Nearest Neighbors Algorithms in Euclidean and
Metric Spaces: Algorithms and Data Structures

February 7, 2023

Frederic.Cazals@Qinria.fr

Nearest Neighbors Algorithms in Euclidean and Metric
Spaces: Algorithms and Data Structures

Introduction

Intermezzo: data vs algorithms

kd-trees and basic search algorithms

kd-trees and random projection trees: improved search algorithms
Important metrics: geometry based

Important metrics: the Earth Mover Distance

Metric trees and variants

Nearest Neighbors Algorithms in Euclidean and Metric
Spaces: Algorithms and Data Structures

Introduction

Applications

> A core problem in the following applications:
» clustering, k-means algorithms
information retrieval in databases
information theory : vector quantization encoding

>
>
» classification in learning theory
>

Nearest Neighbors: Getting Started

> Input: a set of points (aka sites) P in R?, a query point g

> Output: nn(q, P), the point of P nearest to gq

d(q,P)=d(q,nn(q,P)).

nn(q)

(1)

The Euclidean Voronoi Diagram
and its Dual the Delaunay Triangulation

> Voronoi and Delaunay diagrams

> Key properties:
» Voronoi cells of all dimensions
» Voronoi - Delaunay via the nerve construction
» Duality : cells of dim. d — k vs cells of dimension k
» The empty ball property

Nearest Neighbors Using Voronoi Diagrams

> Nearest neighbor by walking
- start from any point p € P
- while 3 a neighbor n(p) of p in
Vor(P)
closer to g than p,
step to it: p = n(p)
- done nn(q) = p

> Argument: the Delaunay neighborhood of a point is complete
Vor(p, P)= cell of p in Vor(P)
N(p) = set of neighbors of p in Vor(P)
N'(p) = {p}UN(p)
Vor(p, N'(p)) = Vor(p, P)

> Exercise: specify the algorithm using DT

The Nearest Neighbors Problem: Overview

> Strategy: prepocess point set P of n points in R into a data
structure (DS) for fast nearest neighbor queries answer.

> ldeal wish list:
» The DS should have linear size
» A query should have sub-linear complexity i.e. o(n)

» When d = 1: balanced binary search trees yield O(log n)

> Core difficulties:

» Curse of dimensionality in RY: for high d, it is difficult to
outperform the linear scan

» Interpretation: meaningfull-ness of distances in high dimensional
spaces — distance concentration phenomena.

The Nearest Neighbors Problem: Elementary Options

> The trivial solution :
O(dn) space, O(dn) query time

> Voronoi diagram

d =2, O(n) space O(log n) query time
d>2 0 (nf%W) space

— Under locally uniform condition on point distribution
the 1-skeleton Delaunay hierarchy achieves :
O(n) space, O(c?log n) expected query time.

> Spatial partitions based on trees

The Nearest Neighbors Problem: Variants

> Variants:
» k-nearest neighbors: find the k points in P that are nearest to g
» given r > 0, find the points in P at distance less than r from g
» Various metrics
> [, L, Ly
» String: Hamming distance

> Images, graphs: distance based on optimal transportation
» Point sets: distances via optimal alignment

» Non metric spaces — cf metric trees
> Main contenders in metric spaces:
» Tree like data structures:

» quad-trees — and its variant ANN
» (randomized) kd-trees
P k-means trees — partition derived from k-means with k=2

» Locally Sensitive Hashing

Comparison and appetizer: setup

> Contenders: various hierarchical methods for approximate NN

» randomized kd-trees: hierarchical partition with split direction chosen at
random

» k-means trees: hierarchical partition with split direction derived from
k-means

> ANN
> LSH

> Assessment for the accuracy of the approximation: precision i.e. fraction of
queries for which the correct NN is found

> Two main questions addressed:
» Question 1: for a fixed database, which algorithm is best?
» Question 2: are the performances stable when the size of the DB

changes?

>Ref: Muja and Lowe, VISAPP 2009
>Ref: 0’Hara and Draper, Applications of Computer Vision (WACV), 2013

Main Contenders: Typical Results for Approximate NN
> DB used : Scale-Invariant Feature Transform (SIFT) for images: {(x;,yi,oi)}

> Question 1: best algorithm > Question 2 — for winners only
i.e. for rand. kd-trees and k-means
trees

+:[—6—k-means tree - sift 100K
;| —v—rand. kd-trees - sift 100K]
{| —=— ANN - sift 100K

—o— LSH - sift 100K

—#+— k-means iree - sift 31M
—w— rand. kd-lrees - sift 31M
—o— k-means tree — sift M
100 || = rand. kd-trees - sitt 1n
—&—k-means tree — sift 100K
—%—rand. kd-trees - sift 100K

%0 100 50 50

Speedup over inear search
Speedup over linear search

70 80 90 100
Correct neighbors (%)

(@) (b)

70 80
Gorrect neighbors. (%)

> Take-home messages:
» Randomized kd-trees and k-means trees win
» splits must exploit the variance in the dataset

» Speed-ups consistent when DB size increases

>Ref: Muja and Lowe, VISAPP 2009
>Ref: O0’Hara and Draper, Applications of Computer Vision (WACV), -2013

Nearest Neighbors Algorithms in Euclidean and Metric
Spaces: Algorithms and Data Structures

Intermezzo: data vs algorithms

Performances of geolocalization

a tale of data, features, and algorithms

> Source: Inria Colloquim talk by Alexei Efros, UC Berkeley, see
https://iww.inria.fr/colloquium/fr/
alexei-alyosha-efros-self-supervised-visual-learning-and-synthesis/

> Problem: geolocalize an image
> Solution one:

»> DB of 6M images; (SIFT) features
» Answer: derived from the NN of the query image

» Solution two: DeepNet trained on DB of 91 M images

» Nb: correctness assessed at a given scale (in kilometers)

https://iww.inria.fr/colloquium/fr/alexei-alyosha-efros-self-supervised-visual-learning-and-synthesis/
https://iww.inria.fr/colloquium/fr/alexei-alyosha-efros-self-supervised-visual-learning-and-synthesis/

Localization from images: two (antipodal) strategies

Geolocation

im2gps, 2008 PlaNet, 2016
b, P S |
e e

+ Nearest Neighbors + Deep Net
+ 6 million images + 91 million images

Performances: a matter of DB size

> img2gps:

» Original im2gps: localization from NN in the database using simple SIFT, DB of
6.5 Flickr images

» Revamped im2gps: more engineering on features but same DB size

> img2gps versus Planet:

Algorithm vs. Data

Street Chty Region Country Continent

Method Lkm 25km 200km 750 km 2500 km
Tm2GPS (orig) [17] 12.0% 15.0% 23.0% a7,
Im2GPS (new) [20] 2.5% C21.9% 32.1% 35.4%

PlaNet (900K) 04% _3B% — 1.0% 21.6%

PlaNet (6.2M) 6.3% C18.1% 30.0% 45.6%

PlaNet (91M) 8.4% 24.5% 37.6% 53.6% 71.3%

» Im2GPS: wins on city and region levels

» PlaNet 6.2M: wins on on street, country and continent levels.

>Ref: Weyand et al, ECCV 2016

The lesson: data, features, algorithms

Data gets little respect...

. Data
Features

https://iww.inria.fr/colloquium/fr/
alexei-alyosha-efros-self-supervised-visual-learning-and-synthesis/

https://iww.inria.fr/colloquium/fr/alexei-alyosha-efros-self-supervised-visual-learning-and-synthesis/
https://iww.inria.fr/colloquium/fr/alexei-alyosha-efros-self-supervised-visual-learning-and-synthesis/

Take home messages

» Do not underestimate the data

» Deepland is not the only sweet spot. ..

Nearest Neighbors Algorithms in Euclidean and Metric
Spaces: Algorithms and Data Structures

kd-trees and basic search algorithms

kd-tree for a collection of points (sites) P

> Definition:

>
>

A binary tree

Any internal node implements a spatial partition induced by a hyperplane
H, splitting the point cloud into two equal subsets

» right subtree: points p on one side of H
P left subtree: remaining points

The process halts when a node contains < np points

3 Nb: the point realizing the median
° ° | is stored in the node performing the

split

kd-tree for a collection of points P
> Algorithm build_kd Tree(S)

n < newNode
if | S |< no then
Store the point of S into a container of n
return n
else
dir = depth mod d
Project the points of S along direction dir
° ® e Compute the median m
{Split into two equal subsets}
n.sample <— sample v realizing the median
3 L + point from S\{v} whose dirth coord is
<m
R <+ point from S\{v} whose dirth coord is
>m
n.left < build_kd Tree(L)
n.right < build_kdTree(R)
return n

kd-tree: search

> Main considerations:
» Exact versus approximate NN

» No free lunch: complexity matters

> Three main search strategies:

> (Approx.) the defeatist search: simple, but may fail
(Nb: see later, distance concentration phenomema)

> (Exact) the descending search: always succeeds, but may take time

> (Exact) the priority search: strikes a compromise between the defeatist
and descending strategies

kd-tree search: the defeatist search

> Key idea: recursively visit the subtree containing the query point

> Algorithm defeatist_search_kdTree: the defeatist search in a kd tree.

Require: Maintains nn(q) of q, and 7 = d(q, nn(q))
n < root; T < d(q, n.sample)
while n # NIL do
Possibly update nn(q) using n.sample, and T
if g € Domain of L then
defeatist_search_kdTree(n.left)
if g € Domain of R then
defeatist_search_kd Tree(n.right)

> Complexity: assuming leaves of size ng — depth satisfies 2"ng = n
» search cost: O(no + log(n/no))

> Caveat: failure

kd-tree search: the exhaustive descending search

> Key idea: visit one or two subtree, depending on the distance d(gq, nn(q))
computed

> Algorithm descending_search_kdTree: the descending search in a kd tree.

Require: Maintains nn(q) of q, and 7 = d(q, nn(q)

Require: Uses the domain of a node n (an intersection of half-spaces)
n < root

T < d(q, n.sample)
while n # NIL do
Possibly update nn(q) using n.sample
if Sphere(q,7) N Domain of L then
descending_search_kdTree(n.left)
if Sphere(q, ™) N Domain of R then
descending_search_kdTree(n.right)

The value of 7 ensures that the top
. cell will be visited.

kd-tree search: the priority search (idea)

> Priority search, key ideas:

> Uses a priority queue to store nodes (regions), with a priority inversely
proportional to the distance to q.

» Upon popping a node, the corresponding subtree is descended to visit the
node closest to g. Upon descending, nn(q) is updated.

» While descending, the child not visited is possibly enqueued,

kd-tree search: priority search (algorithm)

> Uses a priority'\ﬂugue ‘Q to enumerate nodes by increasing distance to query g
Ensure:” Maintains nn(q) of g, and 7 = d(q, nn(q)

nn(q) < root.sample Box of current node r

Q.insert(root)
while True do

if Q.empty() then Visited

return T
{ Node with highest priority} P \
r < Q.pop() Lo

{The nearest box is too far wrt nn(q)}
if d(bbox(r),q) > 7 then
return

Enqueud with
priority 1/d

{Descend into box nearest to q,} {and possibly
enqueue the second node}
for Nodes n on the path from r to the box nearest
to q do
{Possibly update nn(q) and 7}
d < d(q, n.sample)
if d < 7 then
nn(q) < n.sample; 7 + d
{Possibly enqueue the second subtree}
f < brother of n
if d(bbox(f),q) < T then
{Insert with priority inverse to distance to q}
Q.insert(f,1/d)

NB: Enquing criterion can be adapted to report an (1 + &) approx. of the exact NN

kd-tree search: priority search (analysis)

> Pros and cons:
» + nn always found

+ linear storage

| 4
» — nn often found at an early stage ... then time spent in useless recursion
» — In the worst-case, all nodes are visited.

| 4

— Maintaining the priority queue Q has a cost

> Variants and improvements:

v

Initially the Q with all nodes from root to leaf containing the query
» Stopping the recursion once a fraction of nodes has been visited

» Backing up defeatist search with overlapping cells
>

Combining multiple randomized kd-trees

References

Sam06 H. Samet. Foundations of multidimensional and metric data structures.
Morgan Kaufmann, 2006.

SDEO5 G. Shakhnarovich, T. Darrell, and P. Indyk (Eds). Nearest-Neighbors
Methods in Learning and Vision. Theory and Practice. MIT press, 2005.

Nearest Neighbors Algorithms in Euclidean and Metric
Spaces: Algorithms and Data Structures

kd-trees and random projection trees: improved search algorithms

Improvements aiming at fixing the defeatist search

> Defeatist search: (early) choice of one side is risky

> Simple improvements:
» Use several trees, and pick the best neighbor(s)

» Allow overlap between cells in a node: selected points stored twice —
spill trees

» Use randomization to obtain different partitions rescuing the defeatist
search

» different permutations of coordinate axis
» directions aiming at maximizing the variance

» Next: randomization captures information on directions carrying variance

Random projection trees (RPTrees)
Aka Random partition trees (RPTrees!)
> kd-tree: axis parallel splits

> Splitting along a random direction U € S?7*: project onto U and split at
the (perturbed) median

> Resulting spatial partition

Random projection trees: generic algorithm with jitter

> Below: version where one also jitters the median defining the split
> Algorithm build_RPTree(S)

Ensure: Build the RPTree of a point set S

if If |S| < no then

n < newNode

Store S into n

return n
Pick U uniformly at random from the unit sphere
Pick 8 uniformly at random from [1/4,3/4]
Let v be the B-fractile point on the projection of S onto U
Rule(x) = (left if (x, U) < v, otherwise right)
left_tree < build_RPTree({x € S : Rule(x) = left})
right_tree < build_RPTree({x € S : Rule(x) = right})
return (Rule(-), left_tree, right _tree)

> Remark: RP trees have the following property — more later: diameter of the
cells decrease down the tree at a rate depending on the intrinsic dimension of
the data.

RPTrees: varying splits and their applications

> Various types of splits possible

Randomized partition tree: Randomized partition tree: Spill tree with overlapping split:
e exact split e perturbed split o regular spill tree
o virtual spill tree
T T
! !
' '
! !
! !
! !
‘-
- 12+
1/2 1/2 B 1-8 f2te 1/2+a

> NB: splits monitor the tree structure and the search route
> Spill trees:
— Regular spill trees:

overlapping cells yield redundant storage of points

— Virtual spill trees:
median splits used — no redundant storage
query routed in multiple leaves using overlapping splits

> Summary: tree creation versus search
Routing data Routing queries (defeatist style)
RP tree Perturbed split Perturbed split

Regular spill tree | Overlapping split Median split
Virtual spill tree | Median split Overlapping split

Regular spill trees: size

> Tree depth: assume that
» the number of nodes transmitted to a son decreases by a factor at least
B=1/2+a,
» a leaf accommodates up to ng points
Then: the tree depth / satisfies 8'n < ng i.e. | = O(logy /5 7)-

> Tree size:

/ lo o
no2 = n02 1/ no |

> Examples:
> o =005 O(n").
> a=0.1: O(n**).

Spill trees: compromising Storage vs NN searches

> Spill trees: overlapping splits yield superlinear storage

> Yet, search mail fail too:
median: m(S)

1 + « fractile 1+ « fractile
‘ | |
‘ | |
; \ |
! | |
’ \ \
! I I

[] []
p1 = nn(q) € Left q € right

» p1 = nn(q): routed in left subtree only
» query point g: routed in right subtree only

Failure of the defeatist search

> Goal: probability that a defeatist seach does not return the exact nearest
neighbor(s)?
> The event to be analyzed, denoted Err:

»> k =1 :the NN query does not return p()

» k > 1: the NN query does not return pgy,...,p()

Qualifying the hardness of nearest neighbor queries

> Notations:

» Dataset P = p,

.y Pn S
; AN !
> Sorted dataset wrt q: py, - - ., P(n) ! Coeg !
lg = pol| .
®(q,P) = Z S) T
a=roll,
> Extreme cases: o TTEI
» & ~ 0: p; isolated, finding it should ; \\\\\a\
be easy le y H
» & ~ 1: points equidistant from g; W
finding p(1) should be hard n
> Rationale: i

in using RPT and spill trees with the defeatist search, the
probability of success should depend upon ¢

Generalizations of the function ®

> Rationale: function ® shall be used for nodes containing a subset of the
database

> For a cell containing m points — evaluate the remaining points in that cell:

Z Hq pl)HQ (3)

> If one is interested in the k nearest neighbors — evaluate the remaining points
too:

(4)

1 <« |l9—pro g —p
& m(q, P) = = Z I @) Hﬁq " HH k)”z
i=k+1 2

Theoretical results on the performances

> Agenda for the next lecture:
» RPTrees: success/failure probability to report NN
» Random projections and adaptation to intrinsic dimension

» NN, distances and concentration phenomena

Nearest Neighbors Algorithms in Euclidean and Metric
Spaces: Algorithms and Data Structures

Important metrics: geometry based

A geometric distance: the Hausdorff distance

> Hausdorff distance. Consider a metric space (M, d). The Hausdorff distance
of two non-empty subsets X and Y is defined by

du(X,Y) =max(H(X,Y), H(Y, X)), with H(X,Y) = sup |r€ﬂ; d(x,y). (5)

xeXY

Note that the one-sided distance is not symmetric, as seen on Fig. 1.
> Rmk. For closed set, the min distance is realized: inf becomes min; sup
becomes max.

X
Y

Figure: The one-sided Hausdorff distance is not symmetric

Nearest Neighbors Algorithms in Euclidean and Metric
Spaces: Algorithms and Data Structures

Important metrics: the Earth Mover Distance

Comparing Histograms
> Bin-to-bin methods:
d(H,K) = | b — ke | (6)
— overestimates the distance since neiglhboring bins are not considered.
> Mixing (e.g. quadratic) methods:
d*(H,K) = (h —k)*A(h — k) (7)

— underestimates distances : tends to accentuate the similarity of color
distributions without a pronounced mode.

> lllustrations:
VT
k, I K, I‘ :
(A) (B)
i.jl h;l

Transport Plan Between Two Weighted Point Sets
> Weighted point sets:
P = {(ph WPl) L) (Pm7 WPm)} and Q = {(qla Wars -+ (qn: an)}' (8)

NB: nodes from P (resp. Q): production (resp. demand) nodes
Shorthand for the sum of masses: Wp = 3=, wp,, Wo =3, wq;.
> A metric d(-,-) : distance between two points d; = d(pi, q;).
> A transport plan: is a set of non-negative flows fj circulating on the edges

of the bipartite graph P x Q.
p Q

(p1 w]’z)

(4, wq_,)

Figure: Transport plan between two weighted point sets

The Earth Mover Distance: Definition

> Optimization problem:

Minimize :Cemp.Lp = Z fiidjj under the constraints:
ij

(C1))f; >0

(C2)Y; 5 < w,, Vi

(C3)3f < Wa;, Vj

(C4) 22, %) fj = min(We, Wo).

These constraints read as follows:

> (C1) Flows are positive
> (C2,C3) A node cannot export (resp. receive) more than its weight.
»> (C4) The total flow neither exceeds the production nor the demand.

> Earth mover distance: defined from the cost by

CeEmD-LP _ CeEMD-LP
ij f;J min(Wp,WQ)

demp-Lp =

> Advantages:
» Applies to signatures in general, the histograms being a particular case.
» Embeds the notion of nearness, via the metric in the ground space.
» Allows for partial matches. See however, the comment in section ?7.
» Easy to compute: linear program.
>Ref: Rubner, Tomasi, Guibas, IJCV, 2000

9

(10)

(11)

The Earth Mover Distance: Main Properties

> Theorems:
» Computed in polynomial time in the # of variables
» Number of edges carrying flow is <n+m—1
> If Wp = Wq and d(-,-) is a metric: EMD is also a metric

> Rmk: entropy regularized EMD distances, aka Sinkhorn distances, yield
iterative algorithms — fater than LP solving. See refs. by M. Cuturi et al.

Application to image retrieval

> Image coding, two options:

» convert image to histogram using a fixed binning of the color space; mass
of bin: num. of pixel within it.

> cluster pixels (say with k-means): mass of cluster is the fraction of pixels
assigned to it

> Search on DB of 20,000 images: (a) L; (d) Quadratic form (e) EMD

Mallow’s Distance — p-th Wasswerstein metric
> Consider: two RV in RY: X ~ P, Y ~ Q.

> Mallows distance between X and Y: minimum of expected difference
between X and Y over all joint distributions F for (X, Y), such that the
marginal of F(X,-) is P and that of F(-,Y) is Q (aka coupling):

Mo(X. YY" = minEF[IX — Y[]: (X, Y) ~ F, X~ P.Y ~ Q).
€
> Discrete setting: P and@Q

P= {(le WPl) LR (va WPm)}
Q= {(}/1, Wais-- - (_)’n, WQn)}'

(12)

(13)
(14)

> Joint distribution is specified by probabilities on all pairs i.e. F = {f;}, and

the fact that it respects the marginals yields:
S fi=p, > fi=q, Y fi=1
J i ij

> Functional to be minimized becomes:

Mo(X, YY" = EelIX = Y71 = > fi I — yl1°-

y

(15)

(16)

Mallow's Distance versus EMD — Example with p =1

> Mallows' distance (Wp = Wq = 1):
M,=1/4x0+1/4x1+1/4x1+1/4%0

> EMD, assuming uniform weights on all points, ie Wp =2 and Wq = 4:
EMD = 0 since a flow of 2 units satisfies all constraints.

X Y
(o1 = Lpr = 1/2) —— tn=1La=1/4
o =1/4 (3o = 2.2 = 1/4)
= 1/4 (g3 =303 =1/4)
(22 =4,p, =1/2) Py (1 =4,01=1/4)

Figure: Mallows’s distance

References

LBO1

RTGOO

ZLZ05

CM14

MC13

Elizaveta Levina and Peter Bickel. The earth mover's distance is the
mallows distance: Some insights from statistics. In Computer Vision,
2001. ICCV 2001. Proceedings. Eighth IEEE International Conference
on, volume 2, pages 251-256. IEEE, 2001.

Y. Rubner, C. Tomasi, and L. J. Guibas. The earth mover’s distance as a
metric for image retrieval. International Journal of Computer Vision,
40(2):99-121, 2000.

Ding Zhou, Jia Li, and Hongyuan Zha. A new mallows distance based
metric for comparing clusterings. In Proceedings of the 22nd international
conference on Machine learning, pages 1028-1035. ACM, 2005.

F. Cazals and D. Mazauric. Mass transportation problems with
connectivity constraints, with applications to energy landscape
comparison. Submitted, 2014. Preprint: Inria tech report 8611.

M. Cuturi. Sinkhorn Distances: Lightspeed Computation of Optimal
Transport. NIPS 2013.

Nearest Neighbors Algorithms in Euclidean and Metric
Spaces: Algorithms and Data Structures

Metric trees and variants

Metric spaces

Definition 1. A metric space is a pair (M, d), with d : M x M — R", such

that:
> (1) Positivity: d(x,y) >0

> (1a) Self-distance: d(x,x) =0

> (1b) Isolation: x # y = d(x,y) >0

» (2) Symmetry: d(x,y) = d(y, x)

> (3) Triangle inequality: d(x,y) < d(x,z)+ d(y, z)

> Product metric. Assume that for some k > 1:
M=M; x - x M. (17)

and that each (M;, d;) is a metric space. For p > 1, the product metric is:

k

d(x,y) = (3 di(xi,y)")"? (18)

k=1
Some particular cases are:
> (Mi=R,d =|-|): L, metrics.

» p=1,d; = uniform metric: Hamming distance.

Using the triangle inequality

Lemma 2. For any three points p, q,s € M, for any r > 0, and for any
point set P C M, one has:

| d(q,p) —d(p,s) < d(q,s) < d(q,p) +d(p,s) (19)
d(q.5) > dp(q,s) := max | d(q, p) — d(p. s) | (20)

(21)

{d(p, s)>d(p,q)+r=d(q,s)>r
d(p,s) <d(p,q) —r=d(q,s) >r.

LAY

' lower bound
\

for d(q, s)

P

Figure: Lower bound from the triangle inequality, see Lemma 2

Metric tree: definition
> Definition:
» A binary tree
» Any internal node implements a spherical cut defined by the distance p to
a pivot v
> right subtree: points p such that d(pivot, p) > pu
» left subtree: points p such that d(pivot, p) < i

Figure: Metric tree for a square domain (A) One step (B) Full tree

Metric tree: construction
> Recursively construction:
» Choose a pivot, ideally inducing a partition into subsets of the same size
» Assign points to subtrees and recurse
» Complexity under the balanced subtrees assumption: O(nlog n).

Algorithm 1 Algorithm build_MetricTree(S)

{build_MetricTree(S)}
if S =0 then
return NIL
n < newNode
Draw at random Q C Sand v € Q
n.pivot < v
i median({d(v, p), p € Q\{v}})
{The pivot splits points into two subsets}
L« {s € S\{p}Hd(s,v) < u}
R+ {s € S\{p}Hld(s, v) >)}
{For each subtree: min/max distances to points in that subtree}
n.(d1, d2) < (min,max) of distances d(v,p),p € L
n.(ds, ds) < (min,max) of distances d(v,p),p € R
{Recursion}
n.L < build_MetricTree(L)
n.R <« build_MetricTree(R)

Searching a metric tree: algorithm

o v pivot node

Algorithm 2 Algorithm
search_MetricTree(T, q)
{Note of T is denoted n}

o distances d, da, d3,dy

R

nn(q) < 0
T < 00
if n = NIL then dy - minyepd(v, p) ds : minye pd(v, p)|
return dy : max,epd(v, p) dy : maxpepd(v, p)

{Check whether the pivot is the nn}
I < d(q, n.pivot)
if | <7 then
nn(q) < n.pivot
T
{Dilate the distance intervals for left
and right subtrees}
I+ [n.di — 7, n.db + 7]
Ir < [n.d3 — 7, n.ds + 7]
if / € I; then
search_MetricTree(n.L, q)
if / € I, then
search_MetricTree(n.R, q)

Searching a metric tree: correctness — pruning lemma

Lemma 3. Consider the intervals associated with a node, as defined in
Algorithm 1, that is |, + [n.dy — 7, n.d> + 7] I, + [n.d5s — 7, n.ds + 7]. Then:
(1) If I & I;, the left subtree can be pruned.

(2) If I € Iy, the left subtree can be pruned.

Proof.

We prove (1), as condition (2) is equivalent. Let us denote I, = [d1, do]. Since
I'=d(v,q) & I;, we have d(v,q) < di — 7 and d(v, q) > d» + 7. We analyze
these two conditions in turn.

> Condition on the right hand side. By definition of d, with v the pivot, we

have:
Vpel:d(v,q) >d(v,p)+ .

Using the triangle inequality for d(v, q) yields

d(v,p) +d(p.q) > d(v,q) > d(v,p) + 7 = d(q,p) > T.

> Mutatis mutandis. O

Metric tree: choosing the pivot

> By the pruning lemma: for small 7 and if g is picked uniformly at random,
the measure of the boundary of the spheres of radius di, ..., ds determines the
probability that no pruning takes place.

= pick the pivot so as to minimize this measure.

> Example in 2D: 3 choices for the pivot, so as to split the unit square (mass:
1) into two regions of equal size (mass: 1/2)

> Choice of pivots (illustrated using
o (rather than the djs):

» Best pivot: pc
» Worst pivot: pm

Pry P
=0.3989 =0.5225
b=2.5066 b=1.3338

Figure: Metric trees:
minimizing the measure of
boundaries.

From metric trees to metric forests
> Search options:
> (1) The exact search, based on the pruning lemma.

> (I1)The defeatist style search: visit one subtree only

> Compromising speed versus accurary
> (1) Exact, but possibly costly if little/no pruning occurs. Worst-case: linear time.

> (Il) Faster, but error prone.
» Compromise: using a forest of trees rescues erroneous branching decisions in the
course of the defeatist search.

Figure: Metric forest

References

AMN-+98

MLO9

MSMO03

OD13

Yia93

S. Arya et al. An optimal algorithm for approximate nearest neighbor searching
fixed dimensions. Journal of the ACM (JACM), 45(6):891-923, 1998.

Marius Muja and David G Lowe. Fast approximate nearest neighbors with
automatic algorithm configuration. In VISAPP (1), pages 331-340, 20009.

Francisco Moreno-Seco, Luisa Mico, and Jose Oncina. A modification of the
laesa algorithm for approximated k-nn classification. Pattern Recognition
Letters, 24(1):47-53, 2003.

S. O'Hara and B.A. Draper. Are you using the right approximate nearest
neighbor algorithm? In Applications of Computer Vision (WACV), 2013 IEEE
Workshop on, pages 9-14. IEEE, 2013.

Peter N Yianilos. Data structures and algorithms for nearest neighbor search in
general metric spaces. In SODA, volume 93, pages 311-321, 1993.

	Introduction
	Intermezzo: data vs algorithms
	kd-trees and basic search algorithms
	kd-trees and random projection trees: improved search algorithms
	Important metrics: geometry based
	Important metrics: the Earth Mover Distance
	Metric trees and variants

