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Localizing data discrepancies
. Problem: two populations differ in parameter/feature space: where are the
differences?

. Contribution: density difference clustering based method

Given two point clouds, we localize the discrepancy,

to find spatially coherent regions and provide a cluster based
of high discrepancy, decomposed effect size.



Data discrepancies: two-sample problem and effect size

. The two-sample test (TST) approach

I Two datasets i.i.d. samples from two unknown densities fX and fY :
x (n0) ≡ {x1, . . . , xn0} and y (n1) ≡ {y1, . . . , yn1} in Rd

x(n0) = {x1, . . . , xn0
}

y(n1) = {y1, . . . , yn1
} {

H0 : fX = fY ,

H1 : fX and fY differ in some way

(1)

. Classical TST

I p-value gives magnitude of the statistical significance, but
I (i) accept/reject: summarizes difference in a single bit
I (ii) the statistic of TST reflects the global discrepancy / effect size

. Goal: towards a nonparametric multivariate effect size

I (i’) localize discrepancies accounting for the differences
I (ii’) provide standardized (normalized) effect size



The three steps of the method

. Step 1: Estimate a measure of local discrepancy on each given point
Using f ≡ (fX +fY )/2, define the Jensen-Shannon divergence:

JS (fX‖fY ) ≡ 1

2
(DKL (fX‖f ) + DKL (fY ‖f ))

. Step 2: Aggregate local discrepancy in a spatial coherent way, using
topological persistence analysis to spot stable features, and produce clusters by
removing low discrepancy points

. Step 3: Produce an effect size bar plot to summarize the discrepancy profile

−δmax

Rd

−δ̂

C1 C2 C3 C4
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Pre-requisite: Jensen-Shannon divergence

. Kullback-Leibler divergence (KLD):
DKL (f ‖g) ≡

∫∞
−∞ f (x) log f (x)

g(x)
dx

DKL (P‖Q) ≡
∑

l∈A P(l) log P(l)
Q(l)

. The Jensen-Shannon divergence (JSD): symmetrizes and smoothes the KLD:
Consider f ≡ (fX +fY )/2, then

JS (fX ‖fY ) ≡
1

2
(DKL (fX ‖f ) + DKL (fY ‖f ))

. Main properties of JSD:

– JSD is symmetric
– JSD is bounded between 0 and 1
– Its square root yields a metric

.Ref: Endres and Schindelin; IEEE Trans. Info. Theory, 2003



Step 1: Jensen-Shannon divergence and its decomposition

. Notations: two unknown densities fX and fY , and the associated samples x(n0) and y (n1)

. Two random variables are implicitly defined:
– a position variable Z with density fZ ≡ f = (fX + fY )/2
– a binary label L ∈ {0, 1} with pmf P(0) = 1/2,

indicating from which density (fX or fY ) an instance of Z is obtained.

. Equivalently, one defines the following pair of random variables:

(L,Z) =

{
(0,X ) with prob. 1

2

(1,Y ) with prob. 1
2

. Associated conditional and unconditional probability mass functions:{
P(l |z) = P (L = l |Z = z)

P(l) = P (L = l) = 1
2

. Lemma: the JSD can be expressed as:

JS (fX ‖fY ) =

∫
Rd

fZ (z)DKL (P(·|z)‖P(·)) dz



Step 1: the local discrepancy

. From

JS (fX‖fY ) =

∫
Rd

fZ (z)DKL (P(·|z)‖P(·)) dz

. We define the discrepancy at location z as

δ(z) ≡ DKL (P(·|z)‖P(·)) .

. Remarks:

– δ(z) ∈ [0, 1] and δ(z) = 0⇔ fX (z) = fY (z).
– P(l) is known but P(l |z) is not:

we need to estimate P(l |z) at each given location z .



Step 1: random design nonparametric regression

. Consider random variables: location Z ∈ Rd , and response variable R ∈ R

. Associated regression function:

m(z) ≡ E [R|Z = z] .

. Consider data: {(Zi ,Ri )}i=1,...,n

. kn-nearest neighbors regressor: upon sorting samples by increasing distance
to z :

mn(z) =
1

kn

∑
i=1,...,kn

R(i,n)(z)

. NB: mn(z) is a random variables: some convergence assessment is in order.

.Ref: L. Györfi and A. Krzyzak; A distribution-free theory of

nonparametric regression; 2002



Step 1: estimation via k-nearest neighbors

. Using the labels as reponse variable R ≡ L

. Estimate P(·|z) via random design nonparametric regression :
– build an estimator mn(z) using n i.i.d. realizations of (L,Z) for:

m(z) = E [L|Z = z] = P(1|z).

– Then, if 0 ≤ mn(z) ≤ 1, we can use the following estimator for P(l |z):

P̂n (l |z) ≡ |1− l −mn(z)|.

. Thm: Using a kn-nearest neighbors regressor, s.t. kn
log n
→∞ and kn

n
→ 0:

δ̂n(z) ≡ DKL

(
P̂n (·|z)‖P(·)

)
n→∞−−−→ δ(z)a.s.

for f -almost all z ∈ Rd .



The random multiplexer to obtain
i.i.d. realizations of (L,Z )

. A random sampler produces i.i.d. realizations of (Z , L) from x (n0) and y (n1):

L ∼ B (1/2)X

Y
(L,Z)

B: Bernoulli
distribution

Figure: Random multiplexer generating pairs (label, position).

. The case of populations of uneven sizes:

– the multiplexer will consume faster the small population, and halt
– unused samples of the large population: detrimental since information loss
– resample B times and take the median of estimates, on a per sample basis



Step 1: Illustration: statistical image comparison
. Images: taking 2× 2 blocks in each color channel (R,G,B) yields points in R12.
. Interpolate gray scale pixel color with red scale representing discrepancy at each
pixel (upper left corner of the corresponding block) estimated with kn = n1/3

. Multidimensional Scaling of
parameter space:

The two populations. . .

. . . colored with δ̂:
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Step 2: Building the clusters from sublevel sets of −δ̄z(z)

. Ingredients:

I Height function / landscape:
estimated discrepancy δ̄z(z)

I Parameter: significance
threshold δmax

. Construction:

I Idea: one cluster ∼ one
connected component of the
sublevel set of −δ̄z(z) defined
by δmax

I Extra ingredient: smoothing
the landscape to get rid of
small clusters : smoothing
using topological persistence
at threshold ρ

(B)

−δmax

(C)

δ̂

Rd

Rd

−δmax

−δ̂

−δ̂

(A)

Rd
zi

δ̂(zi)

C1 C2 C3 C4

C1 ∪ C2 C3 ∪ C4

. NB: spurions samples removed
from clusters due to filtering wrt
δmax .



Step 2: Building the clusters: persistence diagram

. Partition of the PD induced by:

I Significance threshold δmax

I Persistence threshold ρ

y : Death

x : Birth

y = x

0

0

−δmax

−δmax

R1
R3

R5

R4 R2

y = x + ρ

−1
−1

. Local minimum m of −δ̄z(z):

I Selected/rejected: m was
born before −δmax .

I Persistent/canceled:
persistence(m) ≥ ρ

I Filtered (un-filtered): the
catchment basin of m dies
after (before) −δmax .

. Observation:

I # clusters : 1 + # points in
region R5 of the PD.

I # persistent local minima : 1
+ num points in the region
R4 ∪ R5 of the PD.



Step 2: Illustration: statistical image comparison

. Images again:

. Parameters: k = 10 (NNG), ρ = 0.1, δmax = 0.1

−0.6

−0.4

−0.2

0.0

−0.6 −0.4 −0.2 0.0
birth

de
at

h



Step 3: Effect size: discrepancy profile

. Global estimated JSD: area under dashed line

. Maximum JSD: area under continuous line (=1)

. Contribution of each cluster C to JSD: area of bar

JSC (fX‖fY ) ≡ 1

n0 + n1

∑
z∈(x(n0)∪y (n1))∩C

δ̂(z).

. Mass of each cluster: bar width

. Population balance in each cluster: bar color

. Ellipses:
– Large global JSD (dashed line)
– Contributed by 2+2 balanced clusters

. Images:
– Smaller global JSD (dashed line)
– Contributed by 2 clusters



Wrapping-up: workflow

L ∼ B(1/2)
x(n0)

y(n1) {zji , lji}i=1,...,mj

Repeat from j = 1 to B

kn′
b

D
a
ta
se
ts
:t
w
o
p
oi
n
t
cl
o
u
d
s

Output: estimated discrepancy

δ̂(zi), zi ∈ x(n0) ∪ y(n1)

JSD decomp. by clusters {Ci}

JSCi
(fX‖fY )

Output: divergence by cluster

Output:

{Ci} s.t.
{
∪Ci = x(n0) ∪ y(n1)

∩Ci = ∅

Clustering with topological
persistence:
- k-Nearest neighbor graph
- Persistence: ρ
- Filtering: δmax

estimate
for δ(z)

. Compulsory parameters:
kn: regression parameter
δmax : discrepancy significance threshold
ρ: persistence threshold
k: num. of nearest neighbors for the persistence based clustering

. Optional parameter:
B: num. repetition in case of unbalanced populations



Outlook: about regression

I k-NN based regressors: adapt to local intrinsic dimension: convergence
results proved (L2 sense) for marginals µ which are doubling measures.

I random projection tree based regressors: convergence results proved (L2

sense) when X has Assouad dimension d . NB: more efficient than k-NN
since cells of RPT have constant size.

I Open problem (AFAIK): strong pointwise consistency using RPTrees.

.Ref: Kpotufe; k-NN regression adapts to local intrinsic dimension;

NIPS 2011

.Ref: Kpotufe and Dasgupta; A tree-based regressor that adapts to

intrinsic dimension; J. of Computer and System Sciences, 2012



Outlook: general

I About p-values:

I Use a classical test, possibly Maximum Mean Discrepancy
(Gretton et al).

I Also: the k-NN estimator used in a sequential way can be used
to compute a p-value in a flexible way—the number of samples
to process need not be known in advance.

I More applications:

I Finding clusters with low discrepancy: study δ̂.
I Goodness-of-fit analysis: sampling from a given model, then

comparing data to spot discrepancies

I Feedback versus feature based selection: Compare to NIPS 2015 paper
Principal differences analysis: feature based identification in the context
of TST



Try me: http://sbl.inria.fr

http://sbl.inria.fr


Consistency of sequence regression estimates {mn}
Based on L2 norm

. Consider the following RV–induced by the data Dn:∫
| mn(x)−m(x) |2 µ(dx). (2)

. Def: The sequence {mn} is weakly consistent for a certain distribution of
(X ,Y ) if

lim
n→∞

E
[∫

(mn(x)−m(x))2µ(dx)
]

= 0. (3)

. Def: The sequence {mn} is strongly consistent for a certain distribution of
(X ,Y ) if

lim
n→∞

∫
(mn(x)−m(x))2µ(dx) = 0 with proba. one. (4)

. Def: The sequence {mn} is weakly universally consistent if it is weakly
consistent for all distributions of (X ,Y ) with E

[
Y 2
]
<∞.

. Def: The sequence {mn} is strongly universally consistent if it is strongly
consistent for all distributions of (X ,Y ) with E

[
Y 2
]
<∞.

.Ref: book



Consistency of sequence regression estimates {mn}
based on pointwise convergence

. Def: The sequence {mn(x)} is called strongly pointwise consistent is
mn(x)→ m(x) a.s.

. Def: The sequence is called strongly universal pointwise consistent if it is
strongly pointwise consistent for all distributions of (X ,Y ) with E

[
Y 2
]
<∞.

.Ref: book



Structural Bioinformatics Library
Package Density Difference Based Clustering @ http://sbl.inria.fr

I User manual https://sbl.inria.fr/doc/Density_difference_
based_clustering-user-manual.html

I General entry: http://sbl.inria.fr

.Ref: Cazals and A. Lhéritier, IEEE/ACM DSAA, 2015

.Ref: Kim, Lee, Lei, Electronic Journal of Statistic, 2019

http://sbl.inria.fr
https://sbl.inria.fr/doc/Density_difference_based_clustering-user-manual.html
https://sbl.inria.fr/doc/Density_difference_based_clustering-user-manual.html
http://sbl.inria.fr
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Comparing two clusterings using matchings between
clusters of clusters

F. Cazals, D. Mazauric, R. Tetley, and R. Watrigant
ACM Trans. Exp. Algorithms, 2019

https://sbl.inria.fr/doc/D_family_matching-user-manual.html

F1

F2

F ′
1

F ′
2

F ′
3

F ′
4

F ′
5

Clustering F Clustering F ′

u1 u2

u′
1 u′

2 u′
3 u′

4 u′
5

5 15 5 105

u1 u2

u′
1 u′

2 u′
3 u′

4 u′
5

5 15 5 105

(a) (b) D = 1

(c) D = 2

https://sbl.inria.fr/doc/D_family_matching-user-manual.html
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Clustering algorithms

I Many algorithms: which one?

I Many parameters: which ones?

I Many clustering: are they consistent? A problem of scale. . .
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Grouping clusters into metaclusters:
problem formalization in terms of intersection graph

. Goal: recovering some coherence between groups of clusters

I as a function of a scale parameter D

F1

F2

F ′
1

F ′
2

F ′
3

F ′
4

F ′
5

Clustering F Clustering F ′

u1 u2

u′
1 u′

2 u′
3 u′

4 u′
5

5 15 5 105

u1 u2

u′
1 u′

2 u′
3 u′

4 u′
5

5 15 5 105

(a) (b) D = 1

(c) D = 2

. Rationale: many-to-many

I Aggregating many clusters, map to many clusters

I Characterize the scale at which clusters merge



Structurally conserved motifs in protein structures
Many-to-many correspondence between clusters

. Handling small and conserved structural motifs in proteins

11

23

12

11



Merging clusters: a matter of scale
On the role of the scale parameter D

(A) Two clusterings (kmeans++, Tomato, etc) (B) Meta-clusters as union of clusters



Statistical analysis: complementary topics

Beyond Two-Sample-Tests
Problem
Jensen-Shannon divergence and discrepancy
Density based clustering

Comparing clusterings
Motivation
Problem statement
Previous work
D-family matching: problem
Hardness
Algorithms
On the choice of D
Experiments

Maximum Information Coefficient



Comparing clusterings: previous work

REVISE REVISE REVISE REVISE
. 1-1 mapping of clusters: equivalent to the problem of computing a
maximum weighted matching in weighted bipartite graph.
. Solution: solved in O(n2 log n + nm)
. Particular case of the D-family-matching problem for D = 1 – see later

F1

F2

F ′
1

F ′
2

F ′
3

F ′
4

F ′
5

F F ′

u1 u2

u′
1 u′

2 u′
3 u′

4 u′
5

5 15 5 105

(a) (b) D = 1



Comparing clusterings: the Variation of Information

• A set Z of t items
• A clustering F of size r for Z : F = {F1, . . . ,Fr}; nk = |Fk |;
pk = nk/t.
• A clustering F of size r ′ for Z : F = {F1, . . . ,Fr}; n′k = |F ′k′ |;
• Overlap between two clusters: p(k, k ′) = |Fk ∩ F ′k′ |/t.
• Entropy of clustering: H(F ) = −

∑
k=1,...,r p(k) ln p(k)

• Mutual information between F and F ′:

I (F ,F ′) =
∑
k

∑
k′

p(k, k ′) ln
p(k, k ′)

p(k)p(k ′)
.

• Variation of information (VI):

VI (F ,F ′) = H(F ) + H(F ′)− 2I (F ,F ′).

• Main properties:

I VI is a metric

I VI (F ,F ′) ≤ ln t

H(F ) H(F ′)

I(F, F ′)H(F | F ′) H(F ′ | F )

V I(F ′, F )

.Ref: M. Meila, Journal of Multivariate Analysis, 2007
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Intersection graph

. Notations:

I Data: Z = {z1, . . . , zt}
I Clustering F of size r: F = {F1, . . . ,Fr}

Fi ⊆ Z ,Fi 6= ∅ and Fi ∩ Fj = ∅ for every i , j ∈ {1, . . . , r}, i 6= j .

I Clustering F’ of size r’: F ′ = {F ′1, . . . ,F ′r′}

F ′i ⊆ Z ,F ′i 6= ∅, and F ′i ∩ F ′j = ∅ for every i , j ∈ {1, . . . , r ′}, i 6= j .

NB: a clustering may not contain all t items

Definition 1 (Intersection graph G = (U,U ′,E ,w) for F and F ′).

The set U = {u1, . . . , ur}: vertices of F
The set U ′ = {u′1, . . . , u′r′}: vertices of F ′

Edges E = {{ui , u′j} | Fi ∩ F ′j 6= ∅, 1 ≤ i ≤ r , 1 ≤ j ≤ r ′}.
Edge weight of edge e = {ui , u′j} ∈ E is we = |Fi ∩ F ′j |.



D-family matching

. Let D ∈ N+: a constraint on the diameter of certain subgraph of the
intersection graph

Definition 2. [D-family-matching for an intersection graph]
A family S = {S1, . . . , Sk}, k ≥ 1, such that

I for every i , j ∈ {1, . . . , k}, if i 6= j , then: Si ⊆ V , Si 6= ∅, Si ∩ Sj = ∅,
I and the graph G [Si ] induced by the set of nodes Si

has diameter at most D.

. Comments:

I D = 1: matching

I D = 2: clusters as stars

. Notations:

I Set of all D-family matchings of a graph G : SD(G)



D-family matching problem

. Score Φ(S) of a D-family-matching S:

Φ(S) =
k∑

i=1

∑
e∈E(G [Si ])

we . (5)

. Remarks:

I The sum runs over all edges of a connected component. (Later: see
algorithms based on spanning trees.)

I We wish to compute a D-family-matching which minimizes the
inconsistencies.

Definition 3 (D-family-matching problem). Let D ∈ N+. Given an
intersection graph G , the D-family-matching problem consists in computing

(Opt score for a given D) ΦD(G) = max
S∈SD (G)

Φ(S). (6)

NB: Score with the diameter D stressed: Φ(SD=d)



D-family matching: role of the diameter, illustration
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Figure: Simple instance of the D-family-matching problem and solutions: panels
(c,d,e,f) represent optimal solutions for different values of D. (a) Simple instance of
the D-family-matching problem with t = 12, r = 5, r ′ = 4, and so n = 9. The family
F contains five sets and the family F ′ contains four sets. (b) Intersection graph G .
(c) Optimal solution S for D ≥ 7 with Φ(S) = ΦD(G) = 12. (d) Optimal solution S
for D = 3 with Φ(S) = Φ3(G) = 11. (e) Optimal solution S for D = 2 with
Φ(S) = Φ2(G) = 9. (f) Optimal solution S for D = 1 with Φ(S) = Φ1(G) = 8.



Notations, recap

Notation Definition

Z = {z1, . . . , zt} Set of t ≥ 1 elements

F = {F1, . . . ,Fr} Family of r ≥ 1 disjoint subsets of Z

F ′ = {F ′1, . . . ,F ′r′} Family of r ′ ≥ 1 disjoint subsets of Z

G = (V ,E ,w) Intersection graph of n ≥ 1 nodes and m ≥ 1 edges

NG (v) = {v ′ | {v , v ′} ∈ E} Set of neighbors of node v ∈ V

∆ = maxv∈V |NG (v)| Maximum degree of G

cc(G) Set of maximal connected components of G

S = {S1, . . . , Sk} D-family-matching

Φ(S) =
k∑

i=1

∑
e∈E(G [Si ])

we Score of a D-family-matching S

SD(G) Set of all D-family-matching for G

ΦD(G) = maxS∈S(G ,D) Φ(S) Optimal score for the D-family-matching problem

SD(G ,Tr ) Set of all D-family-matching constrained by Tr

ΦD(G ,Tr ) = maxS∈SD (G ,Tr ) Φ(S)
Optimal score for the D-family-matching problem
constrained by Tr
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Main result

Theorem 4. Let D ≥ 2 be any integer. The decision version of the
D-family-matching problem is NP-complete for :

I bipartite graphs of maximum degree 3;

I bipartite graphs of maximum degree 4 even if the maximum weight is
constant.

Moreover, the 2-family-matching problem is APX -hard for bipartite graphs of
maximum degree 3 with unary weights.

. Open pb.: Is the D-family-matching problem in APX or not (constant factor
approximation)?

I Nb: P 6= NP: APX-hard pb. not in PTAS, i.e. no (1 + ε) approx



Greedy strategy on the diameter is not an option

Lemma 5. For any integer n ≥ 1, then there exists an intersection graph
G = (V ,E ,w) composed of n nodes such that Φ2(G)/Φ1(G) ≥ n − 1.

{z1, . . . , zt}

{z1}

{z2}

{zt}

u1

u′1

u′2

u′t

we = 1

we = 1

we = 1

. One has:

I Φ(SD=1) = 1 (one edge)

I Φ(SD=2) = t = n − 1 (all edges)
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Trees: theorems

Theorem 6 (Computation of ΦD(G ) for trees). Let D ∈ N+.
Consider any intersection tree T = (V ,E ,w) of maximum degree ∆ ≥ 0.
Then, there exists an O(D2∆2n)-time complexity algorithm for the
D-family-matching problem for T .

Proof.
See black board.

Theorem 7. For any D ∈ N+, the D-family-matching problem can be
solved:

I in O(Dn) time if G is a path;

I in O(D2n) time if G is a cycle(s) or a graph of maximum degree 2.

Proof.
See paper.



Generic approach on spanning trees

Definition 8 (D-family-matching constrained by a tree). Let
G = (V ,E ,w) be an intersection graph and T be a spanning tree of G .
A D-family-matching for G constrained by T is a D-family-matching S for G
such that all Si ∈ S induces a connected subtree in T .
The set of all D-family-matching constrained by T is denoted SD(G ,T ).

With this Def., we obtain the following sub-problem of D-family-matching:

Definition 9 (D-family-matching problem constrained by a
tree). The D-family-matching problem consists in computing

ΦD(G ,T ) = max
S∈SD (G ,T )

Φ(S) (7)



Generic algorithm for the D-family-matching problem

. Three ingredients:

I A property Π(M), depending on the set M of already computed
D-family-matchings, represents the halting condition of the algorithm.

I A spanning tree generator R(G , λ) computes the rooted spanning tree
Tλ of G that is used at step λ ≥ 1 by Algorithm A.

I An algorithm A(G ,Tλ,D) computes a D-family-matching Sλ
constrained by Tλ.

. Generic algorithm for the D-family-matching problem:

Require: An intersection graph G = (V ,E ,w), an integer D ≥ 1, a property
Π, a spanning tree generator R, and an algorithm A.

1: M := ∅, λ := 0
2: while ¬ Π(M) do
3: λ := λ+ 1; Compute the spanning tree Tλ := R(G , λ)
4: Compute Sλ by using Algorithm A(G ,Tλ,D); M :=M∪Sλ
5: return S ∈ M of maximum score



Results on spanning trees

Lemma 10. Let D ∈ N+. Let G be any intersection graph. Then, there
exists a rooted spanning tree T of G such that ΦD(G) = ΦD(G ,T ).

Proof.
See black board.

Lemma 11 (Computation of ΦD(G ,T )). Let D ∈ N+. Let
G = (V ,E ,w) be any intersection graph and T be any spanning tree of G .
Then, there exists a O(2D∆ log2(∆)n)-time algorithm for the
D-family-matching problem for G constrained by T .

Proof.
See paper.
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Various strategies

. Three strategies:

I (Stable plateaus) compute a set of non-overlapping plateaus optimizing a
functional favoring long and thin plateaus.

I (Prescribed num. plateaus) specify the number of plateaus to be
obtained.

I (Hierarchical plateaus) perform a hierarchical decomposition into
plateaus, which is of interest if there are several vertical scales.

. Focus on:

I local maxima of Φ

I plateaus



Stable plateaus: long plateaus of small height
. Quality measures for a plateau:

I τw (y): positive increasing function for the plateau width

I τh(y): positive increasing function for the plateau height

. Given:

I Let DG be the diameter of the intersection graph; we assume
{(D,ΦD)}D=1,...,DG

I Consider the set {Φ1(G), . . . ,ΦDG (G)}
I Let |Ix | is the size of plateau Ix

Definition 12. Determine µ ∈ {1, . . . ,DG} plateaus (intervals) I1, . . . , Iµ of
[1,DG ] with

I I1 ∪ . . . ∪ Iµ = {1, . . . ,DG}, Ix ∩ Ix′ = ∅ for every 1 ≤ x < x ′ ≤ µ,

I such that the following function is minimum:

−
µ∑

x=1

τw (|Ix |)
τh(maxD,D′∈Ix∩N ΦD′(G)− ΦD(G))



Stable plateaus: construction

Theorem 13. There is an O(D2
G )-time complexity algorithm that computes

an optimal solution for the Tradeoff-plateau problem.

. Algorithm: blackboard



Hierarchical plateaus

. Dendogram of plateaus:

I For two consecutive plateaus, each consisting of a set of values
{(D,ΦD)}: coherence measure for the union of these two plateaus: the
maximum difference between any two values Φ· on these plateaus.

I Merge two plateaus realizing the minimum value then yields a dendogram.

. Formally: build a rooted tree T = (V ,E) representing the hierarchical
plateaus

I One leaf per possible value of D; DG − 1 internal nodes (including the
root). That is, let (I1, I2, . . . , Id) be the d = DG initial plateaus each
composed of 1 point.

I Perform the aforementioned binary merge.
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Generic code and instantiation for experiments

. Implementation in the SBL:
http://sbl.inria.fr/doc/D_family_matching-user-manual.html.

. Implementation STS(G ,D) has the following ingredients:

I (i) the spanning tree generator R returns a maximum spaning tree, or a
random spanning tree;

I (ii) the property Π(M) returns true once we have computed a solution
on the maximum spanning tree, as well as a solution on ni = (10, 000)
distinct random spanning trees (for a given ni );

I (iii) A: algorithm as in Theorem 6 with an additional step: edges for
which both extremities belong to the same meta-cluster are added to the
said meta-cluster. (In general, the intersection graph is indeed not a tree,
so that such edges were unaccounted for.)

I The solution returned for a given graph G and a diameter D is the best
yielded by the aforementioned 1 + ni spanning trees.

http://sbl.inria.fr/doc/D_family_matching-user-manual.html


Randomly edited clusterings: setup
. Initial random clusterings:

I (t = 1 000, r = 20) and (t = 3 000, r = 50).

I Generated with the Boltzmann sampler from Flajolet - Duchon et al

I Due to the randomness, the process is repeated Nr = 10 times for each
pair (t, r).

. Edited clusterings: a copy F ′ of a clustering F is edited in two steps

I Union operations: e unions reduce the number of clusters to r − e

I Jittering: for each cluster, a fraction τ of its items are distributed
amongst the remaining k − 1 clusters uniformly at random.

. Values: 9 scenarios for edits and jitters

I e ∈ {0, br/4c, br/2c} and τ ∈ {0.05, 0.1, 0.2}. (NB: for e = 0, F ′ is a
jittered version of F (i.e. the numbers of clusters are identical.)

I yields Nr ×#(t, r)×#e ×#τ = 180 comparisons, which are ascribed to
9 scenarii (3 values for e × 3 values for τ) denoted EeJy , where y = 100τ .

. Comparson against VI: comparison of normalized scores ∈ [0, 1]:

sΦ = 1− ΦD(·)/t versus sVI = VI/ log t.



Randomly edited clusterings: results for (t = 1000, r = 20)
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Figure: Algorithm STS(G ,D) for clusterings with (t = 1 000, r = 20).
(Left) Best value for k as a function of the 9 scenarii. (Right) Scores sΦ

as a function of the 9 scenarii.

I D ≤ 2: algo. finds the right number of clusters ∀e (resp: 20, 15, 10)

I For D = 2: score ΦD(·) is almost perfect (≥ 800, wrt t = 1000)

I Across scenarii: scores hardly depend on the jitter level

I For D = 3: scores ΦD(·) varies significantly–but medians ok

I For D = 4: the algorithms output a full graph



Comparison with the Variation of Information: results

. Method: scatter plot of sΦ = 1− ΦD(·)/t versus sVI = VI/ log t
NB: 1 symbol per scenario; copy number of a symbol: number of repeats.

Figure: Normalized score sVI versus normalized score sΦ of
algorithm STS(G ,D). Each marker is a different union scenario and
each color represents a different jitter scenario following the legend on
the upper right. We plot the y = x function for reference.



Comparison with the Variation of Information: results

I D = 2: sΦ corresponds to a matching.

I D = 2, two key differences with VI: sΦ ≤ sVI ; sΦ constant against union
operations. Both sVI and sΦ are affected by jittering.

I D = 3: higher variability in sΦ; dependence on jittering and # union
operations.

I For D = 4: sΦ = 0 ie the full intersection graph reported.



On the separability of clusters and D: setup
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Figure: Parameterized dataset: mixture of 5 Gaussian blobs. (A)
Relative position of the five Gaussian blobs: function of d (B, C, D)
t = 5, 000, d = 50, 20, 5. Samples clustered with k-means++ (k = 5).



On the separability of clusters and D: plateaus

. (A, d=50) . (B, d=20)

. (C, d=5) I (A) d = 50, k = 4 meta-clusters
suggested for D = 8.

I (B) d = 20, k = 3 meta-clusters
suggested for D = 8.

I (C) d = 5 No obvious choice for
the number of meta-clusters.



On the separability of clusters and D: illustrations

d = 50: D = 8, 4 m.c. d = 20: D = 8, 3 m.c. d = 5: no real hint



Final words on the choice of D

Fom Strehl et al (JMLR 2002): “In fact, the right number of clusters in a
dataset often depends on the scale at which the dataset is inspected”.

I Parameter D acts as a scale parameter providing information of the
structure of the intersection graph.

I When this graph is dense or has a specific topology (star-shaped), trivial
values of Φ are obtained for small values of D, and a unit change of D
may trigger an abrupt change of Φ. However, in more complex situations,
large values of D may be required.

I As a general strategy to choose D, we suggest identifying drops in Φ
when decreasing D. Indeed, for any range of D corresponding to a
plateau for Φ, the most significant value for D is the smallest one.



Outlook

I Interesting complexity issues: open

I Useful tool, available from
https://sbl.inria.fr/doc/D_family_matching-user-manual.html

I Interesting connexions with model clustering in deep learning – amongst others

.Ref: Cazals et al, ACM J. of Experimental Algorithms, 2019

.Ref: Interactive Naming for Explaining Deep Neural Networks: A

Formative Study M Hamidi-Haines, Z Qi, A Fern, F Li arXiv preprint

arXiv, 2018.

https://sbl.inria.fr/doc/D_family_matching-user-manual.html
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Detecting Novel Associations in Large Data Sets

The Maximal Information Coefficient (MIC)

Science 334, December 2011

9 authors, led by Michael Mitzenmacher and Pardis Sabeti, Harvard



Correlations in 2D: the Pearson correlation coefficient
Does the knowledge of X provide information on Y ?

. The Pearson coeff.: ρ = cov(X ,Y )/(σxσY ) . Anscombe’s quartet: ρ = 0.816

. Properties of ρ:
– Coupled to linear regression fi = αxi + β

– α = ρσY /σX
– coeff. of determination: R2 = ρ2

– Not invariant to rotations
– Spearman’s coeff: Pearson on ranks:

for monotonic correlations

. Coeff of determination
R2: variance explained by the model
1− R2: unexplained var. / noise level

R2 = 1− AreaResiduals
AreaV ariance

http://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient

http://en.wikipedia.org/wiki/Correlation_and_dependence

http://en.wikipedia.org/wiki/Coefficient_of_determination

http://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient
http://en.wikipedia.org/wiki/Correlation_and_dependence
http://en.wikipedia.org/wiki/Coefficient_of_determination


Information Theory: Key Quantities

. Entropy of the r.v. X

H(X ) = −
∑
x∈X

p(x) log p(x)

H(X ) ≤ log | X |
. Joint and Conditional entropies

H(X ,Y ) = −
∑

p(x , y) log p(x , y)

H(Y | X ) =
∑
x∈X

p(x)H(Y | X = x)

. Relative entropy: Kullback-Leibler
divergence of two distributions on the
same proba. space:

Def:
D(P,Q) =

∑
x∈X p(x) log(p(x)/q(x))

Prop.: D(P,Q) ≥ 0

. Mutual information

I (X ,Y ) =
∑

p(x , y) log
p(x , y)

p(x)p(y)


I (X ,Y ) = D(p(x , y), p(x)p(y))

= H(X )− H(X | Y )

= H(X ) + H(Y )− H(X ,Y )

H(X) H(Y )

H(Y | X)H(X | Y )

I(X, Y )

H(X, Y )

Notes: (i)Poincare formula for I
(ii) I as correlation: common entropy

http://en.wikipedia.org/wiki/Mutual_information

http://en.wikipedia.org/wiki/Kullback-Leibler_divergence

http://en.wikipedia.org/wiki/Mutual_information
http://en.wikipedia.org/wiki/Kullback-Leibler_divergence


Maximal Information Coefficient (MIC): Definition

. Input: a 2D point cloud D = {(xi , yi )}i=1,...,n and its bounding box

. Grids: Gx,y : grids of size x × y not necessarily regular

. Joint proba/marginal of D|G : fraction of samples, out of n, in a cell/row/column

. Def of MIC:

I ∗(D, x , y) = max
G∈Gx,y

I (D|G ) (8)

Mxy =
I ∗(D, x , y)

log min(x , y)
(9)

MIC = max
xy<B(n)=n1−ε

Mxy (10)

. Elementary properties:

– Mxy ∈ [0, 1]
– MIC(X ,Y ) = MIC(Y ,X )
– MIC invariant to order preserv. transf.

grids determined by abscissa / ordinates
– MIC not invariant to rotations

cf y = x vs y = c

Note: For the normalization of Eq. (9):

log min(x, y) rather than n: # cells

sub-linear, see Eq. (10).

. Note: exploring all grids ∼ enclosing the data in a tube



MIC, illustrations (I): the functional noiseless case

. Ideal scores: (almost) one



MIC, illustrations (II): the functional noisy case

. Testing 27 functions with uniform vertical noise: MIC = function of (1− R2)
with R2 the determination coeff of the data relative to the noiseless function

Bottomline is → MIC ∼ R2: easy comparison of 6= functions



MIC, illustrations (III): the non functional noisy case

. MIC also degrades smoothly as a function of the noise level



Details of the Definition

. Grid resolution B(n)
– too low: searching for simple patterns
– too high: high scores even for random data

samples isolated in cell/column
. Normalization

– grids with 6= dimensions have 6= mutual information
– normalizing by log min(x , y):

Comparing grids of 6= dimensions
Ensures that almost all

noiseless functions get MIC of one
(finite union of differentiable curves)



MIC: Theorems
(Ten pages of proofs in the Supplemental)

. Thm 1. If X and Y independent R.V.: ApproxMIC converges to 0 in
probability when n→∞
If X and Y are not independent R.V.: MIC bounded away from 0 almost
surely.

. Thm 2. For any joint distribution (X ,Y ), MIC computed with a number of
cells B(n) = n1+ε would yield MIC → 1 almost surely.

. Thm 3. Let D consist of n samples drawn according to a distribution
(X , f (X )), with f nowhere constant on [0, 1]. Then MIC → 1 almost surely.

. Thm 4. If the support of (x(t), y(t)) is a finite union of smooth curves,
nowhere flat (critical points of measure 0), then MIC > 1− ε for large n.

. Thm 5. MIC of a noisy functional (X , f (X ) + Eh), with Eh uniform noise in
[−h, h], is lower bounded by a (complex) functional of the R2 between f (X )
and f (X ) + Eh.



More Ingredients

– Computing MIC: algorithm ApproxMIC uses 2D dynamic programming

– p-value calculation for H0: X and Y are statistically independent
Create surrogate datasets created with random permutations

(eg of X for Y fixed)

– MIC − ρ2 as a natural measure of linear dependence:
Since MIC behaves as R2 for functional relationships

– Symmetry of the matrix Mxy : hints at monotony
Maximum Asymmetry Score | mxy −myx |

Hints at periodic relationships with non constant period

– Software MINE: http://www.exploredata.net/

http://www.exploredata.net/
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