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Nearest neighbors: on the importance of locality

q

. Typical settings:

I Regression – estimating a response variable from neighbors

I Supervised classification using neighbors

I Manifold / shape learning: learning a mathematical model for the data
(e.g. simplicial complex)

. Samples used at a given location q:

I nearest neighbors

I points in a cell of a spatial partition e.g. a RPTree



Intermezzo: data and their intrinsic dimension (I)
. Intrinsic dimension: in many real world problems, features may be
correlated, redundant, causing data to have low intrinsic dimension, i.e., data
lies close to a low-dimensional manifold

. Example: binary ie B&W image

I Consider an n × n binary image: image ∼ point on the hypercube of
dimension n2

. Example: rotating an image

I Consider an n × n pixel image, with each pixel encode in the RGB
channels: 1 image ∼ on point in dimension d = 3n2.

I Consider N rotated versions of this image: N point in R3n2

I But these points intrinsically have one degree of freedom (that of the
rotation)



Intermezzo: data and their intrinsic dimension (II)

. Example: 2D robotic arm with 3 d.o.f.

. Example: human body motion capture

I N markers attached to body (typically N=100).

I each marker measures position in 3 dimensions, 3N dimensional feature
space.

I But motion is constrained by a dozen-or-so joints and angles in the
human body.

.Ref: Verma et al. Which spatial partitions are adaptive to intrinsic

dimension? UAI 2009



Formal notions of intrinsic dimension

. Natural ones:

I Affine dimension

I Manifold dimension

. Requiring (elaborate) calculations:

I (Local) covariance dimension

I Assouad - doubling dimension



Local covariance dimension and its multi-scale estimation

. Def.: a set T ⊂ RD has covariance dimension (d , ε) if the largest d
eigenvalues of its covariance matrix satisfy

σ2
1 + · · ·+ σ2

d ≥ (1− ε) · (σ2
1 + · · ·+ σ2

D).

. Def.: Local covariance dimension with parameters (d , ε, r): the previous
must hold when restricting T to balls of radius r .

. Multi-scale estimation from a point cloud P:

For each datapoint p and each scale r
Collect samples in B(x , r)
Compute covariance matrix
Check how many eigenvalues are required: yields the dimension



Assouad / doubling dimension: intuition

. Pick a cube of side length L: count how many cubes of side length L/2 are
needed to cover it

D=1 D=2 D=3

L=1

L=1 L=1

N = 21 N = 22 N = 23



Assouad dimension

. Def: Set S ⊂ RD has Assouad dimension ≤ d : for any ball B, subset S ∩ B
can be covered by 2d balls of half the radius. Also called doubling dimension.

L

. Examples:

I S = line: Assouad dimension = 1

I S = k-dimensional affine subspace: Assouad dimension = O(k)

I Union of D intervals [−1, 1] in RD ; dim is log 2D

I S = k-dim submanifold of RD with finite condition number: Assouad
dimension = O(k) in small enough neighborhoods

I S = set of N points: Assouad dimension ≤ logN

. Hardness: computing doubling dimensions and constants is generally hard:
related to packing problems.



Generalization: doubling dimension and doubling measures

. Def.: A metric space X with metric is called doubling if there exists
M(X ) ∈ N so that any closed ball B(x , r) can be covered by at most M balls
of radius r/2. The doubling dimension is log2 M.

. Def.: A measure µ on a metric space X is called doubling if ∃C > 0 such
that ∀x ∈ X and r > 0

µ(B(x , 2r) ≤ Cµ(B(x , r)).

The dimension of the doubling measure satisfies d0 = log2 C .

. Remarks:

I A metric space supporting a doubling measure is necessarily a doubling
metric space, with dimension depending on C .

I Conversely, any complete doubling metric space supports a doubling
measure.
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Empirical results: contenders

. Contenders / algorithms:

I dyadic trees aka tries: pick a direction and split at the midpoint; cycle
through coordinates.

I kd-tree: split at median along direction with largest spread.

I random projection trees: split at the median along a random direction.

I PD / PCA trees: split at the median along the principal eigenvector of
the covariance matrix.

I two means trees: solve the 2-means; pick the direction spanned by the
centroids, and split the data as per cluster assignment.

. dyadic trees, kd-trees, RP trees



Real word datasets

. Datasets:

I Swiss roll

I Teapot dataset: rotated images of a teapot (1 B&W image: 50x30 pixels); thus,
1D dataset in ambient dimension 1500.

I Robotic arm: dataset in R12; yet, robotic arm has 2 joints: (noisy) 2D dataset
in ambient dimension 12.

I 1 from the MNIST OCR dataset; 20x20 B&W images, i.e. points in ambient
dimension 400.

I Love cluster from Australian Sign Language time-seris

I aw phoneme from MFCC TIMIT dataset

.Ref: Verma, Kpotufe, and Dasgupta, UAI 2009.



Empirical results: local covariance dimension estimation

. Conventions: bold lines: estimate d(r); dashed lines: std dev; numbers: ave. over
samples in balls of the given radius

. Observations:

I Swiss roll (ambient space dim is 3): failure at small (noise dominates) and large
scales (sheets get blended).

I Teapot: clear small dimensional structure at low scale, but rather 3-4 than 1.

I Robotic arm: tiny spot (r values) to get the correct dimension. . . noise.

.Ref: Verma, Kpotufe, and Dasgupta, UAI, 2009



Empirical results: performance for NN searches
. Searching p(1): performance is the order of the NN found / dataset size

I percentile order: order of NN found / dataset size (the smaller the better; max
is 100%)

I tree depth: NN sought at each level in the tree

I decorating numbers: distance ratio ‖q − nn(q)‖ /
∥∥q − p(1)

∥∥

. Observations:

I percentile order deteriorates with depth – separation does occur

I yet, the distance ratio remains small even at high percentile orders

I 2M and PD (i.e. PCA trees) consistently yield better nearest neighbors: better
adaptation to the intrinsic dimension

.Ref: Verma, Kpotufe, and Dasgupta, UAI, 2009



Empirical results: regression

. Regression:

I predicting the rotation angle (response variable) from the average values
found in the cell containing the query point

I performance is L2 error on the response variable

I theory says that best results are expected for data structure adapting to
the intrinsic dimension

. Observations:

I Small tree depth: averaging over many neighbors is detrimental

I Best results for 2M trees, PD (i.e., PCA) trees, and RP trees.

.Ref: N. Verma, S. Kpotufe, and S. Dasgupta, UAI, 2009



Intermezzo: medial axis of an open set
. Def.:

. Construction from Voronoi: idea
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Random projection trees and nearest neighbors

. Recap:

I Points iteratively projected on random directions

I Risks jeopardizing the search strategy: points far away (from the NN)
squeeze in-between q and nn(q)

I Hardness of the NN search: function Φ

Φ(q,P) =
1

n

n∑
i=2

∥∥q − x(1)

∥∥
2∥∥q − x(i)

∥∥
2

. (1)



Projections on random directions for separation
Separation property fails in using coordinate axis (kd-trees)

z

x

y

x1

(0, . . . , 0,M)t

(M, 0, . . . , 0)t

. Consider the following point set
{x1, . . . , xn}:

I x1: the all-ones vector

I For each xi , i > 1: pick a
random coord and set it to a
large value M; set the remaining
coords to uniform random
numbers is (0, 1)

. Query point q: the origin

. kd-trees separate q and x1, even though function Φ is arbitrarily small:

I The NN of q (=origin) is x1

I But by growing M, function Φ gets close to 0 ⇒ random projections will work
well

I However, any coord. projection separates q and x1: on average, the fraction of
points falling in-between q and x1 is arbitrarily large:

1

n
(n −

n

d
) = 1−

1

d

. Coming next: RPTrees work well in this case; randomness is needed.



Demo with DrGeo
Compulsory tools for geometers

. In the sequel: Consider 3 points q, x , y with ‖q − x‖ ≤ ‖q − y‖.

. In projection on a random direction U: probability to have the projection of
y nearest to q than the projection of x?

. DrGeo: http://www.drgeo.eu/

q
x

U

(qU) y

y´

x´

. Event E to avoid: < y ,U > falls
strictly in-between < q,U > and
< x ,U >

. NB: also of interest: IPE, http://ipe.otfried.org/

http://www.drgeo.eu/
http://ipe.otfried.org/


Random projections: relative position of three points
. In the sequel: q, x , y : 3 points with ‖q − x‖ ≤ ‖q − y‖

. Colinearity index q, x , y :

coll(q, x , y) =
< q − x , y − x >

‖q − x‖ ‖y − x‖ (2)

. Event E: < y ,U > falls strictly in-between < q,U > and < x ,U >

Lemma 1. Consider q, x , y ∈ Rd and ‖q − x‖ ≤ ‖q − y‖. The proba. over
random directions U, of E , satisfies:

P [E ] =
1

π
arcsin

(
‖q − x‖
‖q − y‖

√
1− coll(q, x , y)2

)
(3)

Corollary 2.

1

π

‖q − x‖
‖q − y‖

√
1− coll(q, x , y)2 ≤ P [E ] ≤ 1

2

‖q − x‖
‖q − y‖ (4)



Proof of the corollary

. Using the Inequality:

θ ∈ [0, π/2] :
2θ

π
≤ sin θ ≤ θ (5)

. Lower bound of the corr.: from the upper bound of Eq. (5): θ ≤ arcsin θ
applied to P [E ]

. Upper bound of the corr.:
First note that:

‖q − x‖
‖q − y‖

√
1− coll(q, x , y)2 ≤ ‖q − x‖

‖q − y‖
Then, apply (2φ/π) ≤ φ to φ = arcsin ‖q − x‖ / ‖q − y‖.



Random projections: separation of neighbors
. Recall that for m ≥ 1

Φm(q,P) =
1

m

m∑
i=2

∥∥q − p(1)

∥∥
2∥∥q − p(i)

∥∥
2

. (6)

Theorem 3. Consider q, p1, . . . , pn ∈ Rd , and a random direction U.

The expected fraction of the projected pi that fall between q and p(1) is at most

1

2
Φ(q,P).

. Proof. Let Zi be the event : “p(i) falls between q and p(1) in the projection”. By

the corollary 2, P [Zi ] ≤ (1/2)
∥∥q − p(1)

∥∥ / ∥∥q − p(i)

∥∥. Then, apply the linearity of
expectation to

∑
Zi/n (divide by n to get the fraction).

Theorem 4. Let S ⊂ P with p(1) ∈ S . If U is chosen uniformly at random, then
for any 0 < α < 1, the proba. (over U) that a fraction α of the projected points in S
fall between q and p(1) is

≤
1

2α
Φ|S|(q,P).

. Proof. Φ is maximized when S consists of the points closest to q. Then, previous
Thm + Markov’s inequality.



Regular spill trees–i.e. redundant storage
. Recap:

I Storage: point possibly stored twice using overlapping split with parameter α;
depth is O(log n/n0)

I Query routing: routing to a single leaf

Theorem 5. Let β = 1/2 + α. The
error probability is:

P [Err ] ≤
1

2α

∑
i=0,...,l

Φβi n(q,P) (7)
p(1)

α fraction

m: median q

split

. Proof, steps:

I Internal node at depth i contains βin points

I For such a node: proba to have q separated from p(1)

p(1) transmitted to one side of the split ⇒ a fraction α of the points
of the cell fall between q and the median m ⇒ a fraction α of the
points of the cell fall between q and p(1): this occurs with proba
upper-bounded by (1/2α)Φβin(q,P)

I To conclude: union-bound over all levels i



Virtual spill trees

. Recap:

I Storage: each point stored in a single leaf with median splits; depth is
O(log n/n0)

I Query routing: with overlapping splits of parameter α

Theorem 6. Let β = 1/2. The error probability is:

P [Err ] ≤ 1

2α

∑
i=0,...,l

Φβi n(q,P) (8)

. Proof, mutatis mutandis:

I Consider the path root - leaf of p(1)

I For a level, bound the proba. to have q routed to one side only

I Add up for all levels



Spill trees: probability of NN search failure

Theorem 7. (Spill trees) Consider a spill tree of depth l = log 11/β(n/n0),
with

I β = 1/2 + α for regular spill trees,

I and β = 1/2 for virtual spill trees.

If this tree is used to answer a query q, then:

P [Err ] ≤ 1

2α

∑
i=0,...,l

Φβi n(q,P) (9)

Nb: β in: number of data points found in an internal node at depth i



Random projection trees
. Recap:

I Pick a random direction and project points onto it

I Split at the β fractile for β ∈ (1/4, 3/4)

I Storage: each point mapped to a single leaf

I Query routing: query point mapped to a single leaf too

Theorem 8. Consider an RP tree for P. Define β = 3/4, and
l = log1/β(n/n0). One has:

P
[
NN query does not return p(1)

]
≤

∑
i=0,...,l

Φβi n ln
2e

Φβi n

(10)

. Proof, key steps:

I F : fraction of points separating q and p(1) in projection

I Since split chosen at random in interval of mass 1/2: it separates q and p(1)

with proba. F/(1/2)

I Integrating yields the result for one level; then, union bound.



Error bound depends on Φ?

I Φ qualifies the hardness of the query situations

I Focus: pathological cases versus settings with some regularity

q

q

p1

p1

q

z

x

y

x1

(0, . . . , 0,M)t

(M, 0, . . . , 0)t



Bounding function Φ in specific settings
Improving the bound Φ ≤ 1

. Perspective: assume that x1, . . . , xn are drawn i.i.d. from a doubling
measure. Can this regularity be used?

Theorem 9. Let µ be a continuous measure on Rd , a doubling measure of
dimension d0 ≥ 2. Assume p1, . . . , pn ∼ µ. Let 0 < δ < 1/2.
With probability ≥ 1− 3δ:

∀m ∈ [2, n] : Φm(q,P) ≤ 6
( 2

m
ln

1

δ

)1/d0

Theorem 10. Under the same hypothesis, with k the num. of NN sought:
– For both variants of the spill trees:

P [Err ] ≤ cokdo
α

(8 max(k, ln 1/δ)

n0

)1/d0

– For random projection trees with n0 ≥ c0(3k)d0 max(k, ln 1/δ):

P [Err ] ≤ cok(do + ln n0)
(8 max(k, ln 1/δ)

n0

)1/d0

. Rmk: failure proba. can be made arbitrarily small by taking n0 large enough.
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Partitioning rules that adapt to intrinsic dimension

. Principal component analysis: split the data at the median along the
principal direction of covariance.

I Drawback 1: estimation of principal component requires a significant

amount of data and only about
1

2l
fraction of data remains at a cell at

level l

I Drawback 2: computationally too expensive for some applications

. 2-means i.e. solution of k-means with k = 1: compute the 2-means
solution, and split the data as per the cluster assignment

I Drawback 1: 2-means is an NP-hard optimization problem

I Drawback 2: the best known (1 + ε)-approximation algorithm for 2-means

(A. Kumar, Y. Sabharwal, and S. Sen, 2004) would require a prohibitive

running time of O(2dO(1)

Dn), since we need ε ≈ 1/d .

I Approximate solution can be obtained using Loyd iterations.



Doubling dimension – Assouad dimension – locality

I Assouad and doubling dimensions (seen earlier)

I On the importance of locality: see examples of the accuracy of regressors
based on nearest neighbors (seen earlier)



Recursive splits: how many splits are required to halve the
diameter of a point set?

. A set defined along coordinate axis in RD :

I Consider S = ∪i=1,...,D{t ei ,−1 ≤ t ≤ 1}.
I S ⊂ B(0, 1) and covered by 2D balls B(·, 1/2) (this num. is minimal)

I Assouad dimension is log 2D

z

x

y

e3

e2

e1

. Observation: kd-trees requires

– d splits / levels to halve the diameter of S
– this requires in turn ≥ 2d points

. Fact: RPTree will halve the diameter faster (d log d levels with d the
intrinsic dim.)



Random projections and distances

. In RD : distance roughly get shrunk by a factor 1/
√
D

1

1√
D

Lemma 11. Fix any vector x ∈ Rd . Pick any random unit vector U on Sd−1.
One has:

P
[
|< x ,U >|≤ α ‖x‖√

D

]
≤ 2

π
α (11)

P
[
|< x ,U >|≥ β ‖x‖√

D

]
≤ 2

β
e−β

2/2 (12)

. Rmk: these are so-called concentration inequalities, see later.



Random projections and diameter
. Projecting a subset S ⊂ Rd along a random direction: how does the
diameter of the projection compares to that of S?

. S full dimensional:

diam(projection) ≤ diam(S)

. S has Assouad dimension d :
(then, with high probability. . . )

diam(projection) ≤ diam(S)
√

d/D

U U

. Rmk:

Cover S with 2d balls of radius 1/2
4d balls of radius 1/4
(1/ε)d balls of radius ε



Random projection trees algorithm: rationale

I Keep the good properties of PCA at a much lower cost

I intuition: splitting along a random direction is not that
different since it will have some component in the direction of
the principal component

I Generally works, but in some cases fails to reduce diameter

I Think of a dense spherical cluster around the mean containing
most of the data and a concentric shell of points much farther
away (think: outliers)

I characterized by the average interpoint distance ∆A within cell
being much smaller than its diameter ∆

I ⇒ another split is used, based on distance from the mean



Linear versus spherical cuts

. Linear split with jitter:

{Split by projection: no outlier}
ChooseRule(S)
choose a random unit direction v
pick any x ∈ S at random
let y ∈ S its furthest neighbor
choose δ at random in [−1, 1] ‖x − y‖ /

√
d

Rule(x) := x · v ≤ (medianz∈S(z · v) + δ)

. Combined split:

{Split by projection: no outlier}
ChooseRule(S)
if ∆2(S) ≤ c ·∆2

A(S) then
choose a random unit direction v
Rule(x) := x · v ≤ medianz∈S(z · v)

else
{Spherical cut: remove outliers}
Rule(x) := ‖x −mean(S)‖ ≤ medianz∈S(‖z −mean(S)‖)

NB: ∆: diameter; ∆A: average interpoint distance



Random projection trees algorithm: RPTree-max and
RPTree-mean

. Algorithm:

MakeTree(S)
if |S | < MinSize then

return (Leaf )
else

Rule ← ChooseRule(S)
LeftTree ← Maketree({x ∈ S : Rule(x) = true})
RightTree ← Maketree({x ∈ S : Rule(x) = false})
return [Rule, LeftTree,RightTree]

. Two options

I RPTree-max: linear split with jitter

I RPTree-mean: combined split



Performance guarantee:
amortized (i.e., global) result for RPTree-max

. Def.: radius of a cell C of a
RPTree: smallest r > 0 such that
S ∩ C ⊂ B(x , r) for some x ∈ C .

x

C

S

r

Theorem 12. (RPTree-max) Consider a RPTree-max built for a dataset
S ⊂ Rd . Pick any cell C of the tree; assume that S ∩ C has Assouad
dimension ≤ d . There exists a constant c1 such that with proba. ≥ 1/2, for
every descendant C ′ more than c1d log d levels below C , one has
radius(C ′) ≤ radius(C)/2.

. Summary: d log d levels suffice to halve the diameter (with high probability)



Intermezzo: complexity analysis in computer science

. Various complexities used to analyse the performances of an algorithm:

I Worst-case - best-case.
Example: quicksort.

I Average case: averaged over some randomness hypothesis.
Example: quicksort.

I Amortized: averaged over a sequence of operations. A costly operation
can help reorganize / optimize the data structure - construction, which
helps future operations.
Example: insertion into a red-black tree.

.Ref: Cormen, Leiserson, Rivest; Introduction to algorithms; MIT press



Performance guarantee:
per-level result for RPTree-mean, with adaptation to covariance dimension

Theorem 13. (RPTree-mean) There exists constants 0 < c1, c2, c3 < 1 for
which the following holds.

I Consider any cell C such that S ∩ C has covariance dimension (d , ε),
ε < c1

I Pick x ∈ S ∩C at random, and let C ′ be the cell containing it at the next
level down

I Then, if C is split:

• by projection (focus on interpoint distance): ( ∆2(S) ≤ c · ∆2
A(S) )

E[∆2
A(S ∩ C ′)] ≤ (1− (c3/d))∆2

A(S ∩ C )

• by distance i.e. spherical cut (focus on diameter):

E[∆2(S ∩ C ′)] ≤ c2∆2(S ∩ C )

. NB: the expectation is over the randomization in splitting C and the choice
of x ∈ S ∩ C .
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Diameter reduction again: the revenge of kd-trees

. Diameter reduction property: holds for kd-trees on randomly rotated data

. Rmk: one random ration suffices

.Ref: Vempala. Randomly-oriented kd Trees Adapt to Intrinsic

Dimension. FSTTCS. Vol. 18. 2012.
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p-norms and Unit Balls
. Notations:

I d: the dimension of the space

I F : a 1d distribution

I X = (X1, . . . ,Xd) a random vector such that Xi ∼ F
I P = {p(j)}: a collection on n iid realizations of X

. Generalizations of Lp norms, p > 0:

‖X‖p = (
i∑
i

| Xi |p)1/p (13)

Unit balls: see plots

. Cases of interest in the sequel:

I Minkowski norms: p, an integer p ≥ 1:

I fractional p-norms: 0 < p < 1. NB: triangle inequality not respected; NB:
balls not convex for p < 1. sometimes called pre-norms.

. Study the variation of ‖‖p as a function of d



Concentration of the Euclidean norm: Observations
. Plotting the variation of the following for random points in [0, 1]d :

min ‖·‖2, E
[
‖·‖2

]
−σ
[
‖·‖2

]
, E

[
‖·‖2

]
,E
[
‖·‖2

]
+σ
[
‖·‖2

]
, max ‖·‖2,M =

√
d

(14)

. Observation:

I The average value increases with the dimension d

I The standard deviation seems to be constant; likewise for the min-max
values

I For d ≤ 10 i.e. d small: the min and max values are close to the bounds:
lower bound is 0, upper bound is M =

√
d

I For d large say d ≥ 10, the norm concentrates within a small portion of
the domain; the gap wrt the bounds widens when d increases.



Concentration of the Euclidean Norm: Theorem

Theorem 14. Let X ∈ Rd be a random vector with iid components Xi ∼ F .
There exist constants a and b that do not depend on the dimension (they
depend on F), such that:

E
[
‖X‖2

]
=
√
ad − b + O(1/d) (15)

Var
[
‖X‖2

]
= b + O(1/

√
d). (16)

. Remarks:

I The variance is small wrt the expectation, see plot

I The error made in using E
[
‖X‖2

]
instead of ‖X‖2 becomes negligible: it

looks like points are on a sphere of radius E
[
‖X‖2

]
.

I The results generalize even if the Xi are not independent; then, d gets
replaced by the number of degrees of freedom.



Contrast and Relative Contrast: Definition

. Contrast and relative contrast of n iid random draws from X . The annulus
centered at the origin and containing the points is characterized by:

Contrasta := Dmax − Dmin = max
j

∥∥∥p(j)
∥∥∥
p
−min

j

∥∥∥p(j)
∥∥∥
p
. (17)

and the relative contrast is defined by:

Contrastr =
Dmax − Dmin

Dmin
. (18)

. Variation of the contrast | Dmax − Dmin | for various p and increasing d :

p = 3 p = 2 p = 1

p = 2/3 p = 2/5



Contrast and Relative Contrast: the case of Minkowski norms

Theorem 15. Consider n points which are iid realization of X . There exists
a constant Cp such that the absolute contrast of a Minkowski norm satisfies:

Cp ≤ lim
d→∞

E
[
Dmax − Dmin

d1/p−1/2

]
≤ (n − 1)Cp. (19)

. Observations:

I The contrast grows as d1/p−1/2

Metric Contrast Dmax − Dmin

L1 C1

√
d

L2 C2

L3 0

I The Manhattan metric: only one for which the contrast grows with d .

I For the Euclidean metric, the contrast converge to a constant.

I For p ≥ 3, the contrast converges to zero: the distance does not
discriminate between the notions of close and far.

I NB: the bounds depend on n; it makes sense to try to exploit the
particular coordinates at hand (cf later).

. NB: Thm also exist for the relative contract and other p-norms



Practical Implications for (Exact) NN Queries

. The concentration of distances:

I The first NN (of the origin) is well defined – cf the min curve

I But in seeking k-NN: the concentration is likely to yield a large number of
points at the same distance – these points are equivalent distance-wise.

. Complexity-wise: the curse of dimensionality:

I Exact strategies (cf kd-trees, metric trees): likely to trigger a visit of almost all
nodes in the tree: the concentration of distance can be such that a method does
no better than the linear scan.

I In contrast: defeatist search strategies suffice.

. Sanity check: in running a NN query, make sure that distances are meaningful:
multi-modality (at least bi-modality) of the distribution of distance is a good sanity
check to ensure some samples are really closer.

. If possible: use less concentrated metrics, with more discriminative power – see also
feature selection.



A wise use of distances

. Distance filtering:

I What is the nearest neighbor in high dimensional spaces?, Hinneburg et
al, VLDB 2000.

I Using sketch-map coordinates to analyze and bias molecular dynamics
simulations, Parrinello et al, PNAS 109, 2012.

. Feature selection:

I Random Forests, Breiman, Machine learning 2001

I Principal Differences Analysis: Interpretable Characterization of
Differences between Distributions, Mueller et al, NIPS 2015
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Geometry in high dimension:
scaled bodies and their volume

. Scaling a body from Rd :

O

γA = {γx, x ∈ A}
A

. For γ = 1− ε 1:

Vol((1− ε)A)

Vol(A)
= (1− ε)d ≤ e−εd . (20)

. Fix ε and let d →∞: the ratio tends to zero. That is: nearly all the volume
of A belongs to the annulus of width ε.

1Use e−x ≥ 1− x



Unit sphere: surface area and volume
. The Gamma function Γ:

Γ (x) =

∞∫
0

sx−1e−sds. (21)

NB: for integers Γ (n) = (n − 1)!
. The surface area and volume of the unit sphere Sd are given by:

A(d) =
2πd/2

Γ (d/2)
, V (d) =

A(d)

d
. (22)

Variation of the surface area (red)
and volume (blue) of the unit
sphere, as a function of the
dimension d



Unit ball: volume concentration near the equator

. Thm: (Slab Thm.) For c ≥ 1 and d ≥ 3, at least a fraction 1− 2
c
e−c2/2 of

the volume of the unit ball satisfies | x1 |≤ c√
d−1

.

. Corr: With c = 2
√

ln d , a fraction at least 1−O( 1
d

) ≥ 1/2 of the volume of
the unit ball lies in a cube of half side length c/

√
d−1 = 2

√
ln d/
√

d−1.
Since the vol. of this cube → 0, the volume of the unit ball goes to 0 when
d →∞.

c√
d−1

Proof: apply the Them with c = 2
√

ln d . Details on the blackboard.

Nb: Vertices of the cube are outside the ball. This does not matter since the
Thm integrates slices up to c/

√
d − 1.



Unit ball:
are points near the surface of within a small cubic core?

. Apparent contradiction:

I Argument from body scaling: mass located near the surface of the unit
sphere

I Previous argument: ≥ 1/2 of the mass located near the equator, within a
cube of side length 4

√
ln d/d−1

. Explanation:

I cube whose vertices are on the unit sphere: half side 1/
√
d

I corners of the cube of half side length h = 2
√

ln d/d−1 are at distance

∼ 2
√

ln d from the origin. this cube covers a significant portion of the
unit ball.

1

Cube of half side h = 2
√

ln d/d−1h

u Cube of half side u = 1/
√
d

1

Distance 1 from the origin

Distance ∼ 2
√
ln d from the origin

The cube of small side length h
projects vertices far away from the
unit sphere.



Random points are almost orthogonal with high probability

. Thm. Consider n points {x1, . . . , xn} drawn uniformly at random from the
unit ball. The following holds with probability 1− O(1/n):

1. P
[
‖x i‖ ≥ 1− 2 ln n

d

]
≥ 1− O(1/n),∀i

2. P
[
|< x i , x j >|≤

√
6 ln n
d−1

]
≥ 1− O(1/n), ∀i 6= j .



Generating random points on/inside Sd−1

. Generate a point x = (x1, . . . , xd)t whose coordinates are iid Gaussians:

I Generate x1, . . . , xd iid Gaussian with µ = 0 and σ = 1

I distribution is spherically symmetric (on a sphere of given
radius).

I random vector has arbitrary norm

I The density of X is

fG (x) =
1

(2π)d/2
e−

x2
1 +x2

2 +···+x2
d

2 =
1

(2π)d/2
e−‖x‖

2/2. (23)

I To obtain a unit vector: x
‖x‖ . NB: its coordinates are not independent.

. Inside the unit ball: the point x
‖x‖ needs to be scaled by a density

ρ(r) = drd−1.



The Gaussian annulus theorem
for an isotropic d dimensional Gaussian

. Density of the isotropic Gaussian: Gaussian of zero mean and σ2 along each dir.:

fG (X ) =
1

(2π)d/2
e−

x2
1 +x2

2 +···+x2
d

2 . (24)

. Expectation of ‖X‖2:

E
[
‖X‖2

]
= E

 ∑
i=1,...,d

x2
i

 =
∑

i=1,...,d

E
[
x2
i

]
= dE

[
x2

1

]
= d . (25)

. Thm. Consider an isotropic d dimensional Gaussian with σ = 1 in each direction.
For any β ≤

√
d , consider the annulus defined by

A = {X such that
√
d − β ≤ ‖X‖ ≤

√
d + β}. (26)

There exists a fixed positive constant c such that

P(Ac ) ≤ 3e−cβ2
. (27)

. Rmk: how come the mass concentrates around
√
d?

I Concentration thm: the mass concentrates near

√
E
[
‖X‖2

]
=
√
d

I The density fG is max. at the origin; but integrating over the unit ball ... no
mass since the volume of the unit ball tends to 0. (prop. seen earlier.)

I In going well beyond
√
d : the density fG gets too small.



Projecting onto a (random) affine subspace
. k-dimensional affine subspace: matrix R : d × k whose vectors define an
(orthonormal) basis
. To obtain such an orthonormal matrix R:

I draw k (unit) random vectors (see above)

I perform a Gram–Schmidt orthonormalization
NB: the orthonormalization process complicates things, since entries of
the matrix are no longer independent

. To get a randomized dimension-k matrix R – dim is d × k):

I Draw the d × k entries at random, using a the normal distribution
(Gaussian with 0 mean and unit variance)

I Then f (v) = (u1 · v , u2 · v , . . . , uk · v)T

Projection f (v) of a vector v onto
a (random) affine space of
dimension k, in matrix form:

f (v) = R t · v . (28)

NB: f (v) has dimensions
(k × d)(d × 1) = k × 1



Projection theorem
onto a random dimension k affine subspace

. Goal: we shall prove that in projection ‖f (v)‖ ∼
√
k ‖v‖

. Rmks:

I The distance/norm ‖f ‖ (·) increases since the vectors defining the affine
space are not unit length.

I The basis defined by R is not orthonormal.

I BUT: the analysis are much simpler!

. Thm. Let v be a vector from Rd . Consider a random affine subspace as
defined on the previous slide. Then, for any ε > 0:

P
[
| ‖f (v)‖ −

√
k ‖v‖ |≥ ε

√
k ‖v‖

]
≤ 3e−ckε2

. (29)

NB: the constant c comes from the Gaussian annulus them.

. Proof: blackboard.

. NB: versions where matrix R is orthonormal also exist. See the bibliography.



Application: the Johnson-Lindenstrauss lemma

. Rationale: project a point set P = {x1, . . . , xn} from Rd to Rk while
preserving distances / with low distorsion.

. Thm / lemma: Johnson-Lindenstrauss For any ε ∈ (0, 1), consider

k ≥ 3

cε2
ln n. (30)

(NB: c from the Gaussian annulus Thm.) For a random projection onto an
affine space of dim. k, define the event:

E : (1− ε)
√
k ≤ ‖f (x i )− f (x j)‖

‖x i − x j‖
≤ (1 + ε)

√
k, ∀(x i , x j). (31)

One has:

P [E] ≥ 1− 3

2n
. (32)

. Proof: blackboard.

. NB: the only property of data used while defining the projection is the
number of samples.



Johnson-Lindenstrauss: lower bound

. Embedding dimension k:

k =
3

cε2
ln n. (33)

. Large: ε ∈ [0.5− 0.99]

. Medium: ε ∈ [0.1− 5] . Small : ε ∈ [0.01− 0.1]
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