
Computational Topology (II):
Persistence Theory

1. Algorithmic Foundation

2. Algebraic Foundation

3. Stability Theorem

Computational Topology (II):
Persistence Theory

1. Algorithmic Foundation

2. Algebraic Foundation

3. Stability Theorem

Computation with filtrations and matrix reduction

Algorithms for computing the homology groups of a simplicial complex work
by decomposing it with a so-called filtration.

Computation with filtrations and matrix reduction

Algorithms for computing the homology groups of a simplicial complex work
by decomposing it with a so-called filtration.

Def: A filtered simplicial complex S is a family {Su}u∈R of subcomplexes of
some fixed simplicial complex S s.t. Sa ⊆ Sb for any a ≤ b.

Computation with filtrations and matrix reduction

Algorithms for computing the homology groups of a simplicial complex work
by decomposing it with a so-called filtration.

Def: A filtered simplicial complex S is a family {Su}u∈R of subcomplexes of
some fixed simplicial complex S s.t. Sa ⊆ Sb for any a ≤ b.

Def: Let f be a real valued function defined on the vertices of K. For
σ = [v0, . . . , vk] ∈ K, let f(σ) = maxi=0,...,k f(vi), and order the simplices
of K in increasing order w.r.t. the function f values (and break ties with
dimension in case some simplices have the same function value).

Q: Show that this is a filtration.

Computation with filtrations and matrix reduction

Algorithms for computing the homology groups of a simplicial complex work
by decomposing it with a so-called filtration.

Def: A filtered simplicial complex S is a family {Su}u∈R of subcomplexes of
some fixed simplicial complex S s.t. Sa ⊆ Sb for any a ≤ b.

For a given simplicial complex, one can study filtrations {Si}i∈R such that
Si+1 = Si ∪ {σ}, i.e., simplices are added one at a time. This allows for an
efficient practical method.

1 2

3

4

56
7

simplicial filtration {Si}i∈R s.t. Si+1 = Si ∪ {σ}Input:

Computation with filtrations and matrix reduction

1

Indeed, homology can be computed by using
the fact that each simplex is either:

positive, i.e., it creates a new homology class

negative, i.e., it destroys an homology class

1 2

3

4

56
7

simplicial filtration {Si}i∈R s.t. Si+1 = Si ∪ {σ}Input:

Computation with filtrations and matrix reduction

1 1 2

Indeed, homology can be computed by using
the fact that each simplex is either:

positive, i.e., it creates a new homology class

negative, i.e., it destroys an homology class

1 2

3

4

56
7

simplicial filtration {Si}i∈R s.t. Si+1 = Si ∪ {σ}Input:

Computation with filtrations and matrix reduction

1 1 2 1 2

3

Indeed, homology can be computed by using
the fact that each simplex is either:

positive, i.e., it creates a new homology class

negative, i.e., it destroys an homology class

1 2

3

4

56
7

simplicial filtration {Si}i∈R s.t. Si+1 = Si ∪ {σ}Input:

Computation with filtrations and matrix reduction

1 1 2 1 2

3

1 2

3

4

Indeed, homology can be computed by using
the fact that each simplex is either:

positive, i.e., it creates a new homology class

negative, i.e., it destroys an homology class

1 2

3

4

56
7

simplicial filtration {Si}i∈R s.t. Si+1 = Si ∪ {σ}Input:

Computation with filtrations and matrix reduction

1 1 2 1 2

3

1 2

3

4
1 2

3

4

5

Indeed, homology can be computed by using
the fact that each simplex is either:

positive, i.e., it creates a new homology class

negative, i.e., it destroys an homology class

1 2

3

4

56
7

simplicial filtration {Si}i∈R s.t. Si+1 = Si ∪ {σ}Input:

Computation with filtrations and matrix reduction

1 1 2 1 2

3

1 2

3

4
1 2

3

4

5

1 2

3

4

56

Indeed, homology can be computed by using
the fact that each simplex is either:

positive, i.e., it creates a new homology class

negative, i.e., it destroys an homology class

1 2

3

4

56
7

simplicial filtration {Si}i∈R s.t. Si+1 = Si ∪ {σ}Input:

Computation with filtrations and matrix reduction

1 1 2 1 2

3

1 2

3

4
1 2

3

4

5

1 2

3

4

56

1 2

3

4

56 7

Indeed, homology can be computed by using
the fact that each simplex is either:

positive, i.e., it creates a new homology class

negative, i.e., it destroys an homology class

1 2

3

4

56
7

simplicial filtration {Si}i∈R s.t. Si+1 = Si ∪ {σ}Input:

Computation with filtrations and matrix reduction

1 1 2 1 2

3

1 2

3

4
1 2

3

4

5

1 2

3

4

56

1 2

3

4

56 7

Indeed, homology can be computed by using
the fact that each simplex is either:

positive, i.e., it creates a new homology class

negative, i.e., it destroys an homology class

The Betti number is equal to the number of
bars that are still alive when the full complex
is reached in the filtration

1 2

3

4

56
7

simplicial filtration {Si}i∈R s.t. Si+1 = Si ∪ {σ}Input:

Computation with filtrations and matrix reduction

1 1 2 1 2

3

1 2

3

4
1 2

3

4

5

1 2

3

4

56

1 2

3

4

56 7

Indeed, homology can be computed by using
the fact that each simplex is either:

positive, i.e., it creates a new homology class

negative, i.e., it destroys an homology class

Q: Do the same for the homology of the cube.

1 2

3

4

56
7

simplicial filtration {Si}i∈R s.t. Si+1 = Si ∪ {σ}Input:

Computation with filtrations and matrix reduction

Indeed, homology can be computed by using
the fact that each simplex is either:

positive, i.e., it creates a new homology class

negative, i.e., it destroys an homology class

In order to decide whether an inserted simplex is positive or negative with an
algorithm, one can reduce its boundary by adding the boundaries of previous
simplices, until the simplex boundary cannot be reduced anymore.

1 2

3

4

56
7

simplicial filtration {Si}i∈R s.t. Si+1 = Si ∪ {σ}Input:

Computation with filtrations and matrix reduction

Indeed, homology can be computed by using
the fact that each simplex is either:

positive, i.e., it creates a new homology class

negative, i.e., it destroys an homology class

In order to decide whether an inserted simplex is positive or negative with an
algorithm, one can reduce its boundary by adding the boundaries of previous
simplices, until the simplex boundary cannot be reduced anymore.

• If the reduced boundary is zero, the inserted simplex is positive.

• If the reduced boundary is not zero, the inserted simplex is negative.

1 2

3

4

56
7

simplicial filtration {Si}i∈R s.t. Si+1 = Si ∪ {σ}Input:

Computation with filtrations and matrix reduction

Indeed, homology can be computed by using
the fact that each simplex is either:

positive, i.e., it creates a new homology class

negative, i.e., it destroys an homology class

In order to decide whether an inserted simplex is positive or negative with an
algorithm, one can reduce its boundary by adding the boundaries of previous
simplices, until the simplex boundary cannot be reduced anymore.

• If the reduced boundary is zero, the inserted simplex is positive.

• If the reduced boundary is not zero, the inserted simplex is negative.

In practice, this amounts to applying a change of basis to the canonical chain
basis, so that each element of the new chain basis is either an element of the
cycle basis or an element of the boundary basis. Zd ' ker(∂d)⊕ coim(∂d)

1 2

3

4

56
7

simplicial filtration {Si}i∈R s.t. Si+1 = Si ∪ {σ}Input:

Computation with filtrations and matrix reduction

1 2 3 4 5 6 7
1
2
3
4
5
6
7

given as boundary matrix

1 2

3

4

56
7

simplicial filtration {Si}i∈R s.t. Si+1 = Si ∪ {σ}Input:

Computation with filtrations and matrix reduction

1 2 3 4 5 6 7
1
2
3
4
5
6
7

given as boundary matrix

1 2

3

4

56
7

simplicial filtration {Si}i∈R s.t. Si+1 = Si ∪ {σ}Input:

Computation with filtrations and matrix reduction

1 2 3 4 5 6 7
1
2
3
4
5
6
7

given as boundary matrix

1 2

3

4

56
7

simplicial filtration {Si}i∈R s.t. Si+1 = Si ∪ {σ}Input:

Computation with filtrations and matrix reduction

1 2 3 4 5 6 7
1
2
3
4
5
6
7

given as boundary matrix

1 2

3

4

56
7

simplicial filtration {Si}i∈R s.t. Si+1 = Si ∪ {σ}Input:

Computation with filtrations and matrix reduction

1 2 3 4 5 6 7
1
2
3
4
5
6
7

given as boundary matrix

1 2

3

4

56
7

simplicial filtration {Si}i∈R s.t. Si+1 = Si ∪ {σ}Input:

Computation with filtrations and matrix reduction

1 2 3 4 5 6 7
1
2
3
4
5
6
7

given as boundary matrix

for j=1 to m do:

while ∃k < j s.t. low(k) ==low(j) do:

col(j) =col(j)+col(k)

1 2

3

4

56
7

simplicial filtration {Si}i∈R s.t. Si+1 = Si ∪ {σ}Input:

Computation with filtrations and matrix reduction

1 2 3 4 5 6 7
1
2
3
4
5
6
7

given as boundary matrix

for j=1 to m do:

while ∃k < j s.t. low(k) ==low(j) do:

col(j) =col(j)+col(k)

While the boundary of the inserted simplex
can be reduced with a change of basis...

For every inserted simplex

...reduce the boundary

1 2

3

4

56
7

simplicial filtration {Si}i∈R s.t. Si+1 = Si ∪ {σ}Input:

Computation with filtrations and matrix reduction

1 2 3 4 5 6 7
1
2
3
4
5
6
7

given as boundary matrix

for j=1 to m do:

while ∃k < j s.t. low(k) ==low(j) do:

col(j) =col(j)+col(k) j

low(j) = j′

j′

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

1 2

3

4

56
7

simplicial filtration {Si}i∈R s.t. Si+1 = Si ∪ {σ}Input:

Computation with filtrations and matrix reduction

1 2 3 4 5 6 7
1
2
3
4
5
6
7

given as boundary matrix

for j=1 to m do:

while ∃k < j s.t. low(k) ==low(j) do:

col(j) =col(j)+col(k) j

low(j) = j′

j′

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

5 6
6 = 6+51

2
3

1 2

3

4

56
7

simplicial filtration {Si}i∈R s.t. Si+1 = Si ∪ {σ}Input:

Computation with filtrations and matrix reduction

1 2 3 4 5 6 7
1
2
3
4
5
6
7

given as boundary matrix

for j=1 to m do:

while ∃k < j s.t. low(k) ==low(j) do:

col(j) =col(j)+col(k) j

low(j) = j′

j′

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

5 6
6 = 6+51

2
3

1 2

3

4

56
7

simplicial filtration {Si}i∈R s.t. Si+1 = Si ∪ {σ}Input:

Computation with filtrations and matrix reduction

1 2 3 4 5 6 7
1
2
3
4
5
6
7

given as boundary matrix

for j=1 to m do:

while ∃k < j s.t. low(k) ==low(j) do:

col(j) =col(j)+col(k) j

low(j) = j′

j′

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

5 6
6 = 6+5
6 = 6+4

64
1
2
3

1
2
3

1 2

3

4

56
7

simplicial filtration {Si}i∈R s.t. Si+1 = Si ∪ {σ}Input:

Computation with filtrations and matrix reduction

1 2 3 4 5 6 7
1
2
3
4
5
6
7

given as boundary matrix

for j=1 to m do:

while ∃k < j s.t. low(k) ==low(j) do:

col(j) =col(j)+col(k) j

low(j) = j′

j′

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

5 6
6 = 6+5
6 = 6+4

64
1
2
3

1
2
3

1 2

3

4

56
7

1 2 3 4 5 6 7

1 ∗ ∗
2 ∗ ∗
3 ∗ ∗
4 ∗
5 ∗
6 ∗
7

simplicial filtration {Si}i∈R s.t. Si+1 = Si ∪ {σ}
Output: boundary matrix

Input:

Computation with filtrations and matrix reduction

1 2

3

4

56
7

1 2 3 4 5 6 7

1 ∗ ∗
2 ∗ ∗
3 ∗ ∗
4 ∗
5 ∗
6 ∗
7

1 2 3 4 5 6 7

1 ∗
2 1 ∗
3 1
4 ∗
5 ∗
6 1
7

simplicial filtration {Si}i∈R s.t. Si+1 = Si ∪ {σ}
Output: boundary matrix

Input:

reduced to column-echelon form

Computation with filtrations and matrix reduction

1 2

3

4

56
7

1 2 3 4 5 6 7

1 ∗ ∗
2 ∗ ∗
3 ∗ ∗
4 ∗
5 ∗
6 ∗
7

1 2 3 4 5 6 7

1 ∗
2 1 ∗
3 1
4 ∗
5 ∗
6 1
7

simplicial filtration {Si}i∈R s.t. Si+1 = Si ∪ {σ}
Output: boundary matrix

Input:

some positive-negative simplices are paired

unpaired simplices provide homology basis: [1,+∞)

[2, 4), [3, 5), [6, 7)

reduced to column-echelon form

Computation with filtrations and matrix reduction

simplicial filtration {Si}i∈R s.t. Si+1 = Si ∪ {σ}
Output: boundary matrix

Input:

reduced to column-echelon form

Computation with filtrations and matrix reduction

Q: Complexity?

simplicial filtration {Si}i∈R s.t. Si+1 = Si ∪ {σ}
Output: boundary matrix

Input:

PLU factorization:

• Gaussian elimination

• fast matrix multiplication (divide-and-conquer)

reduced to column-echelon form

• random projections?

Computation with filtrations and matrix reduction

Q: Complexity?

simplicial filtration {Si}i∈R s.t. Si+1 = Si ∪ {σ}
Output: boundary matrix

Input:

PLU factorization:

• Gaussian elimination

reduced to column-echelon form

- PLEX / JavaPLEX (http://appliedtopology.github.io/javaplex/)

- Dionysus (http://www.mrzv.org/software/dionysus/)

- Perseus (http://www.sas.upenn.edu/~vnanda/perseus/)

- Gudhi (http://gudhi.gforge.inria.fr/)

- PHAT (https://bitbucket.org/phat-code/phat)

- DIPHA (https://github.com/DIPHA/dipha/)

- CTL (https://github.com/appliedtopology/ctl)

Computation with filtrations and matrix reduction

Q: Complexity?

Computational Topology (II):
Persistence Theory

1. Algorithmic Foundation

2. Algebraic Foundation

3. Stability Theorem

Introduction: problems with homology

First, the algorithm for computing homol-
ogy contains much more information than
the mere homology of the last complex in
the filtration.

Introduction: problems with homology

First, the algorithm for computing homol-
ogy contains much more information than
the mere homology of the last complex in
the filtration.

Indeed, it contains the homology of all the
subcomplexes in the filtration.

This is very interesting in the sense that
data can be analyzed at multiple scales.

Introduction: problems with homology

First, the algorithm for computing homol-
ogy contains much more information than
the mere homology of the last complex in
the filtration.

Indeed, it contains the homology of all the
subcomplexes in the filtration.

This is very interesting in the sense that
data can be analyzed at multiple scales.

Introduction: problems with homology

First, the algorithm for computing homol-
ogy contains much more information than
the mere homology of the last complex in
the filtration.

Indeed, it contains the homology of all the
subcomplexes in the filtration.

This is very interesting in the sense that
data can be analyzed at multiple scales.

Introduction: problems with homology

First, the algorithm for computing homol-
ogy contains much more information than
the mere homology of the last complex in
the filtration.

Indeed, it contains the homology of all the
subcomplexes in the filtration.

This is very interesting in the sense that
data can be analyzed at multiple scales.

Introduction: problems with homology

First, the algorithm for computing homol-
ogy contains much more information than
the mere homology of the last complex in
the filtration.

Indeed, it contains the homology of all the
subcomplexes in the filtration.

This is very interesting in the sense that
data can be analyzed at multiple scales.

Introduction: problems with homology

First, the algorithm for computing homol-
ogy contains much more information than
the mere homology of the last complex in
the filtration.

Indeed, it contains the homology of all the
subcomplexes in the filtration.

This is very interesting in the sense that
data can be analyzed at multiple scales.

Introduction: problems with homology

First, the algorithm for computing homol-
ogy contains much more information than
the mere homology of the last complex in
the filtration.

Indeed, it contains the homology of all the
subcomplexes in the filtration.

This is very interesting in the sense that
data can be analyzed at multiple scales.

Introduction: problems with homology

First, the algorithm for computing homol-
ogy contains much more information than
the mere homology of the last complex in
the filtration.

Indeed, it contains the homology of all the
subcomplexes in the filtration.

This is very interesting in the sense that
data can be analyzed at multiple scales.

Introduction: problems with homology

First, the algorithm for computing homol-
ogy contains much more information than
the mere homology of the last complex in
the filtration.

Indeed, it contains the homology of all the
subcomplexes in the filtration.

This is very interesting in the sense that
data can be analyzed at multiple scales.

Persistent homology aims at encoding the homology of the com-
plex at all possible scales into a compact descriptor.

S = R

R

• input: filtration = nested family of sublevel-sets f−1((−∞, t]) for t ranging over R
• track the evolution of the topology (homology) throughout the family

f

t

f−1((−∞, t])

Persistence of sublevel sets of function

Ex: H0 (connected components)

S = R

R

• input: filtration = nested family of sublevel-sets f−1((−∞, t]) for t ranging over R
• track the evolution of the topology (homology) throughout the family

f

Persistence of sublevel sets of function

Ex: H0 (connected components)

S = R

R

• input: filtration = nested family of sublevel-sets f−1((−∞, t]) for t ranging over R
• track the evolution of the topology (homology) throughout the family

f

Persistence of sublevel sets of function

Ex: H0 (connected components)

S = R

R

• input: filtration = nested family of sublevel-sets f−1((−∞, t]) for t ranging over R
• track the evolution of the topology (homology) throughout the family

f

Persistence of sublevel sets of function

Ex: H0 (connected components)

S = R

R

• input: filtration = nested family of sublevel-sets f−1((−∞, t]) for t ranging over R
• track the evolution of the topology (homology) throughout the family

f

Persistence of sublevel sets of function

Ex: H0 (connected components)

S = R

R

• input: filtration = nested family of sublevel-sets f−1((−∞, t]) for t ranging over R
• track the evolution of the topology (homology) throughout the family

f

Persistence of sublevel sets of function

Ex: H0 (connected components)

S = R

R

• input: filtration = nested family of sublevel-sets f−1((−∞, t]) for t ranging over R
• track the evolution of the topology (homology) throughout the family

f

Persistence of sublevel sets of function

Ex: H0 (connected components)

When two components merge, stop the
bar of the most recent one (elder rule).

S = R

R

• input: filtration = nested family of sublevel-sets f−1((−∞, t]) for t ranging over R
• track the evolution of the topology (homology) throughout the family

f

Persistence of sublevel sets of function

Ex: H0 (connected components)

S = R

R

• input: filtration = nested family of sublevel-sets f−1((−∞, t]) for t ranging over R
• track the evolution of the topology (homology) throughout the family

• finite set of intervals (barcode) encodes births/deaths of homology classes

f

Persistence of sublevel sets of function

Ex: H0 (connected components)

α

β

S = R

R

α

β

∞

• input: filtration = nested family of sublevel-sets f−1((−∞, t]) for t ranging over R
• track the evolution of the topology (homology) throughout the family

• finite set of intervals (barcode) encodes births/deaths of homology classes

f

• alternate representation as a
(multi-) set of points in the
plane (persistence diagram).

Persistence of sublevel sets of function

Ex: H0 (connected components)

Persistence of Čech complexes

S = R2

Persistence of Čech complexes

S = R2

Persistence of Čech complexes

S = R2

Persistence of Čech complexes

S = R2

Persistence of Čech complexes

S = R2

Persistence of Čech complexes

S = R2

Persistence of Čech complexes

S = R2

Persistence of Čech complexes

S = R2

the functor is parametrized by a field of coefficients, omitted in the notations

F1 ⊆ F2 ⊆ F3 ⊆ F4 ⊆ F5 · · ·

(homology functor)

topological level

algebraic level

Filtration:

Algebraic foundations

H∗(F1)→ H∗(F2)→ H∗(F3)→ H∗(F4)→ · · ·

Def: A persistence module is a sequence of vector spaces connected with
linear maps:

H∗(F1)→ H∗(F2)→ H∗(F3)→ H∗(F4)→ H∗(F5)→ · · ·

k
(1

0)
// k2 (0 1) // k

Ex:

(degree-1 homology)

⊆ ⊆ ⊆ ⊆

Algebraic foundations

k
(1

0)
// k2 (0 1) // k

Ex:

(degree-1 homology)

⊆ ⊆ ⊆ ⊆

Algebraic foundations

(0
1)
// k2

k
(1

0)
// k2 (0 1) // k

Ex:

(degree-1 homology)

⊆ ⊆ ⊆ ⊆

Algebraic foundations

(0
1)
// k2

(1 0
0 1)
// k2 · · ·

Thm: Let M be a persistence module over an index set T ⊆ R. Then, M
decomposes as a direct sum of interval modules kdb,dc:

0
0 // · · · 0 // 0

0 // k
1 // · · · 1 // k

0 // 0
0 // · · · 0 // 0︸ ︷︷ ︸

t<db,dc
︸ ︷︷ ︸

db, dc
︸ ︷︷ ︸

t>db,dc

(the barcode is a complete descriptor of the algebraic structure of M)

M '
⊕
j∈J

kdbj ,djc

Algebraic foundations [The structure and stability of per-
sistence modules, Chazal, de Silva,
Glisse, Oudot, Springer, 2016].

Thm: Let M be a persistence module over an index set T ⊆ R. Then, M
decomposes as a direct sum of interval modules kdb,dc:

0
0 // · · · 0 // 0

0 // k
1 // · · · 1 // k

0 // 0
0 // · · · 0 // 0︸ ︷︷ ︸

t<db,dc
︸ ︷︷ ︸

db, dc
︸ ︷︷ ︸

t>db,dc

Algebraic foundations

in the following cases:

• T is finite,

• M is pointwise finite-dimensional (pfd), i.e., every space Mt has finite
dimension.

Moreover, when it exists, the decomposition is unique up to isomorphism and
permutation of the terms.

[The structure and stability of per-
sistence modules, Chazal, de Silva,
Glisse, Oudot, Springer, 2016].

k
(1

0)
// k2 (0 1) // k

Ex:

(degree-1 homology)

⊆ ⊆ ⊆ ⊆

Algebraic foundations

(0
1)
// k2

(1 0
0 1)
// k2 · · ·

1 2

3

4

56
7

1 2 3 4 5 6 7

1 ∗ ∗
2 ∗ ∗
3 ∗ ∗
4 ∗
5 ∗
6 ∗
7

1 2 3 4 5 6 7

1 ∗
2 1 ∗
3 1
4 ∗
5 ∗
6 1
7

simplicial filtration

Output: boundary matrix

Input:

simplex pairs give finite intervals:

unpaired simplices give infinite intervals: [1,+∞)

[2, 4), [3, 5), [6, 7)

reduced to column-echelon form

Good news: the algorithm is the same!

1 2

3

4

56
7

1 2 3 4 5 6 7

1 ∗ ∗
2 ∗ ∗
3 ∗ ∗
4 ∗
5 ∗
6 ∗
7

1 2 3 4 5 6 7

1 ∗
2 1 ∗
3 1
4 ∗
5 ∗
6 1
7

simplicial filtration

Output: boundary matrix

Input:

simplex pairs give finite intervals:

unpaired simplices give infinite intervals: [1,+∞)

[2, 4), [3, 5), [6, 7)

reduced to column-echelon form

Good news: the algorithm is the same!

Regular homology

Persistent homology

1 2

3

4

56
7

1 2 3 4 5 6 7

1 ∗ ∗
2 ∗ ∗
3 ∗ ∗
4 ∗
5 ∗
6 ∗
7

1 2 3 4 5 6 7

1 ∗
2 1 ∗
3 1
4 ∗
5 ∗
6 1
7

simplicial filtration

Output: boundary matrix

Input:

simplex pairs give finite intervals:

unpaired simplices give infinite intervals: [1,+∞)

[2, 4), [3, 5), [6, 7)

reduced to column-echelon form

Good news: the algorithm is the same!

Regular homology

Persistent homology

Computational Topology (II):
Persistence Theory

1. Algorithmic Foundation

2. Algebraic Foundation

3. Stability Theorem

Persistence diagram ≡ finite multiset in the open half-plane ∆× R>0.

∆(2)

(1) (1)

Distance between persistence diagrams

Persistence diagram ≡ finite multiset in the open half-plane ∆× R>0.

- cost of a matched pair (a, b) ∈M : cp(a, b) := ‖a− b‖p∞,

- cost of an unmatched point c ∈ D tD′: cp(c) := ‖c− c̄‖p∞,

- cost of M :

cp(M) :=

(∑
(a, b) matched

cp(a, b) +
∑

c unmatched

cp(c)

)1/p

Given a partial matching M : D ↔ D′:

a
bz

z̄

∆(2)

Distance between persistence diagrams

Persistence diagram ≡ finite multiset in the open half-plane ∆× R>0.

- cost of a matched pair (a, b) ∈M : cp(a, b) := ‖a− b‖p∞,

- cost of an unmatched point c ∈ D tD′: cp(c) := ‖c− c̄‖p∞,

- cost of M :

cp(M) :=

(∑
(a, b) matched

cp(a, b) +
∑

c unmatched

cp(c)

)1/p

Given a partial matching M : D ↔ D′:

a
bz

z̄

∆(2)

Def: p-th diagram distance (extended metric):

dp(D,D
′) := inf

M :D↔D′
cp(M)

Def: bottleneck distance:

db(D,D
′) = d∞(D,D′) := lim

p→∞
dp(D,D

′)

Distance between persistence diagrams

X

R

f

∞

Thm: For any pfd functions f, g : X → R and
homology dimension d,

db(Df , Dg) ≤ ‖f − g‖∞,

where ‖f − g‖∞ = supx |f(x)− g(x)|.

g

Stability Theorem

Stability properties for point clouds

Def: The Hausdorff distance between two subspaces X,Y of a common metric
space (Z, d) is:

dH(X,Y) = max{supy∈Y d(y,X), supx∈Xd(x, Y)}
= max{supy∈Y infx∈Xd(y, x), supx∈X infy∈Y d(x, y)}

dH(X,Y) = max{a, b}

Stability properties for point clouds

Def: The Hausdorff distance between two subspaces X,Y of a common metric
space (Z, d) is:

dH(X,Y) = max{supy∈Y d(y,X), supx∈Xd(x, Y)}
= max{supy∈Y infx∈Xd(y, x), supx∈X infy∈Y d(x, y)}

Q: Show that dH(X,Y) = inf{ε > 0 : Xε ⊆ Y and Y ε ⊆ X}, where
Xε = {z : ∃x ∈ X s.t. d(x, z) ≤ ε}.

Ex: Given a sampling X̂n ⊆ X, dH(X̂n, X) is a measure of sampling quality.

Stability properties for point clouds

Def: The Hausdorff distance between two subspaces X,Y of a common metric
space (Z, d) is:

dH(X,Y) = max{supy∈Y d(y,X), supx∈Xd(x, Y)}
= max{supy∈Y infx∈Xd(y, x), supx∈X infy∈Y d(x, y)}

Def: The Gromov-Hausdorff distance between metric spaces (X, dX), (Y, dY)
is the Hausdorff distance of the best common isometric embedding:

dGH((X, dX), (Y, dY)) = infγ dH(γ(X), γ(Y)),

where d(γ(x), γ(x′)) = dX(x, x′) and d(γ(y), γ(y′)) = dX(y, y′).

Stability properties for point clouds

Def: The Gromov-Hausdorff distance between metric spaces (X, dX), (Y, dY)
is metric distortion of the best correspondence:

dGH((X, dX), (Y, dY)) = infC sup(x,y),(x′,y′)∈C |dX(x, x′)− dY (y, y′)|,

where C ⊆ X × Y s.t. ∀x, ∃yx ∈ Y s.t. (x, yx) ∈ C (and vice-versa).

Def: The Hausdorff distance between two subspaces X,Y of a common metric
space (Z, d) is:

dH(X,Y) = max{supy∈Y d(y,X), supx∈Xd(x, Y)}
= max{supy∈Y infx∈Xd(y, x), supx∈X infy∈Y d(x, y)}

Stability properties for point clouds

Def: The Gromov-Hausdorff distance between metric spaces (X, dX), (Y, dY)
is metric distortion of the best correspondence:

dGH((X, dX), (Y, dY)) = infC sup(x,y),(x′,y′)∈C |dX(x, x′)− dY (y, y′)|,

where C ⊆ X × Y s.t. ∀x, ∃yx ∈ Y s.t. (x, yx) ∈ C (and vice-versa).

Def: The Hausdorff distance between two subspaces X,Y of a common metric
space (Z, d) is:

dH(X,Y) = max{supy∈Y d(y,X), supx∈Xd(x, Y)}
= max{supy∈Y infx∈Xd(y, x), supx∈X infy∈Y d(x, y)}

Thm: If X and Y are common subspaces of a common metric space (Z, d),
then

Q: Prove it.

db(DCech(X), DCech(Y)) ≤ dH(X,Y).

Stability properties for point clouds

Thm: If X and Y are pre-compact metric spaces, then

Rem: This result also holds for Čech and other families of filtrations (particular
case of a more general theorem).

[Persistence stability for geometric
complexes, Chazal, de Silva, Oudot,
Geom. Dedicata, 2013].

db(DRips(X), DRips(Y)) ≤ dGH(X,Y).

Application: non rigid shape classification

camel
cat
elephant
face
head
horse

∞ ∞ ∞ ∞

MDS using bottleneck distance.

Non rigid shapes in a same class are almost isometric, but computing Gromov-
Hausdorff distance between shapes is extremely expensive, so one can compare
persistence diagrams of sampled shapes instead of shapes themselves.

[Gromov-Hausdorff Stable Signatures for
Shapes using Persistence, Chazal et al.,
Symp. Geom. Process., 2009]

Limitations

→ Vietoris-Rips (or Čech, witness) filtrations become quickly prohibitively large
as the size of the data increases: O(2|X|), making the practical computation of
persistence almost impossible.

Thm: If X and Y are pre-compact metric spaces, then

db(DRips(X), DRips(Y)) ≤ dGH(X,Y).

Limitations

→ Vietoris-Rips (or Čech, witness) filtrations become quickly prohibitively large
as the size of the data increases: O(2|X|), making the practical computation of
persistence almost impossible.

→ Persistence diagrams of Vietoris-Rips (as well as Čech, witness,..) filtrations and
Gromov-Hausdorff distance are very sensitive to noise and outliers.

Thm: If X and Y are pre-compact metric spaces, then

db(DRips(X), DRips(Y)) ≤ dGH(X,Y).

Limitations

→ Vietoris-Rips (or Čech, witness) filtrations become quickly prohibitively large
as the size of the data increases: O(2|X|), making the practical computation of
persistence almost impossible.

→ Persistence diagrams of Vietoris-Rips (as well as Čech, witness,..) filtrations and
Gromov-Hausdorff distance are very sensitive to noise and outliers.

Thm: If X and Y are pre-compact metric spaces, then

db(DRips(X), DRips(Y)) ≤ dGH(X,Y).

The Wasserstein distance

Let (X, d) be a metric space and let µ, ν be probability measures on X with finite
p-moments (p ≥ 1). The Wasserstein distance Wp(µ, ν) quantifies the optimal
cost of pushing µ onto ν, the cost of moving a small mass dx from x to y being
d(x, y)pdx.

• Transport plan: Π a probability measure
on X × X s.t. Π(A × Rd) = µ(A) and
Π(Rd ×B) = ν(B) for any borelian sets
A,B ⊆ X.

• Cost of a transport plan:

C(Π) =

(∫
X×X

d(x, y)pdΠ(x, y)

) 1
p

• Wp(µ, ν) = infΠ C(Π).

The Wasserstein distance

Ex: If P = {p1, . . . , pn} is a point cloud, and P ′ =
{p1, . . . , pn−k−1, o1, . . . , ok} with d(oi, P) = R, then

dH(P, P ′) ≥ R but W2(µP , µP ′) ≤
√
k

n
(R+ diam(P))

The Distance To Measure (DTM)
[Geometric inference for probability mea-
sures, Chazal, Cohen-Steiner, Mérigot,
Found. Comput. Math., 2011]

The Distance To Measure (DTM)

Preliminary distance function to a measure P : let u ∈]0, 1[be a positive
mass, and P a probability measure on Rd :

δP,u(x) = inf{r > 0 : P (B(x, r)) ≥ u}

x
δP,u(x)

Supp(P)

u

[Geometric inference for probability mea-
sures, Chazal, Cohen-Steiner, Mérigot,
Found. Comput. Math., 2011]

The Distance To Measure (DTM)

Preliminary distance function to a measure P : let u ∈]0, 1[be a positive
mass, and P a probability measure on Rd :

δP,u(x) = inf{r > 0 : P (B(x, r)) ≥ u}

δP,u is the smallest distance needed
to capture a mass of at least u.

x
δP,u(x)

Supp(P)

u

[Geometric inference for probability mea-
sures, Chazal, Cohen-Steiner, Mérigot,
Found. Comput. Math., 2011]

The Distance To Measure (DTM)

Preliminary distance function to a measure P : let u ∈]0, 1[be a positive
mass, and P a probability measure on Rd :

δP,u(x) = inf{r > 0 : P (B(x, r)) ≥ u}

δP,u is the smallest distance needed
to capture a mass of at least u.

δP,u is the quantile function at u of
the r.v. ‖x−X‖ where X ∼ P .

x
δP,u(x)

Supp(P)

u

[Geometric inference for probability mea-
sures, Chazal, Cohen-Steiner, Mérigot,
Found. Comput. Math., 2011]

The Distance To Measure (DTM)

Preliminary distance function to a measure P : let u ∈]0, 1[be a positive
mass, and P a probability measure on Rd :

δP,u(x) = inf{r > 0 : P (B(x, r)) ≥ u}

Def: Given a probability measure P on
Rd and m > 0, the distance function
to the measure P (DTM) is defined by

dP,m : x ∈ R 7→
(

1
m

∫m
0
δ2
P,u(x)du

)1/2x
δP,u(x)

Supp(P)

u

[Geometric inference for probability mea-
sures, Chazal, Cohen-Steiner, Mérigot,
Found. Comput. Math., 2011]

The Distance To Measure (DTM)

Preliminary distance function to a measure P : let u ∈]0, 1[be a positive
mass, and P a probability measure on Rd :

δP,u(x) = inf{r > 0 : P (B(x, r)) ≥ u}

Def: Given a probability measure P on
Rd and m > 0, the distance function
to the measure P (DTM) is defined by

dP,m : x ∈ R 7→
(

1
m

∫m
0
δ2
P,u(x)du

)1/2
The DTM is robust, i.e., stable under
Wasserstein perturbations:

‖dP,m − dQ,m‖∞ ≤
1√
m
W2(P,Q)

x
δP,u(x)

Supp(P)

u

[Geometric inference for probability mea-
sures, Chazal, Cohen-Steiner, Mérigot,
Found. Comput. Math., 2011]

The Distance To Measure (DTM)

Def: Let X1, . . . , Xn sampled according to P and let Pn be the empirical
measure. Then

dPn,k/n(x) =
1

k

k∑
i=1

‖x−X(i)‖2,

where ‖X(1) − x‖ ≤ ‖X(2) − x‖ ≤ · · · ≤ ‖X(k) − x‖ ≤ · · · ≤ ‖X(n) − x‖.

[Geometric inference for probability mea-
sures, Chazal, Cohen-Steiner, Mérigot,
Found. Comput. Math., 2011]

DTM-based filtrations

Def: Let V be a point cloud (in a metric space). The DTM-based complex
W (V) is the filtered simplicial complex indexed by R whose vertex set is V
and whose other simplices are defined with

σ = [p0, p1 . . . , pk] ∈W (V, α) ⇐⇒ ∩ki=0B(pi, rpi(α)) 6= ∅

where rp(α) = 0 if α ≤ dPn,k/n(p) and |αq − dPn,k/n(p)q|1/q otherwise.

[DTM-based filtrations, Anai et al.,
Symp. Comp. Geom., 2019]

DTM-based filtrations

Def: Let V be a point cloud (in a metric space). The DTM-based complex
W (V) is the filtered simplicial complex indexed by R whose vertex set is V
and whose other simplices are defined with

σ = [p0, p1 . . . , pk] ∈W (V, α) ⇐⇒ ∩ki=0B(pi, rpi(α)) 6= ∅

where rp(α) = 0 if α ≤ dPn,k/n(p) and |αq − dPn,k/n(p)q|1/q otherwise.

Rips Rips DTM-based

[DTM-based filtrations, Anai et al.,
Symp. Comp. Geom., 2019]

DTM-based filtrations

Def: Let V be a point cloud (in a metric space). The DTM-based complex
W (V) is the filtered simplicial complex indexed by R whose vertex set is V
and whose other simplices are defined with

σ = [p0, p1 . . . , pk] ∈W (V, α) ⇐⇒ ∩ki=0B(pi, rpi(α)) 6= ∅

where rp(α) = 0 if α ≤ dPn,k/n(p) and |αq − dPn,k/n(p)q|1/q otherwise.

Rips Rips DTM-based

[DTM-based filtrations, Anai et al.,
Symp. Comp. Geom., 2019]

Thm: One has: db(DW (X), DW (Y)) ≤√
n
k (W2(Ω, X) +W2(Ω, Y)) + 2CΩ,n,k.

DTM-based filtrations

Def: Let V be a point cloud (in a metric space). The DTM-based complex
W (V) is the filtered simplicial complex indexed by R whose vertex set is V
and whose other simplices are defined with

σ = [p0, p1 . . . , pk] ∈W (V, α) ⇐⇒ ∩ki=0B(pi, rpi(α)) 6= ∅

where rp(α) = 0 if α ≤ dPn,k/n(p) and |αq − dPn,k/n(p)q|1/q otherwise.

Rips Rips DTM-based

[DTM-based filtrations, Anai et al.,
Symp. Comp. Geom., 2019]

Thm: One has: db(DW (X), DW (Y)) ≤√
n
k (W2(Ω, X) +W2(Ω, Y)) + 2CΩ,n,k.

”Clean subset” without outliers

Summary

In this class, I introduced the basic bricks of persistent homology.

We have seen how to compute the homology groups of simplicial complexes
with filtrations and their positive and negative simplices.

We have seen that positive and negative simplices can be paired together to
form persistence barcodes/diagrams.

We have seen that persistence barcodes/diagrams are stable with respect to
the bottleneck distance.

Next time, we will study the representations and statistical properties of per-
sistence diagrams, that allow to combine them with standard machine learning
models in a robust way.

