
Nearest Neighbors Algorithms in Euclidean and
Metric Spaces: Algorithms and Data Structures

February 7, 2023

Frederic.Cazals@inria.fr

Nearest Neighbors Algorithms in Euclidean and Metric
Spaces: Algorithms and Data Structures

Introduction

Intermezzo: data vs algorithms

kd-trees and basic search algorithms

kd-trees and random projection trees: improved search algorithms

Important metrics: geometry based

Important metrics: the Earth Mover Distance

Metric trees and variants

Nearest Neighbors Algorithms in Euclidean and Metric
Spaces: Algorithms and Data Structures

Introduction

Intermezzo: data vs algorithms

kd-trees and basic search algorithms

kd-trees and random projection trees: improved search algorithms

Important metrics: geometry based

Important metrics: the Earth Mover Distance

Metric trees and variants

Applications

. A core problem in the following applications:

I clustering, k-means algorithms

I information retrieval in databases

I information theory : vector quantization encoding

I classification in learning theory

I . . .

Nearest Neighbors: Getting Started

. Input: a set of points (aka sites) P in Rd , a query point q

. Output: nn(q,P), the point of P nearest to q

d(q,P) = d (q, nn(q,P)) . (1)

q

nn(q)

The Euclidean Voronoi Diagram
and its Dual the Delaunay Triangulation

. Voronoi and Delaunay diagrams

. Key properties:

I Voronoi cells of all dimensions

I Voronoi - Delaunay via the nerve construction

I Duality : cells of dim. d − k vs cells of dimension k

I The empty ball property

Nearest Neighbors Using Voronoi Diagrams

p

q

nn(q)

. Nearest neighbor by walking
- start from any point p ∈ P
- while ∃ a neighbor n(p) of p in
Vor(P)

closer to q than p,
step to it: p = n(p)

- done nn(q) = p

. Argument: the Delaunay neighborhood of a point is complete
Vor(p,P)= cell of p in Vor(P)
N(p) = set of neighbors of p in Vor(P)
N ′(p) = {p}

⋃
N(p)

Vor(p,N ′(p)) = Vor(p,P)

. Exercise: specify the algorithm using DT

The Nearest Neighbors Problem: Overview

. Strategy: prepocess point set P of n points in Rd into a data
structure (DS) for fast nearest neighbor queries answer.

. Ideal wish list:

I The DS should have linear size

I A query should have sub-linear complexity i.e. o(n)

I When d = 1: balanced binary search trees yield O(log n)

. Core difficulties:

I Curse of dimensionality in Rd : for high d , it is difficult to
outperform the linear scan

I Interpretation: meaningfull-ness of distances in high dimensional
spaces – distance concentration phenomena.

The Nearest Neighbors Problem: Elementary Options

. The trivial solution :
O(dn) space, O(dn) query time

. Voronoi diagram

d = 2, O(n) space O(log n) query time

d > 2, O
(
nd

d
2 e
)

space

→ Under locally uniform condition on point distribution
the 1-skeleton Delaunay hierarchy achieves :
O(n) space, O(cd log n) expected query time.

. Spatial partitions based on trees

The Nearest Neighbors Problem: Variants

. Variants:

I k-nearest neighbors: find the k points in P that are nearest to q

I given r > 0, find the points in P at distance less than r from q

I Various metrics

I L2, Lp, L∞
I String: Hamming distance
I Images, graphs: distance based on optimal transportation
I Point sets: distances via optimal alignment

I Non metric spaces – cf metric trees

. Main contenders in metric spaces:

I Tree like data structures:

I quad-trees – and its variant ANN
I (randomized) kd-trees
I k-means trees – partition derived from k-means with k=2

I Locally Sensitive Hashing

Comparison and appetizer: setup

. Contenders: various hierarchical methods for approximate NN

I randomized kd-trees: hierarchical partition with split direction chosen at
random

I k-means trees: hierarchical partition with split direction derived from
k-means

I ANN

I LSH

. Assessment for the accuracy of the approximation: precision i.e. fraction of
queries for which the correct NN is found

. Two main questions addressed:

I Question 1: for a fixed database, which algorithm is best?

I Question 2: are the performances stable when the size of the DB
changes?

.Ref: Muja and Lowe, VISAPP 2009

.Ref: O’Hara and Draper, Applications of Computer Vision (WACV), 2013

Main Contenders: Typical Results for Approximate NN
. DB used : Scale-Invariant Feature Transform (SIFT) for images: {(xi , yi , σi)}

. Question 1: best algorithm . Question 2 – for winners only
i.e. for rand. kd-trees and k-means
trees

. Take-home messages:

I Randomized kd-trees and k-means trees win

I splits must exploit the variance in the dataset
I Speed-ups consistent when DB size increases

.Ref: Muja and Lowe, VISAPP 2009

.Ref: O’Hara and Draper, Applications of Computer Vision (WACV), 2013

Nearest Neighbors Algorithms in Euclidean and Metric
Spaces: Algorithms and Data Structures

Introduction

Intermezzo: data vs algorithms

kd-trees and basic search algorithms

kd-trees and random projection trees: improved search algorithms

Important metrics: geometry based

Important metrics: the Earth Mover Distance

Metric trees and variants

Performances of geolocalization
a tale of data, features, and algorithms

. Source: Inria Colloquim talk by Alexei Efros, UC Berkeley, see
https://iww.inria.fr/colloquium/fr/

alexei-alyosha-efros-self-supervised-visual-learning-and-synthesis/

. Problem: geolocalize an image

I Solution one:

I DB of 6M images; (SIFT) features
I Answer: derived from the NN of the query image

I Solution two: DeepNet trained on DB of 91 M images

I Nb: correctness assessed at a given scale (in kilometers)

https://iww.inria.fr/colloquium/fr/alexei-alyosha-efros-self-supervised-visual-learning-and-synthesis/
https://iww.inria.fr/colloquium/fr/alexei-alyosha-efros-self-supervised-visual-learning-and-synthesis/

Localization from images: two (antipodal) strategies

Performances: a matter of DB size

. img2gps:

I Original im2gps: localization from NN in the database using simple SIFT, DB of
6.5 Flickr images

I Revamped im2gps: more engineering on features but same DB size

. img2gps versus Planet:

I Im2GPS: wins on city and region levels

I PlaNet 6.2M: wins on on street, country and continent levels.

.Ref: Weyand et al, ECCV 2016

The lesson: data, features, algorithms

https://iww.inria.fr/colloquium/fr/

alexei-alyosha-efros-self-supervised-visual-learning-and-synthesis/

https://iww.inria.fr/colloquium/fr/alexei-alyosha-efros-self-supervised-visual-learning-and-synthesis/
https://iww.inria.fr/colloquium/fr/alexei-alyosha-efros-self-supervised-visual-learning-and-synthesis/

Take home messages

I Do not underestimate the data

I DeepLand is not the only sweet spot. . .

Nearest Neighbors Algorithms in Euclidean and Metric
Spaces: Algorithms and Data Structures

Introduction

Intermezzo: data vs algorithms

kd-trees and basic search algorithms

kd-trees and random projection trees: improved search algorithms

Important metrics: geometry based

Important metrics: the Earth Mover Distance

Metric trees and variants

kd-tree for a collection of points (sites) P

. Definition:

I A binary tree

I Any internal node implements a spatial partition induced by a hyperplane
H, splitting the point cloud into two equal subsets

I right subtree: points p on one side of H
I left subtree: remaining points

I The process halts when a node contains ≤ n0 points

Nb: the point realizing the median
is stored in the node performing the
split

kd-tree for a collection of points P

. Algorithm build kdTree(S)

n← newNode
if | S |≤ n0 then

Store the point of S into a container of n
return n

else
dir = depth mod d
Project the points of S along direction dir
Compute the median m
{Split into two equal subsets}
n.sample ← sample v realizing the median
L← point from S\{v} whose dirth coord is
< m
R ← point from S\{v} whose dirth coord is
≥ m
n.left ← build kdTree(L)
n.right ← build kdTree(R)
return n

kd-tree: search

. Main considerations:

I Exact versus approximate NN

I No free lunch: complexity matters

. Three main search strategies:

I (Approx.) the defeatist search: simple, but may fail
(Nb: see later, distance concentration phenomema)

I (Exact) the descending search: always succeeds, but may take time

I (Exact) the priority search: strikes a compromise between the defeatist
and descending strategies

kd-tree search: the defeatist search
. Key idea: recursively visit the subtree containing the query point

. Algorithm defeatist search kdTree: the defeatist search in a kd tree.

Require: Maintains nn(q) of q, and τ = d(q, nn(q))
n← root; τ ← d(q, n.sample)
while n 6= NIL do

Possibly update nn(q) using n.sample, and τ
if q ∈ Domain of L then

defeatist search kdTree(n.left)
if q ∈ Domain of R then

defeatist search kdTree(n.right)

. Complexity: assuming leaves of size n0 – depth satisfies 2hn0 = n

I search cost: O(n0 + log(n/n0))

. Caveat: failure
q

nn(q)

kd-tree search: the exhaustive descending search
. Key idea: visit one or two subtree, depending on the distance d(q, nn(q))
computed

. Algorithm descending search kdTree: the descending search in a kd tree.

Require: Maintains nn(q) of q, and τ = d(q, nn(q)
Require: Uses the domain of a node n (an intersection of half-spaces)

n← root
τ ← d(q, n.sample)
while n 6= NIL do

Possibly update nn(q) using n.sample
if Sphere(q, τ) ∩ Domain of L then

descending search kdTree(n.left)
if Sphere(q, τ) ∩ Domain of R then

descending search kdTree(n.right)

q

n

τ

The value of τ ensures that the top
cell will be visited.

kd-tree search: the priority search (idea)

. Priority search, key ideas:

I Uses a priority queue to store nodes (regions), with a priority inversely
proportional to the distance to q.

I Upon popping a node, the corresponding subtree is descended to visit the
node closest to q. Upon descending, nn(q) is updated.

I While descending, the child not visited is possibly enqueued,

kd-tree search: priority search (algorithm)
. Uses a priority queue Q to enumerate nodes by increasing distance to query q

Ensure: Maintains nn(q) of q, and τ = d(q, nn(q)
nn(q)← root.sample
Q.insert(root)
while True do

if Q.empty() then
return

{ Node with highest priority}
r ← Q.pop()
{The nearest box is too far wrt nn(q)}
if d(bbox(r), q) > τ then

return
{Descend into box nearest to q,} {and possibly
enqueue the second node}
for Nodes n on the path from r to the box nearest
to q do
{Possibly update nn(q) and τ}
d ← d(q, n.sample)
if d < τ then

nn(q)← n.sample; τ ← d
{Possibly enqueue the second subtree}
f ← brother of n
if d(bbox(f), q) ≤ τ then
{Insert with priority inverse to distance to q}
Q.insert(f , 1/d)

Box of current node r

Visited

q

Enqueud with
priority 1/d

NB: Enquing criterion can be adapted to report an (1 + ε) approx. of the exact NN

kd-tree search: priority search (analysis)

. Pros and cons:

I + nn always found

I + linear storage

I – nn often found at an early stage ... then time spent in useless recursion

I – In the worst-case, all nodes are visited.

I – Maintaining the priority queue Q has a cost

. Variants and improvements:

I Initially the Q with all nodes from root to leaf containing the query

I Stopping the recursion once a fraction of nodes has been visited

I Backing up defeatist search with overlapping cells

I Combining multiple randomized kd-trees

References

Sam06 H. Samet. Foundations of multidimensional and metric data structures.
Morgan Kaufmann, 2006.

SDE05 G. Shakhnarovich, T. Darrell, and P. Indyk (Eds). Nearest-Neighbors
Methods in Learning and Vision. Theory and Practice. MIT press, 2005.

Nearest Neighbors Algorithms in Euclidean and Metric
Spaces: Algorithms and Data Structures

Introduction

Intermezzo: data vs algorithms

kd-trees and basic search algorithms

kd-trees and random projection trees: improved search algorithms

Important metrics: geometry based

Important metrics: the Earth Mover Distance

Metric trees and variants

Improvements aiming at fixing the defeatist search

. Defeatist search: (early) choice of one side is risky

. Simple improvements:

I Use several trees, and pick the best neighbor(s)

I Allow overlap between cells in a node: selected points stored twice →
spill trees

I Use randomization to obtain different partitions rescuing the defeatist

search

I different permutations of coordinate axis
I directions aiming at maximizing the variance

I Next: randomization captures information on directions carrying variance

Random projection trees (RPTrees)
Aka Random partition trees (RPTrees!)

. kd-tree: axis parallel splits

. Splitting along a random direction U ∈ Sd−1: project onto U and split at
the (perturbed) median

v

. Resulting spatial partition

Random projection trees: generic algorithm with jitter

. Below: version where one also jitters the median defining the split

. Algorithm build RPTree(S)

Ensure: Build the RPTree of a point set S
if If |S | ≤ n0 then

n← newNode
Store S into n
return n

Pick U uniformly at random from the unit sphere
Pick β uniformly at random from [1/4, 3/4]
Let v be the β-fractile point on the projection of S onto U
Rule(x) = (left if 〈x ,U〉 < v , otherwise right)
left tree ← build RPTree({x ∈ S : Rule(x) = left})
right tree ← build RPTree({x ∈ S : Rule(x) = right})
return (Rule(·), left tree, right tree)

. Remark: RP trees have the following property – more later: diameter of the
cells decrease down the tree at a rate depending on the intrinsic dimension of
the data.

RPTrees: varying splits and their applications
. Various types of splits possible
Randomized partition tree:

• exact split

Randomized partition tree:

• perturbed split

Spill tree with overlapping split:

• regular spill tree

• virtual spill tree

1/2 1/2 β 1− β
1/2 + α

1/2 + α

. NB: splits monitor the tree structure and the search route

. Spill trees:

– Regular spill trees:
overlapping cells yield redundant storage of points

– Virtual spill trees:
median splits used – no redundant storage
query routed in multiple leaves using overlapping splits

. Summary: tree creation versus search

Routing data Routing queries (defeatist style)

RP tree Perturbed split Perturbed split
Regular spill tree Overlapping split Median split
Virtual spill tree Median split Overlapping split

Regular spill trees: size

. Tree depth: assume that

I the number of nodes transmitted to a son decreases by a factor at least
β = 1/2 + α,

I a leaf accommodates up to n0 points

Then: the tree depth l satisfies β ln ≤ n0 i.e. l = O(log1/β
n
n0

).

. Tree size:

n02l = n02
log1/β

n
n0 .

. Examples:

I α = 0.05: O(n1.159).

I α = 0.1: O(n1.357).

Spill trees: compromising Storage vs NN searches

. Spill trees: overlapping splits yield superlinear storage

. Yet, search mail fail too:

p1 = nn(q) ∈ Left q ∈ right

median: m(S)
1 + α fractile1 + α fractile

I p1 = nn(q): routed in left subtree only

I query point q: routed in right subtree only

Failure of the defeatist search

. Goal: probability that a defeatist seach does not return the exact nearest
neighbor(s)?

. The event to be analyzed, denoted Err:

I k = 1 :the NN query does not return p(1)

I k > 1: the NN query does not return p(1),. . . ,p(k)

Qualifying the hardness of nearest neighbor queries

. Notations:

I Dataset P = p1, . . . , pn

I Sorted dataset wrt q: p(1), . . . , p(n)

Φ(q,P) =
1

n

n∑
i=2

∥∥q − p(1)

∥∥
2∥∥q − p(i)

∥∥
2

. (2)

. Extreme cases:

I Φ ∼ 0: p1 isolated, finding it should
be easy

I Φ ∼ 1: points equidistant from q;
finding p(1) should be hard

q

q

p1

p1

. Rationale: in using RPT and spill trees with the defeatist search, the
probability of success should depend upon Φ.

Generalizations of the function Φ

. Rationale: function Φ shall be used for nodes containing a subset of the
database

. For a cell containing m points – evaluate the remaining points in that cell:

Φm(q,P) =
1

m

m∑
i=2

∥∥q − p(1)

∥∥
2∥∥q − p(i)

∥∥
2

. (3)

. If one is interested in the k nearest neighbors – evaluate the remaining points
too:

Φk,m(q,P) =
1

m

m∑
i=k+1

∥∥q − p(1)

∥∥
2

+ · · ·+
∥∥q − p(k)

∥∥
2∥∥q − p(i)

∥∥
2

. (4)

Theoretical results on the performances

. Agenda for the next lecture:

I RPTrees: success/failure probability to report NN

I Random projections and adaptation to intrinsic dimension

I NN, distances and concentration phenomena

Nearest Neighbors Algorithms in Euclidean and Metric
Spaces: Algorithms and Data Structures

Introduction

Intermezzo: data vs algorithms

kd-trees and basic search algorithms

kd-trees and random projection trees: improved search algorithms

Important metrics: geometry based

Important metrics: the Earth Mover Distance

Metric trees and variants

A geometric distance: the Hausdorff distance

. Hausdorff distance. Consider a metric space (M, d). The Hausdorff distance
of two non-empty subsets X and Y is defined by

dH(X ,Y) = max(H(X ,Y),H(Y ,X)), with H(X ,Y) = sup
x∈X

inf
y∈Y

d(x , y). (5)

Note that the one-sided distance is not symmetric, as seen on Fig. 1.
. Rmk. For closed set, the min distance is realized: inf becomes min; sup
becomes max.

X

Y

Figure: The one-sided Hausdorff distance is not symmetric

Nearest Neighbors Algorithms in Euclidean and Metric
Spaces: Algorithms and Data Structures

Introduction

Intermezzo: data vs algorithms

kd-trees and basic search algorithms

kd-trees and random projection trees: improved search algorithms

Important metrics: geometry based

Important metrics: the Earth Mover Distance

Metric trees and variants

Comparing Histograms
. Bin-to-bin methods:

d(H,K) =
∑
i

| hk − kk | (6)

→ overestimates the distance since neighboring bins are not considered.

. Mixing (e.g. quadratic) methods:

d2(H,K) = (h− k)tA(h− k) (7)

→ underestimates distances : tends to accentuate the similarity of color
distributions without a pronounced mode.

. Illustrations:

(A) (B)

(C) (D)

Transport Plan Between Two Weighted Point Sets
. Weighted point sets:

P = {(p1,wp1) . . . , (pm,wpm)} and Q = {(q1,wq1 , . . . , (qn,wqn)}. (8)

NB: nodes from P (resp. Q): production (resp. demand) nodes
Shorthand for the sum of masses: WP =

∑
i wpi , WQ =

∑
j wqj .

. A metric d(·, ·) : distance between two points dij = d(pi , qj).

. A transport plan: is a set of non-negative flows fij circulating on the edges
of the bipartite graph P × Q.

(pi, wpi)

(qj, wqj)

fij

P Q

Figure: Transport plan between two weighted point sets

The Earth Mover Distance: Definition
. Optimization problem:

Minimize :CEMD-LP =
∑
ij

fijdij under the constraints: (9)


(C1)fij ≥ 0

(C2)
∑

j fij ≤ wpi , ∀i
(C3)

∑
i fij ≤ wqj ,∀j

(C4)
∑

i

∑
j fij = min(WP ,WQ).

(10)

These constraints read as follows:

I (C1) Flows are positive

I (C2,C3) A node cannot export (resp. receive) more than its weight.

I (C4) The total flow neither exceeds the production nor the demand.

. Earth mover distance: defined from the cost by

dEMD-LP =
CEMD-LP∑

ij fij
=

CEMD-LP

min(WP ,WQ)
(11)

. Advantages:

I Applies to signatures in general, the histograms being a particular case.

I Embeds the notion of nearness, via the metric in the ground space.

I Allows for partial matches. See however, the comment in section ??.

I Easy to compute: linear program.

.Ref: Rubner, Tomasi, Guibas, IJCV, 2000

The Earth Mover Distance: Main Properties

. Theorems:

I Computed in polynomial time in the # of variables

I Number of edges carrying flow is ≤ n + m − 1

I If WP = WQ and d(·, ·) is a metric: EMD is also a metric

. Rmk: entropy regularized EMD distances, aka Sinkhorn distances, yield
iterative algorithms – fater than LP solving. See refs. by M. Cuturi et al.

Application to image retrieval

. Image coding, two options:

I convert image to histogram using a fixed binning of the color space; mass
of bin: num. of pixel within it.

I cluster pixels (say with k-means): mass of cluster is the fraction of pixels
assigned to it

. Search on DB of 20,000 images: (a) L1 (d) Quadratic form (e) EMD

Mallow’s Distance – p-th Wasswerstein metric
. Consider: two RV in Rd : X ∼ P,Y ∼ Q.

. Mallows distance between X and Y : minimum of expected difference
between X and Y over all joint distributions F for (X ,Y), such that the
marginal of F (X , ·) is P and that of F (·,Y) is Q (aka coupling):

Mp(X ,Y)p = min
F∈F

EF [‖X − Y ‖p] : (X ,Y) ∼ F , X ∼ P,Y ∼ Q}. (12)

. Discrete setting: P andQ

P = {(x1,wp1) . . . , (xm,wpm)} (13)

Q = {(y1,wq1 , . . . , (yn,wqn)}. (14)

. Joint distribution is specified by probabilities on all pairs i.e. F = {fij}, and
the fact that it respects the marginals yields:∑

j

fij = pi ,
∑
i

fij = qj ,
∑
ij

fij = 1. (15)

. Functional to be minimized becomes:

Mp(X ,Y)p = EF [‖X − Y ‖p] =
∑
ij

fij ‖xi − yj‖p . (16)

Mallow’s Distance versus EMD – Example with p = 1

. Mallows’ distance (WP = WQ = 1):
Mp = 1/4× 0 + 1/4× 1 + 1/4× 1 + 1/4× 0

. EMD, assuming uniform weights on all points, ie WP = 2 and WQ = 4:
EMD = 0 since a flow of 2 units satisfies all constraints.

X Y

(x1 = 1, p1 = 1/2)

(x2 = 4, p2 = 1/2) (y4 = 4, q4 = 1/4)

(y1 = 1, q1 = 1/4)

(y2 = 2, q2 = 1/4)

(y3 = 3, q3 = 1/4)

f11 = 1/4

f12 = 1/4

f23 = 1/4

f24 = 1/4

Figure: Mallows’s distance

References

LB01 Elizaveta Levina and Peter Bickel. The earth mover’s distance is the
mallows distance: Some insights from statistics. In Computer Vision,
2001. ICCV 2001. Proceedings. Eighth IEEE International Conference
on, volume 2, pages 251–256. IEEE, 2001.

RTG00 Y. Rubner, C. Tomasi, and L. J. Guibas. The earth mover’s distance as a
metric for image retrieval. International Journal of Computer Vision,
40(2):99–121, 2000.

ZLZ05 Ding Zhou, Jia Li, and Hongyuan Zha. A new mallows distance based
metric for comparing clusterings. In Proceedings of the 22nd international
conference on Machine learning, pages 1028–1035. ACM, 2005.

CM14 F. Cazals and D. Mazauric. Mass transportation problems with
connectivity constraints, with applications to energy landscape
comparison. Submitted, 2014. Preprint: Inria tech report 8611.

MC13 M. Cuturi. Sinkhorn Distances: Lightspeed Computation of Optimal
Transport. NIPS 2013.

Nearest Neighbors Algorithms in Euclidean and Metric
Spaces: Algorithms and Data Structures

Introduction

Intermezzo: data vs algorithms

kd-trees and basic search algorithms

kd-trees and random projection trees: improved search algorithms

Important metrics: geometry based

Important metrics: the Earth Mover Distance

Metric trees and variants

Metric spaces

Definition 1. A metric space is a pair (M, d), with d : M ×M → R+, such
that:

I (1) Positivity: d(x , y) ≥ 0

I (1a) Self-distance: d(x , x) = 0

I (1b) Isolation: x 6= y ⇒ d(x , y) > 0

I (2) Symmetry: d(x , y) = d(y , x)

I (3) Triangle inequality: d(x , y) ≤ d(x , z) + d(y , z)

. Product metric. Assume that for some k > 1:

M = M1 × · · · ×Mk . (17)

and that each (Mi , di) is a metric space. For p ≥ 1, the product metric is:

d(x , y) = (
k∑

k=1

di (xi , yi)
p)1/p (18)

Some particular cases are:

I (Mi = R, di =| · |): Lp metrics.

I p = 1, di = uniform metric: Hamming distance.

Using the triangle inequality

Lemma 2. For any three points p, q, s ∈ M, for any r > 0, and for any
point set P ⊂ M, one has:

| d(q, p)− d(p, s) |≤ d(q, s) ≤ d(q, p) + d(p, s) (19)

d(q, s) ≥ dP(q, s) := max
p∈P
| d(q, p)− d(p, s) | (20){

d(p, s) > d(p, q) + r ⇒ d(q, s) > r

d(p, s) < d(p, q)− r ⇒ d(q, s) > r .
(21)

p

q

s

lower bound

for d(q, s)

Figure: Lower bound from the triangle inequality, see Lemma 2

Metric tree: definition
. Definition:

I A binary tree

I Any internal node implements a spherical cut defined by the distance µ to

a pivot v

I right subtree: points p such that d(pivot, p) ≥ µ
I left subtree: points p such that d(pivot, p) < µ

pivot:v

µ

Figure: Metric tree for a square domain (A) One step (B) Full tree

Metric tree: construction
. Recursively construction:

I Choose a pivot, ideally inducing a partition into subsets of the same size

I Assign points to subtrees and recurse

I Complexity under the balanced subtrees assumption: O(n log n).

Algorithm 1 Algorithm build MetricTree(S)
{build MetricTree(S)}
if S = ∅ then

return NIL
n← newNode
Draw at random Q ⊂ S and v ∈ Q
n.pivot ← v
µ← median({d(v , p), p ∈ Q\{v}})
{The pivot splits points into two subsets}
L← {s ∈ S\{p}|d(s, v) < µ}
R ← {s ∈ S\{p}|d(s, v) ≥ µ}
{For each subtree: min/max distances to points in that subtree}
n.(d1, d2)← (min,max) of distances d(v , p), p ∈ L
n.(d3, d4)← (min,max) of distances d(v , p), p ∈ R
{Recursion}
n.L← build MetricTree(L)
n.R ← build MetricTree(R)

Searching a metric tree: algorithm

Algorithm 2 Algorithm
search MetricTree(T , q)
{Note of T is denoted n}
nn(q)← ∅
τ ←∞
if n = NIL then

return
{Check whether the pivot is the nn}
l ← d(q, n.pivot)
if l < τ then

nn(q)← n.pivot
τ ← l

{Dilate the distance intervals for left
and right subtrees}
Il ← [n.d1 − τ, n.d2 + τ]
Ir ← [n.d3 − τ, n.d4 + τ]
if l ∈ Il then

search MetricTree(n.L, q)
if l ∈ Ir then

search MetricTree(n.R, q)

L R

T

τ τ τ τ

d1 : minp∈Ld(v, p)

d2 : maxp∈Ld(v, p)

d3 : minp∈Rd(v, p)

d4 : maxp∈Rd(v, p)

• v: pivot node

• distances d1, d2, d3, d4

Searching a metric tree: correctness – pruning lemma

Lemma 3. Consider the intervals associated with a node, as defined in
Algorithm 1, that is Il ← [n.d1 − τ, n.d2 + τ] Ir ← [n.d3 − τ, n.d4 + τ]. Then:
(1) If l 6∈ Il , the left subtree can be pruned.
(2) If l 6∈ Ir , the left subtree can be pruned.

Proof.
We prove (1), as condition (2) is equivalent. Let us denote IL = [d1, d2]. Since
l = d(v , q) 6∈ Il , we have d(v , q) < d1 − τ and d(v , q) > d2 + τ . We analyze
these two conditions in turn.

. Condition on the right hand side. By definition of d2, with v the pivot, we
have:

∀p ∈ L : d(v , q) > d(v , p) + τ.

Using the triangle inequality for d(v , q) yields

d(v , p) + d(p, q) ≥ d(v , q) > d(v , p) + τ ⇒ d(q, p) > τ.

. Mutatis mutandis.

Metric tree: choosing the pivot
. By the pruning lemma: for small τ and if q is picked uniformly at random,
the measure of the boundary of the spheres of radius d1, . . . , d4 determines the
probability that no pruning takes place.
⇒ pick the pivot so as to minimize this measure.

. Example in 2D: 3 choices for the pivot, so as to split the unit square (mass:
1) into two regions of equal size (mass: 1/2)

. Choice of pivots (illustrated using
µ (rather than the di s):

I Best pivot: pc

I Worst pivot: pm

Figure: Metric trees:
minimizing the measure of
boundaries.

From metric trees to metric forests
. Search options:

I (I) The exact search, based on the pruning lemma.

I (II)The defeatist style search: visit one subtree only

. Compromising speed versus accurary

I (I) Exact, but possibly costly if little/no pruning occurs. Worst-case: linear time.

I (II) Faster, but error prone.

I Compromise: using a forest of trees rescues erroneous branching decisions in the
course of the defeatist search.

Figure: Metric forest

References

AMN+98 S. Arya et al. An optimal algorithm for approximate nearest neighbor searching
fixed dimensions. Journal of the ACM (JACM), 45(6):891–923, 1998.

ML09 Marius Muja and David G Lowe. Fast approximate nearest neighbors with
automatic algorithm configuration. In VISAPP (1), pages 331–340, 2009.

MSMO03 Francisco Moreno-Seco, Luisa Mico, and Jose Oncina. A modification of the
laesa algorithm for approximated k-nn classification. Pattern Recognition
Letters, 24(1):47–53, 2003.

OD13 S. O’Hara and B.A. Draper. Are you using the right approximate nearest
neighbor algorithm? In Applications of Computer Vision (WACV), 2013 IEEE
Workshop on, pages 9–14. IEEE, 2013.

Yia93 Peter N Yianilos. Data structures and algorithms for nearest neighbor search in
general metric spaces. In SODA, volume 93, pages 311-321, 1993.

	Introduction
	Intermezzo: data vs algorithms
	kd-trees and basic search algorithms
	kd-trees and random projection trees: improved search algorithms
	Important metrics: geometry based
	Important metrics: the Earth Mover Distance
	Metric trees and variants

