoms of µ, ν along the real line: xi ≤ xi+1 and yi ≤ yi+1 for all i

Then: W1(µ, ν) =
∑n
i=1 |xi − yi| = ‖(x1, · · · , xn)− (y1, · · · , yn)‖1

µ

ν

→ W1 is cnsd and easy to compute (same with ‖ · ‖K for signed measures)

[Sliced Wasserstein Kernel for
persistence diagrams, Carrière,
Cuturi, Oudot, ICML, 2017]



Def: (sliced Wasserstein distance) for µ, ν ∈M+(R2),

SW1(µ, ν) :=
1

2π

∫
θ∈S1

W1(πθ#µ, πθ#ν) dθ

where πθ = orthogonal projection onto line passing through origin with angle θ.

Sliced Wasserstein metric

θ

[Sliced Wasserstein Kernel for
persistence diagrams, Carrière,
Cuturi, Oudot, ICML, 2017]



Def: (sliced Wasserstein distance) for µ, ν ∈M+(R2),

SW1(µ, ν) :=
1

2π

∫
θ∈S1

W1(πθ#µ, πθ#ν) dθ

where πθ = orthogonal projection onto line passing through origin with angle θ.

Sliced Wasserstein metric

Props: (inherited from W1 over R)

- satisfies the axioms of a metric

- conditionally negative semidefinite

- well-defined barycenters, fast to compute via stochastic gradient descent, etc.

[Sliced Wasserstein Kernel for
persistence diagrams, Carrière,
Cuturi, Oudot, ICML, 2017]



Sliced Wasserstein kernel

Def: Given σ > 0, for any µ, ν ∈M+(R2):

kSW (µ, ν) := exp

(
−SW1(µ, ν)

2σ2

)

Cor:
kSW is positive semidefinite.

(from SW cnsd)

[Sliced Wasserstein Kernel for
persistence diagrams, Carrière,
Cuturi, Oudot, ICML, 2017]



this is the same as SW1(µD + π∆#µD′ , µD′ + π∆#µD)

Sliced Wasserstein kernel

Def: Given σ > 0, for any µ, ν ∈M+(R2):

kSW (µ, ν) := exp

(
−SW1(µ, ν)

2σ2

)

Cor:
kSW is positive semidefinite.

(from SW cnsd)

→ application to persistence diagrams:

D 7→ µD :=
∑
x∈D δx

δx

x

birth

de
at

h

∆

π∆(x)

7→ µ̃D := µD − π∆#µD

kSW (D,D′) := exp

(
−SW1(D,D′)

2σ2

)
SW1(D,D′) :=

∫
θ∈S1

‖πθ#µ̃D − πθ#µ̃D′‖K dθ

[Sliced Wasserstein Kernel for
persistence diagrams, Carrière,
Cuturi, Oudot, ICML, 2017]
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Sliced Wasserstein kernel

Def: Given σ > 0, for any µ, ν ∈M+(R2):

kSW (µ, ν) := exp

(
−SW1(µ, ν)

2σ2

)

Cor:
kSW is positive semidefinite.

(from SW cnsd)

→ application to persistence diagrams:

D 7→ µD :=
∑
x∈D δx

δx

x

birth

de
at

h

∆

π∆(x)

7→ µ̃D := µD − π∆#µD

kSW (D,D′) := exp

(
−SW1(D,D′)

2σ2

)
SW1(D,D′) :=

∫
θ∈S1

‖πθ#µ̃D − πθ#µ̃D′‖K dθ

- positive semidefinite

- simple and fast to compute

[Sliced Wasserstein Kernel for
persistence diagrams, Carrière,
Cuturi, Oudot, ICML, 2017]



this is the same as SW1(µD + π∆#µD′ , µD′ + π∆#µD)

Sliced Wasserstein kernel

→ application to persistence diagrams:

D 7→ µD :=
∑
x∈D δx

δx

x

birth

de
at

h

∆

π∆(x)

7→ µ̃D := µD − π∆#µD

kSW (D,D′) := exp

(
−SW1(D,D′)

2σ2

)
SW1(D,D′) :=

∫
θ∈S1

‖πθ#µ̃D − πθ#µ̃D′‖K dθ

Thm:
The metrics d1 and SW1 on the space DN of persistence diagrams of size
bounded by N are strongly equivalent, namely: for D,D′ ∈ DN ,

1

2 + 4N(2N − 1)
d1(D,D′) ≤ SW1(D,D′) ≤ 2

√
2 d1(D,D′)
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Thm:
The metrics d1 and SW1 on the space DN of persistence diagrams of size
bounded by N are strongly equivalent, namely: for D,D′ ∈ DN ,

1

2 + 4N(2N − 1)
d1(D,D′) ≤ SW1(D,D′) ≤ 2

√
2 d1(D,D′)

Cor: The feature map φ associated with kSW is weakly metric-preserving:
∃g, h nonzero except at 0 such that g ◦ d1 ≤ ‖φ(·)− φ(·)‖H ≤ h ◦ d1.
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