
Foundations of Geometric
Methods in Data Analysis

Instructors:
Mathieu Carrière & Frédéric Cazals
Centre Inria d’Université Côte d’Azur
firstname.lastname@inria.fr

Information about the class

Information about the class

Class outline (each class is 50% lecture 50% practical session)

• 1. Computational Topology (I): Simplicial Complexes

• 2. Nearest Neighbors in Euclidean and metric spaces (I): Data Structures and Algorithms

• 3. Nearest Neighbors in Euclidean and metric spaces (II): Analysis

• 4. Comparing Samplings, Distributions, Clusterings

• 5. Computational Topology (II): Persistence Theory

• 6. Topological Machine Learning (I): An Introduction

• 7. Topological Machine Learning (II): Advanced Topics

• 8. Dimensionality Reduction Algorithms

Information about the class

Class outline (each class is 50% lecture 50% practical session)

• 1. Computational Topology (I): Simplicial Complexes

• 2. Nearest Neighbors in Euclidean and metric spaces (I): Data Structures and Algorithms

• 3. Nearest Neighbors in Euclidean and metric spaces (II): Analysis

• 4. Comparing Samplings, Distributions, Clusterings

• 5. Computational Topology (II): Persistence Theory

• 6. Topological Machine Learning (I): An Introduction

• 7. Topological Machine Learning (II): Advanced Topics

• 8. Dimensionality Reduction Algorithms

Website: http://www-sop.inria.fr/abs/teaching/centrale-FGMDA/centrale-FGMDA--cazals-carriere.html

Information about the class

Class outline (each class is 50% lecture 50% practical session)

• 1. Computational Topology (I): Simplicial Complexes

• 2. Nearest Neighbors in Euclidean and metric spaces (I): Data Structures and Algorithms

• 3. Nearest Neighbors in Euclidean and metric spaces (II): Analysis

• 4. Comparing Samplings, Distributions, Clusterings

• 5. Computational Topology (II): Persistence Theory

• 6. Topological Machine Learning (I): An Introduction

• 7. Topological Machine Learning (II): Advanced Topics

• 8. Dimensionality Reduction Algorithms

Website:

Validation is done by group projects, subjects will be available later.

http://www-sop.inria.fr/abs/teaching/centrale-FGMDA/centrale-FGMDA--cazals-carriere.html

Information about the class

Class outline (each class is 50% lecture 50% practical session)

• 1. Computational Topology (I): Simplicial Complexes

• 2. Nearest Neighbors in Euclidean and metric spaces (I): Data Structures and Algorithms

• 3. Nearest Neighbors in Euclidean and metric spaces (II): Analysis

• 4. Comparing Samplings, Distributions, Clusterings

• 5. Computational Topology (II): Persistence Theory

• 6. Topological Machine Learning (I): An Introduction

• 7. Topological Machine Learning (II): Advanced Topics

• 8. Dimensionality Reduction Algorithms

Website:

Validation is done by group projects, subjects will be available later.

Practical sessions are based on:

http://www-sop.inria.fr/abs/teaching/centrale-FGMDA/centrale-FGMDA--cazals-carriere.html

My classes are about

Topological Data Analysis (TDA)

Information about the class

My classes are about

Topological Data Analysis (TDA)

Goal: Study geometric data sets with techniques coming from topology.

Information about the class

My classes are about

Topological Data Analysis (TDA)

Goal: Study geometric data sets with techniques coming from topology.

Question: What is topology?

Information about the class

My classes are about

Topological Data Analysis (TDA)

Goal: Study geometric data sets with techniques coming from topology.

Question: What is topology?

Information about the class

A: Roughly speaking, the topology of a space X is its number of ’holes’.
More formally, it is the class of spaces that can be obtained by continuous
deformations of X.

My classes are about

Topological Data Analysis (TDA)

Goal: Study geometric data sets with techniques coming from topology.

Question: What is topology?

[Elements of Algebraic Topology,
Munkres, CRC Press, 1984]

[Algebraic Topology, Hatcher, Cam-
bridge University Press, 2002]

[Computational Topology: an introduc-
tion, Edelsbrunner, Harer, AMS, 2010]

Information about the class

Introduction

We will see how to build new topological features from data sets...

Introduction

We will see how to build new topological features from data sets...

...but why is that interesting?

Introduction

Galaxies

Scans

3D shapes

Magnetometer

Data carrying geometric information is usually high dimensional.

Data often come as (sampling of) metric spaces or sets/spaces endowed with
a similarity measure with, possibly complex, topological/geometric structure.

Introduction

Galaxies

Scans

3D shapes

Magnetometer

Features from Topological Data Analysis allow to:
- infer relevant topological and geometric features of these spaces.
- take advantage of topol./geom. information for further processing of data
(classification, recognition, learning, clustering, parametrization...).

Pros of topology:

• Coordinate invariance: topological features/invariants do not rely on any
coordinate system so no need to have data with coordinates, or to embed
data in spaces with coordinates... but the metric (distance/similarity between
data points) is important.

• Deformation invariance: topological features are invariant under homeo-
morphism and reparameterization.

• Compressed representation: topology offers a set of tools to summarize
the data in compact ways while preserving its topological structure.

Introduction

Problem: how to define the
topology of a data set?

Cons of topology:

• No direct access to topological/geometric information: need of intermediate
constructions with simplicial complexes.

• Distinguish topological “signal” from noise.

• Topological information may be multiscale.

• Statistical analysis of topological information.

Introduction

Computational Topology (I):
Simplicial Complexes and

Homology

1. Simplicial Complexes

2. Nerve Theorem

3. Homology Groups

Computational Topology (I):
Simplicial Complexes and

Homology

1. Simplicial Complexes

2. Nerve Theorem

3. Homology Groups

Computational Topology (I):
Simplicial Complexes and

Homology

1. Simplicial Complexes

2. Nerve Theorem

3. Homology Groups

Pbm: How to encode topological spaces for
computational purposes?

Computational Topology (I):
Simplicial Complexes and

Homology

1. Simplicial Complexes

2. Nerve Theorem

3. Homology Groups

Pbm: How to encode topological spaces for
computational purposes?

A: Using spaces made of small convex bricks, namely
the simplicial complexes made of simplices.

Simplex and simplicial complex

0-simplex:
vertex

1-simplex:
edge

2-simplex:
triangle

3-simplex:
tetrahedron

etc...

Simplex and simplicial complex

0-simplex:
vertex

1-simplex:
edge

2-simplex:
triangle

3-simplex:
tetrahedron

etc...

Def: Given a set P = {p0, . . . , pk} ⊂ Rd of k+1 affinely independent points,
the k-dimensional simplex σ (or k-simplex for short) spanned by P is the set
of convex combinations

k∑
i=0

λi pi, with

k∑
i=0

λi = 1 and λi ≥ 0.

The points p0, . . . , pk are called the vertices of σ.

Simplex and simplicial complex

Simplex and simplicial complex

Def: A simplicial complex K in Rd is a collection of simplices s.t.:

• (i) any face of a simplex of K is a simplex of K,

• (ii) the intersection of any two simplices of K is either empty or a
common face of both.

The underlying space of K, written |K| ⊆ Rd, is the union of its simplices.
The k-skeleton of K, written Skelk(K), is the smaller complex made of the
simplices of K of dimension up to k: Skelk(K) = {σ ∈ K : dim(σ) ≤ k}.

Simplex and simplicial complex

Def: A simplicial complex K in Rd is a collection of simplices s.t.:

• (i) any face of a simplex of K is a simplex of K,

• (ii) the intersection of any two simplices of K is either empty or a
common face of both.

The underlying space of K, written |K| ⊆ Rd, is the union of its simplices.
The k-skeleton of K, written Skelk(K), is the smaller complex made of the
simplices of K of dimension up to k: Skelk(K) = {σ ∈ K : dim(σ) ≤ k}.

Simplex and simplicial complex

Def: A simplicial complex K in Rd is a collection of simplices s.t.:

• (i) any face of a simplex of K is a simplex of K,

• (ii) the intersection of any two simplices of K is either empty or a
common face of both.

The underlying space of K, written |K| ⊆ Rd, is the union of its simplices.
The k-skeleton of K, written Skelk(K), is the smaller complex made of the
simplices of K of dimension up to k: Skelk(K) = {σ ∈ K : dim(σ) ≤ k}.

Remark: Simplicial complexes can be seen at the same time as geomet-
ric/topological spaces (good for geometrical/topological inference) and as
combinatorial objects (good for computations).

Triangulations

Def: A simplicial complex of dimension d is pure if every simplex is the face
of some d-dimensional simplex.

Triangulations

Def: A simplicial complex of dimension d is pure if every simplex is the face
of some d-dimensional simplex.

Def: A triangulation of a point cloud P ⊆ Rd is a pure simplicial complex K
s.t. vert(K) = P and |K| = conv(P).

Triangulations

Def: A simplicial complex of dimension d is pure if every simplex is the face
of some d-dimensional simplex.

Def: A triangulation of a point cloud P ⊆ Rd is a pure simplicial complex K
s.t. vert(K) = P and |K| = conv(P).

Def: A triangulation of a polygonal domain Ω ⊆ Rd with vertex set P is a
pure simplicial complex K s.t. vert(K) = P and |K| = Ω.

Triangulations

Def: A simplicial complex of dimension d is pure if every simplex is the face
of some d-dimensional simplex.

Def: A triangulation of a point cloud P ⊆ Rd is a pure simplicial complex K
s.t. vert(K) = P and |K| = conv(P).

Def: A triangulation of a polygonal domain Ω ⊆ Rd with vertex set P is a
pure simplicial complex K s.t. vert(K) = P and |K| = Ω.

Q: Triangulate

Abstract simplex and simplicial complex

Def: Let P = {p1, · · · , pn} be a (finite) set of
vertices (not necessarily embedded in Rd). An
abstract simplicial complex K with vertex set
P is a set of subsets of P satisfying the two
conditions:

• (i) the elements of P belong to K,

• (ii) if τ ∈ K and σ ⊆ τ , then σ ∈ K.

The elements of K are the simplices.

Abstract simplex and simplicial complex

Def: Let P = {p1, · · · , pn} be a (finite) set of
vertices (not necessarily embedded in Rd). An
abstract simplicial complex K with vertex set
P is a set of subsets of P satisfying the two
conditions:

• (i) the elements of P belong to K,

• (ii) if τ ∈ K and σ ⊆ τ , then σ ∈ K.

The elements of K are the simplices.

Remark: It is possible to define abstract simplicial complexes out of point
clouds embedded in Rd—in this case, the dimension of the complex is not
necessarily d, see for instance Rips complexes later.

Abstract simplex and simplicial complex

Def: A realization of an abstract simplicial complexK is a geometric simplicial
complex K ′ who is isomorphic to K, i.e., there exists a bijection

f : vert(K) → vert(K ′),

such that σ ∈ K ⇐⇒ f(σ) ∈ K ′.

Abstract simplex and simplicial complex

Def: A realization of an abstract simplicial complexK is a geometric simplicial
complex K ′ who is isomorphic to K, i.e., there exists a bijection

f : vert(K) → vert(K ′),

such that σ ∈ K ⇐⇒ f(σ) ∈ K ′.

Q: Prove that any simplicial complex with n vertices can be realized in Rn.

Čech and (Vietoris)-Rips complexes

Def: Given a point cloud P = {P1, . . . , Pn} ⊂ Rd, its Čech complex of radius
r > 0 is the abstract simplicial complex C(P, r) s.t. vert(C(P, r)) = P and

σ = [Pi0 , Pi1 , . . . , Pik] ∈ C(P, r) iif ∩k
j=0 B(Pij , r) ̸= ∅.

Čech and (Vietoris)-Rips complexes

Def: Given a point cloud P = {P1, . . . , Pn} ⊂ Rd, its Čech complex of radius
r > 0 is the abstract simplicial complex C(P, r) s.t. vert(C(P, r)) = P and

σ = [Pi0 , Pi1 , . . . , Pik] ∈ C(P, r) iif ∩k
j=0 B(Pij , r) ̸= ∅.

Čech and (Vietoris)-Rips complexes

Def: Given a point cloud P = {P1, . . . , Pn} ⊂ Rd, its Čech complex of radius
r > 0 is the abstract simplicial complex C(P, r) s.t. vert(C(P, r)) = P and

σ = [Pi0 , Pi1 , . . . , Pik] ∈ C(P, r) iif ∩k
j=0 B(Pij , r) ̸= ∅.

Pbm: Čech complexes can be quite hard to compute.

Čech and (Vietoris)-Rips complexes

Def: Given a point cloud P = {P1, . . . , Pn} ⊂ Rd, its Čech complex of radius
r > 0 is the abstract simplicial complex C(P, r) s.t. vert(C(P, r)) = P and

σ = [Pi0 , Pi1 , . . . , Pik] ∈ C(P, r) iif ∩k
j=0 B(Pij , r) ̸= ∅.

Pbm: Čech complexes can be quite hard to compute.

Def: Given a point cloud P = {P1, . . . , Pn} ⊂ Rd, its Rips complex of radius
r > 0 is the abstract simplicial complex R(P, r) s.t. vert(R(P, r)) = P and

σ = [Pi0 , Pi1 , . . . , Pik] ∈ R(P, r) iif ∥Pij − Pij′ ∥ ≤ 2r, ∀1 ≤ j, j′ ≤ k.

Čech and (Vietoris)-Rips complexes

Def: Given a point cloud P = {P1, . . . , Pn} ⊂ Rd, its Čech complex of radius
r > 0 is the abstract simplicial complex C(P, r) s.t. vert(C(P, r)) = P and

σ = [Pi0 , Pi1 , . . . , Pik] ∈ C(P, r) iif ∩k
j=0 B(Pij , r) ̸= ∅.

Pbm: Čech complexes can be quite hard to compute.

Def: Given a point cloud P = {P1, . . . , Pn} ⊂ Rd, its Rips complex of radius
r > 0 is the abstract simplicial complex R(P, r) s.t. vert(R(P, r)) = P and

σ = [Pi0 , Pi1 , . . . , Pik] ∈ R(P, r) iif ∥Pij − Pij′ ∥ ≤ 2r, ∀1 ≤ j, j′ ≤ k.

Remark: The 1-skeleton Skel1(R(P, r)) of a Rips complex of radius r is also
called the r-neighborhood graph of P .

Čech and (Vietoris)-Rips complexes

Def: Given a point cloud P = {P1, . . . , Pn} ⊂ Rd, its Čech complex of radius
r > 0 is the abstract simplicial complex C(P, r) s.t. vert(C(P, r)) = P and

σ = [Pi0 , Pi1 , . . . , Pik] ∈ C(P, r) iif ∩k
j=0 B(Pij , r) ̸= ∅.

C(P, ϵ) R(P, ϵ)

Čech and (Vietoris)-Rips complexes

Def: Given a point cloud P = {P1, . . . , Pn} ⊂ Rd, its Čech complex of radius
r > 0 is the abstract simplicial complex C(P, r) s.t. vert(C(P, r)) = P and

σ = [Pi0 , Pi1 , . . . , Pik] ∈ C(P, r) iif ∩k
j=0 B(Pij , r) ̸= ∅.

Pbm: Čech complexes can be quite hard to compute.

Def: Given a point cloud P = {P1, . . . , Pn} ⊂ Rd, its Rips complex of radius
r > 0 is the abstract simplicial complex R(P, r) s.t. vert(R(P, r)) = P and

σ = [Pi0 , Pi1 , . . . , Pik] ∈ R(P, r) iif ∥Pij − Pij′ ∥ ≤ 2r, ∀1 ≤ j, j′ ≤ k.

Good news is that Rips and Čech complexes are related:

Čech and (Vietoris)-Rips complexes

Def: Given a point cloud P = {P1, . . . , Pn} ⊂ Rd, its Čech complex of radius
r > 0 is the abstract simplicial complex C(P, r) s.t. vert(C(P, r)) = P and

σ = [Pi0 , Pi1 , . . . , Pik] ∈ C(P, r) iif ∩k
j=0 B(Pij , r) ̸= ∅.

Pbm: Čech complexes can be quite hard to compute.

Def: Given a point cloud P = {P1, . . . , Pn} ⊂ Rd, its Rips complex of radius
r > 0 is the abstract simplicial complex R(P, r) s.t. vert(R(P, r)) = P and

σ = [Pi0 , Pi1 , . . . , Pik] ∈ R(P, r) iif ∥Pij − Pij′ ∥ ≤ 2r, ∀1 ≤ j, j′ ≤ k.

Good news is that Rips and Čech complexes are related:

Prop: R(P, r/2) ⊆ C(P, r) ⊆ R(P, r).

Q: Prove it.

Storing simplicial complexes [The Simplex Tree: An Efficient Data Struc-
ture for General Simplicial Complexes, Boisson-
nat, Maria, Algorithmica, 2014]

We want to store simplicial complexes with a data structure that allows to
perform standard operations (insertion of a simplex, checking if a simplex is
present, etc) in a fast and easy way.

Storing simplicial complexes

Idea: store sorted simplices in a prefix tree (also called trie).

1

2 3

1 2 3

2 3 3

3

[The Simplex Tree: An Efficient Data Struc-
ture for General Simplicial Complexes, Boisson-
nat, Maria, Algorithmica, 2014]

We want to store simplicial complexes with a data structure that allows to
perform standard operations (insertion of a simplex, checking if a simplex is
present, etc) in a fast and easy way.

Storing simplicial complexes

Idea: store sorted simplices in a prefix tree (also called trie).

1

2 3

1 2 3

2 3 3

3This is called the simplex tree.

It allows to store all simplices explicitly without storing all adjacency relations,
while maintaining low complexity for basic operations.

[The Simplex Tree: An Efficient Data Struc-
ture for General Simplicial Complexes, Boisson-
nat, Maria, Algorithmica, 2014]

We want to store simplicial complexes with a data structure that allows to
perform standard operations (insertion of a simplex, checking if a simplex is
present, etc) in a fast and easy way.

nodes = # simplices

depth = dimension + 1

Storing simplicial complexes

Unfortunately, the simplex tree also has redundancies.

[The Simplex Tree: An Efficient Data Struc-
ture for General Simplicial Complexes, Boisson-
nat, Maria, Algorithmica, 2014]

We want to store simplicial complexes with a data structure that allows to
perform standard operations (insertion of a simplex, checking if a simplex is
present, etc) in a fast and easy way.

Storing simplicial complexes

Unfortunately, the simplex tree also has redundancies.

[The Simplex Tree: An Efficient Data Struc-
ture for General Simplicial Complexes, Boisson-
nat, Maria, Algorithmica, 2014]

We want to store simplicial complexes with a data structure that allows to
perform standard operations (insertion of a simplex, checking if a simplex is
present, etc) in a fast and easy way.

Computational Topology (I):
Simplicial Complexes and

Homology

1. Simplicial Complexes

2. Nerve Theorem

3. Homology Groups

Computational Topology (I):
Simplicial Complexes and

Homology

1. Simplicial Complexes

2. Nerve Theorem

3. Homology Groups

Pbm: How to ensure simplicial complexes
are ”good” models of topological spaces?

Computational Topology (I):
Simplicial Complexes and

Homology

1. Simplicial Complexes

2. Nerve Theorem

3. Homology Groups

Pbm: How to ensure simplicial complexes
are ”good” models of topological spaces?

A: The Nerve Theorem ensures that appropriate
complexes have the right topology.

Topology is the art of deformation. It was introduced by Poincaré as a way
to classify topological spaces: ’two topological spaces are in the same class if
one can deform it into the other’.

The Nerve Theorem provides conditions under which a simplicial complex can
be deformed into the topological space it was computed from.

Introduction

Introduction

Idea: work with cover complexes.

• Group data points in local clusters.

• Summarize the data through the combinatorial/topological structure of
the intersection patterns of these local clusters.

Nerve complex

Def: An open cover of a topological space X is a collection U = (Ui)i∈I of
open subsets Ui ⊆ X, i ∈ I where I is a set, such that X ⊆ ∪i∈IUi.

Nerve complex

Def: An open cover of a topological space X is a collection U = (Ui)i∈I of
open subsets Ui ⊆ X, i ∈ I where I is a set, such that X ⊆ ∪i∈IUi.

X

U1

U2

U3 U4

U5

Nerve complex

Def: An open cover of a topological space X is a collection U = (Ui)i∈I of
open subsets Ui ⊆ X, i ∈ I where I is a set, such that X ⊆ ∪i∈IUi.

Def: Given a cover of a topological space X, U = (Ui)i∈I , its nerve is the
abstract simplicial complex C(U) whose vertex set is U and s.t.

σ = [Ui0 , Ui1 , . . . , Uik] ∈ C(U) if and only if ∩k
j=0 Uij ̸= ∅.

X

U1

U2

U3 U4

U5

Nerve complex

Def: An open cover of a topological space X is a collection U = (Ui)i∈I of
open subsets Ui ⊆ X, i ∈ I where I is a set, such that X ⊆ ∪i∈IUi.

Def: Given a cover of a topological space X, U = (Ui)i∈I , its nerve is the
abstract simplicial complex C(U) whose vertex set is U and s.t.

σ = [Ui0 , Ui1 , . . . , Uik] ∈ C(U) if and only if ∩k
j=0 Uij ̸= ∅.

X

U1

U2

U3 U4

U5

U1
U2

U5

U3
U4

Nerve complex

X

U1

U2

U3 U4

U5

U1
U2

U5

U3
U4

The Nerve Theorem: Let U = (Ui)i∈I be a finite open cover of a subset X
of Rd such that any intersection of the Ui’s is either empty or convex. Then
there are continuous deformations X → C(U) and C(U) → X.

[On the imbedding of systems of
compacta in simplicial complexes,
Borsuk, Fund. Math., 1948]

Remark: More formally, one say they are homotopy equivalent.

Nerve complex

U1
U2

U5

U3
U4

The Nerve Theorem: Let U = (Ui)i∈I be a finite open cover of a subset X
of Rd such that any intersection of the Ui’s is either empty or convex. Then
there are continuous deformations X → C(U) and C(U) → X.

[On the imbedding of systems of
compacta in simplicial complexes,
Borsuk, Fund. Math., 1948]

Remark: More formally, one say they are homotopy equivalent.

Two maps f0 : X → Y and f1 : X → Y
are homotopic if ∃ a continuous map F :
[0, 1]×X → Y s.t. ∀x ∈ X, F (0, x) =
f0(x) and F1(1, x) = f1(x).
The spaces X and Y are homotopy
equivalent if ∃ continuous maps f : X →
Y and g : Y → X s.t. g◦f is homotopic
to idX and f ◦ g is homotopic to idY .

Nerve complex

U1
U2

U5

U3
U4

The Nerve Theorem: Let U = (Ui)i∈I be a finite open cover of a subset X
of Rd such that any intersection of the Ui’s is either empty or convex. Then
there are continuous deformations X → C(U) and C(U) → X.

[On the imbedding of systems of
compacta in simplicial complexes,
Borsuk, Fund. Math., 1948]

Remark: More formally, one say they are homotopy equivalent.

Two maps f0 : X → Y and f1 : X → Y
are homotopic if ∃ a continuous map F :
[0, 1]×X → Y s.t. ∀x ∈ X, F (0, x) =
f0(x) and F1(1, x) = f1(x).
The spaces X and Y are homotopy
equivalent if ∃ continuous maps f : X →
Y and g : Y → X s.t. g◦f is homotopic
to idX and f ◦ g is homotopic to idY .

Ex: There are continuous deformations between the Čech complex C(P, r)
and the union of balls ∪p∈PB(p, r).

Two directions:

Q: How to build meaningful covers?

Cover complexes

Two directions:

1. Using a function (lens) defined on
the data:
→ the Mapper algorithm
→ exploratory data analysis

Q: How to build meaningful covers?

X

f

R

I

Cover complexes

2. Covering data by balls:
→ distance functions frameworks, persistence-
based signatures,...
→ geometric inference, provide a framework to
establish various theoretical results in TDA.

Two directions:

1. Using a function (lens) defined on
the data:
→ the Mapper algorithm
→ exploratory data analysis

Q: How to build meaningful covers?

X

f

R

I

Cover complexes

2. Covering data by balls:
→ distance functions frameworks, persistence-
based signatures,...
→ geometric inference, provide a framework to
establish various theoretical results in TDA.

Two directions:

1. Using a function (lens) defined on
the data:
→ the Mapper algorithm
→ exploratory data analysis

Q: How to build meaningful covers?

X

f

R

I

Cover complexes

Mapper in the continuous setting

X

f

Y = R

I

Mapper in the continuous setting

X

f

Y = R

I

U

Mapper in the continuous setting

X

f

Y = R

I

V

Mapper in the continuous setting

X

f

Y = R

I

V

Mapper

Mf (X, I)

Mapper in the continuous setting

Input:

- continuous function f : X → Y

- cover I of im(f) by open intervals: im(f) ⊆
⋃

I∈I I

• Compute pullback cover U of X: U = {f−1(I)}I∈I

• Refine U by separating each of its elements into its various con-
nected components in X

• The Mapper is the nerve of V:

- 1 vertex per element V ∈ V

- 1 edge per intersection V ∩ V ′ ̸= ∅, V, V ′ ∈ V

- 1 k-simplex per (k + 1)-fold intersection
⋂k

i=0 Vi ̸= ∅, V0, · · · , Vk ∈ V

Method:

- topological space X

→ connected cover V

(99% of the time Y = RD)

Input:

• Compute pullback cover U of P : U = {f−1(I)}I∈I

• Refine U by separating each of its elements into its various clus-
ters, as identified by a clustering algorithm

• The Mapper is the nerve of V:

- 1 vertex per element V ∈ V

- 1 edge per intersection V ∩ V ′ ̸= ∅, V, V ′ ∈ V

- 1 k-simplex per (k + 1)-fold intersection
⋂k

i=0 Vi ̸= ∅, V0, · · · , Vk ∈ V

Method:

- point cloud P ⊆ X with metric dP

intersections are assessed by the
presence of common data points

- continuous function f : P → R
- cover I of im(f) by open intervals: imf ⊆

⋃
I∈I I

→ connected cover V

Mapper in practice

Parameters:

- function f : P → R

- cover I of im(f) by open intervals

- clustering algorithm C

Mapper in practice

Parameters:

- function f : P → R

- cover I of im(f) by open intervals

lens or filter

- clustering algorithm C

Classical choices:

• density estimates

• centrality f(x) =
∑

y∈X d(x, y)

• eccentricity f(x) = maxy∈X d(x, y)

• PCA coordinates

• Eigenfunctions of graph laplacians.

• Functions detecting outliers.

• Distance to a root point.

• Prior knowledge

f

f

Mapper in practice

Parameters:

- function f : P → R

- cover I of im(f) by open intervals

range scale
Uniform cover:

- resolution / granularity: r (diameter of intervals)

- gain: g (percentage of overlap)

r

g = 30%

I

R

- clustering algorithm C

Mapper in practice

Parameters:

- function f : P → R

- cover I of im(f) by open intervals

range scale
Uniform cover:

- resolution / granularity: r (diameter of intervals)

- gain: g (percentage of overlap)

r

g = 30%

I

R

- clustering algorithm C

Intuition:
- small r → finer resolution, more nodes.
- large r → rougher resolution, less nodes.

- small g → less connectivity, nerve dimension small.
- large g → more connectivity, nerve dimension large.

Mapper in practice

Parameters:

- function f : P → R

- cover I of im(f) by open intervals

- for theoretical reasons, we prefer to work with

geometric scale

- clustering algorithm C

Classical choices:

- any clustering algorithm works

hierarchical clustering with (predefined) neighborhood size δ

- different clustering algorithms/parameters for each preimage

Mapper in practice

Parameters:

- function f : P → R

- cover I of im(f) by open intervals

- clustering algorithm C

f

Take the connected components of the
subgraph spanned by the vertices in the
preimage f−1(U).

Build a neighboring
graph (kNN,...)

Mapper in practice

X

f

R

I

V

Mapper

δ

Gδ = δ-neighborhood graph

M•
f,δ(P, I)

Mapper in practice

Applications

3D shape classification

Breast cancer subtype identification

Genomic analysis of spinal cord

Computational Topology (I):
Simplicial Complexes and

Homology

1. Simplicial Complexes

2. Nerve Theorem

3. Homology Groups

Computational Topology (I):
Simplicial Complexes and

Homology

1. Simplicial Complexes

2. Nerve Theorem

3. Homology Groups

Pbm: Looking for homotopy equivalences is extremely difficult.
Are there mathematical quantities that are invariant to

homotopy equivalences and easy to compute?

Computational Topology (I):
Simplicial Complexes and

Homology

1. Simplicial Complexes

2. Nerve Theorem

3. Homology Groups

Pbm: Looking for homotopy equivalences is extremely difficult.
Are there mathematical quantities that are invariant to

homotopy equivalences and easy to compute?

A: The holes, encoded in the homology groups Hk, k ∈ N.

Introduction

Q: How to characterize a hole in a simplicial complex?

Introduction

Q: How to characterize a hole in a simplicial complex?

A: A hole (in 1D) is a path whose first and end points are the same, a loop.

Introduction

Q: How to characterize a hole in a simplicial complex?

A: A hole (in 1D) is a path whose first and end points are the same, a loop.

v0 v1
v2v3

v4
v5

The sequence of 1-dimensional simplices [v0, v1],
[v1, v2], [v2, v3], [v3, v4], [v4, v5], [v5, v0] is a hole.

Introduction

Q: How to characterize a hole in a simplicial complex?

A: A hole (in 1D) is a path whose first and end points are the same, a loop.

v0 v1
v2v3

v4
v5

The sequence of 1-dimensional simplices [v0, v1],
[v1, v2], [v2, v3], [v3, v4], [v4, v5], [v5, v0] is a hole.

But what about higher dimensional holes (like the
inside of a tetrahedron)?

Introduction

Q: How to characterize a hole in a simplicial complex?

A: A hole (in 1D) is a path whose first and end points are the same, a loop.

v0 v1
v2v3

v4
v5

The sequence of 1-dimensional simplices [v0, v1],
[v1, v2], [v2, v3], [v3, v4], [v4, v5], [v5, v0] is a hole.

But what about higher dimensional holes (like the
inside of a tetrahedron)?

A: A hole in dimension d is a simplicial complex in which each (d−1)-simplex
appears an even number of times.

No natural ordering for the
tetrahedron faces

Introduction

The homology groups

Def: A d-chain C is a formal sum of d-simplices with coefficients in Z/2Z:

where δσ : τ 7→
{

1 if τ = σ
0 otherwise

,C =
∑

dim(σ)=d

ασδσ, ασ ∈ Z/2Z

The homology groups

Def: A d-chain C is a formal sum of d-simplices with coefficients in Z/2Z:

Def: The boundary ∂d of a d-simplex is the (d− 1)-chain:

∂d[v1, . . . , vd+1] =
∑d+1

i=1 [v1, . . . , vi−1, vi+1, . . . , vd+1]

where δσ : τ 7→
{

1 if τ = σ
0 otherwise

,C =
∑

dim(σ)=d

ασδσ, ασ ∈ Z/2Z

It extends linearly to d-chains.

The homology groups

Def: A d-chain C is a formal sum of d-simplices with coefficients in Z/2Z:

Ex: Let C = [v0, v1] + [v1, v2] + [v2, v3] + [v3, v4] + [v4, v5] + [v5, v0].

∂1C = ∂1[v0, v1] + ∂1[v1, v2] + ∂1[v2, v3] + ∂1[v3, v4] + ∂1[v4, v5] + ∂1[v5, v0]

where δσ : τ 7→
{

1 if τ = σ
0 otherwise

,C =
∑

dim(σ)=d

ασδσ, ασ ∈ Z/2Z

The homology groups

Def: A d-chain C is a formal sum of d-simplices with coefficients in Z/2Z:

Ex: Let C = [v0, v1] + [v1, v2] + [v2, v3] + [v3, v4] + [v4, v5] + [v5, v0].

∂1C = ∂1[v0, v1] + ∂1[v1, v2] + ∂1[v2, v3] + ∂1[v3, v4] + ∂1[v4, v5] + ∂1[v5, v0]

= [v0] + [v1] + [v1] + [v2] + [v2] + [v3] + [v3] + [v4] + [v4] + [v5] + [v5] + [v0]

where δσ : τ 7→
{

1 if τ = σ
0 otherwise

,C =
∑

dim(σ)=d

ασδσ, ασ ∈ Z/2Z

The homology groups

Def: A d-chain C is a formal sum of d-simplices with coefficients in Z/2Z:

Ex: Let C = [v0, v1] + [v1, v2] + [v2, v3] + [v3, v4] + [v4, v5] + [v5, v0].

∂1C = ∂1[v0, v1] + ∂1[v1, v2] + ∂1[v2, v3] + ∂1[v3, v4] + ∂1[v4, v5] + ∂1[v5, v0]

= [v0] + [v1] + [v1] + [v2] + [v2] + [v3] + [v3] + [v4] + [v4] + [v5] + [v5] + [v0]

= [v0] + [v0] = 0.

Def: A d-cycle is a d-chain C s.t. ∂dC = 0.

where δσ : τ 7→
{

1 if τ = σ
0 otherwise

,C =
∑

dim(σ)=d

ασδσ, ασ ∈ Z/2Z

The homology groups

Def: A d-chain C is a formal sum of d-simplices with coefficients in Z/2Z:

Ex: Let C = [v0, v1] + [v1, v2] + [v2, v3] + [v3, v4] + [v4, v5] + [v5, v0].

∂1C = ∂1[v0, v1] + ∂1[v1, v2] + ∂1[v2, v3] + ∂1[v3, v4] + ∂1[v4, v5] + ∂1[v5, v0]

= [v0] + [v1] + [v1] + [v2] + [v2] + [v3] + [v3] + [v4] + [v4] + [v5] + [v5] + [v0]

= [v0] + [v0] = 0.

Def: A d-cycle is a d-chain C s.t. ∂dC = 0.

Pb: Different cycles can represent the same hole.

where δσ : τ 7→
{

1 if τ = σ
0 otherwise

,C =
∑

dim(σ)=d

ασδσ, ασ ∈ Z/2Z

The homology groups

Lemma: ∂n−1 ◦ ∂n = 0. Q: Prove it.

The homology groups

Lemma: ∂n−1 ◦ ∂n = 0.

Def: Two d-cycles are homologous if ’their combination is in im(∂d+1)’:

C ∼ C ′ ⇐⇒ C + C ′ ∈ im(∂d+1)

Q: Prove it.

The homology groups

Lemma: ∂n−1 ◦ ∂n = 0.

Def: Two d-cycles are homologous if ’their combination is in im(∂d+1)’:

= +

C ∼ C ′ ⇐⇒ C + C ′ ∈ im(∂d+1)

Q: Prove it.

The homology groups

Lemma: ∂n−1 ◦ ∂n = 0.

Def: Two d-cycles are homologous if ’their combination is in im(∂d+1)’:

= +

= ∂()

C ∼ C ′ ⇐⇒ C + C ′ ∈ im(∂d+1)

Q: Prove it.

The homology groups

Lemma: ∂n−1 ◦ ∂n = 0.

Def: Two d-cycles are homologous if ’their combination is in im(∂d+1)’:

C ∼ C ′ ⇐⇒ C + C ′ ∈ im(∂d+1)

Q: Prove it.

Prop: The space of d-chains Cd(K) is a vector space with basis

{σ ∈ K : dim(σ) = d}.
The space of d-cycles Zd(K) is a linear subspace of Cd(K).

The boundary operator ∂d+1 : Cd+1(K) → Cd(K) is linear and im(∂d+1) is
a linear subspace of Cd(K).

Def: Given a vector space V , and a linear subspace W ⊆ V , their quotient
is the vector space: V/W := {[v] = {v + w : w ∈ W} : v ∈ V }.

Remark: v1 and v2 are mapped to the same element of V/W iif v1+v2 ∈ W .

The homology groups

Lemma: ∂n−1 ◦ ∂n = 0.

Def: Two d-cycles are homologous if ’their combination is in im(∂d+1)’:

= +

= ∂()
Hd = Zd/im(∂d+1)

C ∼ C ′ ⇐⇒ C + C ′ ∈ im(∂d+1)

Q: Prove it.

The homology groups

Lemma: ∂n−1 ◦ ∂n = 0.

Def: Two d-cycles are homologous if ’their combination is in im(∂d+1)’:

= +

= ∂()
Hd = Zd/im(∂d+1)

group of
d-cycles

group of ’cycles mi-
nus boundaries’

C ∼ C ′ ⇐⇒ C + C ′ ∈ im(∂d+1)

Q: Prove it.

group of d-
boundaries

The homology groups

Lemma: ∂n−1 ◦ ∂n = 0.

Def: Two d-cycles are homologous if ’their combination is in im(∂d+1)’:

= +

= ∂()

C ∼ C ′ ⇐⇒ C + C ′ ∈ im(∂d+1)

Q: Prove it.

Hd = {[C] : C ∈ Zd(K)}

[C] = {C ′ : C ∼ C ′}
where

The homology groups

Hd is a vector space in which each element is an equivalence class of cycles
associated to the same hole.

Def: The dimension of Hd is called the Betti number βd.

Minimum number of (classes of) cyles needed to create a basis, i.e., to be
able to write any cycle as a linear combination of cycles in the basis.

β0 counts the connected components, β1 counts the loops, β2 counts the
cavities, and so on...

The homology groups

Hd is a vector space in which each element is an equivalence class of cycles
associated to the same hole.

Def: The dimension of Hd is called the Betti number βd.

Q: What are the Betti numbers of:

sphere: β0 = 1, β1 = 0, β2 = 1,
torus: β0 = 1, β1 = 2, β2 = 1
cube: β = 1, β1 = 5, β2 = 0

The homology groups

Hd is a vector space in which each element is an equivalence class of cycles
associated to the same hole.

Def: The dimension of Hd is called the Betti number βd.

Q: What are the Betti numbers of:

The whole point of homology groups and Betti numbers is that they satisfy:

Hd(X) ̸= Hd(Y) =⇒ X,Y are not homotopy equivalent.

sphere: β0 = 1, β1 = 0, β2 = 1,
torus: β0 = 1, β1 = 2, β2 = 1
cube: β = 1, β1 = 5, β2 = 0

Summary

In this class, I introduced the basic bricks of Topological Data Analysis.

We have seen how to encode data sets as topological spaces using combina-
torial models called simplicial complexes.

We have seen simplicial complex constructions, e.g., Mapper, that are based
on the Nerve Theorem which guarantees that the topology is correct.

We have seen how to quantify topology in simplicial complexes with homology
groups and Betti numbers.

Next week, we will see an extension of homology groups, called persistent
homology, that allows to create richer descriptors for data science, called
persistence diagrams, out of simplicial complexes.

