Nearest Neighbors Algorithms in Euclidean and Metric Spaces: Analysis

September 21, 2021

Frederic.Cazals@inria.fr
Nearest Neighbors Algorithms in Euclidean and Metric Spaces: Analysis

Intrinsic dimension?

Selected experiments on NN, regression, dimension estimation

RPTrees: search performance analysis

Random projections, intrinsic dimension and locality

Concentration phenomena: application to nearest neighbor searches

Concentration phenomena: key properties
Nearest Neighbors Algorithms in Euclidean and Metric Spaces: Analysis

Intrinsic dimension?

Selected experiments on NN, regression, dimension estimation

RPTrees: search performance analysis

Random projections, intrinsic dimension and locality

Concentration phenomena: application to nearest neighbor searches

Concentration phenomena: key properties
Nearest neighbors: on the importance of locality

Typical settings:
- Regression – estimating a response variable from neighbors
- Supervised classification using neighbors
- Manifold / shape learning: learning a mathematical model for the data (e.g. simplicial complex)

Samples used at a given location \(q \):
- nearest neighbors
- points in a cell of a spatial partition e.g. a RPTree
Intermezzo: data and their intrinsic dimension (I)

- **Intrinsic dimension**: in many real world problems, features may be correlated, redundant, causing data to have low *intrinsic dimension*, i.e., data lies close to a low-dimensional manifold.

- **Example**: binary ie B&W image
 - Consider an $n \times n$ binary image: image \sim point on the hypercube of dimension n^2.

- **Example**: rotating an image
 - Consider an $n \times n$ pixel image, with each pixel encode in the RGB channels: 1 image \sim on point in dimension $d = 3n^2$.
 - Consider N rotated versions of this image: N point in \mathbb{R}^{3n^2}.
 - But these points intrinsically have one degree of freedom (that of the rotation).
Example: 2D robotic arm with 3 d.o.f.

Example: human body motion capture
- N markers attached to body (typically N=100).
- each marker measures position in 3 dimensions, 3N dimensional feature space.
- But motion is constrained by a dozen-or-so joints and angles in the human body.

Ref: Verma et al. Which spatial partitions are adaptive to intrinsic dimension? UAI 2009
Formal notions of intrinsic dimension

- **Natural ones:**
 - Affine dimension
 - Manifold dimension

- **Requiring (elaborate) calculations:**
 - (Local) covariance dimension
 - Assouad - doubling dimension
Local covariance dimension and its multi-scale estimation

Def.: a set $T \subseteq \mathbb{R}^D$ has covariance dimension (d, ϵ) if the largest d eigenvalues of its covariance matrix satisfy

$$\sigma_1^2 + \cdots + \sigma_d^2 \geq (1 - \epsilon) \cdot (\sigma_1^2 + \cdots + \sigma_D^2).$$

Def.: Local covariance dimension with parameters (d, ϵ, r): the previous must hold when restricting T to balls of radius r.

Multi-scale estimation from a point cloud P:

For each datapoint p and each scale r

- Collect samples in $B(x, r)$
- Compute covariance matrix
- Check how many eigenvalues are required: yields the dimension
Assouad / doubling dimension: intuition

- Pick a cube of side length L: count how many cubes of side length $L/2$ are needed to cover it.
Assouad dimension

- Def: Set \(S \subset \mathbb{R}^D \) has Assouad dimension \(\leq d \): for any ball \(B \), subset \(S \cap B \) can be covered by \(2^d \) balls of half the radius. Also called doubling dimension.

- Examples:
 - \(S = \) line: Assouad dimension \(= 1 \)
 - \(S = \) k-dimensional affine subspace: Assouad dimension \(= O(k) \)
 - Union of \(D \) intervals \([-1, 1]\) in \(\mathbb{R}^D \); dim is \(\log 2D \)
 - \(S = \) k-dim submanifold of \(\mathbb{R}^D \) with finite condition number: Assouad dimension \(= O(k) \) in small enough neighborhoods
 - \(S = \) set of \(N \) points: Assouad dimension \(\leq \log N \)

- Hardness: computing doubling dimensions and constants is generally hard: related to packing problems.
Generalization: doubling dimension and doubling measures

▷ Def.: A metric space \(X \) with metric is called \textit{doubling} if there exists \(M(X) \in \mathbb{N} \) so that any closed ball \(B(x, r) \) can be covered by at most \(M \) balls of radius \(r/2 \). The \textit{doubling dimension} is \(\log_2 M \).

▷ Def.: A measure \(\mu \) on a metric space \(X \) is called \textit{doubling} if \(\exists C > 0 \) such that \(\forall x \in X \) and \(r > 0 \)

\[
\mu(B(x, 2r)) \leq C \mu(B(x, r)).
\]

The \textit{dimension} of the doubling measure satisfies \(d_0 = \log_2 C \).

▷ Remarks:

▷ A metric space supporting a doubling measure is necessarily a doubling metric space, with dimension depending on \(C \).

▷ Conversely, any complete doubling metric space supports a doubling measure.
Nearest Neighbors Algorithms in Euclidean and Metric Spaces: Analysis

Intrinsic dimension?

Selected experiments on NN, regression, dimension estimation

RPTrees: search performance analysis

Random projections, intrinsic dimension and locality

Concentration phenomena: application to nearest neighbor searches

Concentration phenomena: key properties
Empirical results: contenders

- **Contenders / algorithms:**
 - Dyadic trees aka tries: pick a direction and split at the midpoint; cycle through coordinates.
 - Kd-tree: split at median along direction with largest spread.
 - Random projection trees: split at the median along a random direction.
 - PD / PCA trees: split at the median along the principal eigenvector of the covariance matrix.
 - Two means trees: solve the 2-means; pick the direction spanned by the centroids, and split the data as per cluster assignment.

- **Dyadic trees, kd-trees, RP trees**
Real word datasets

- **Datasets:**
 - Swiss roll
 - Teapot dataset: rotated images of a teapot (1 B&W image: 50x30 pixels); thus, 1D dataset in ambient dimension 1500.
 - Robotic arm: dataset in \mathbb{R}^{12}; yet, robotic arm has 2 joints: (noisy) 2D dataset in ambient dimension 12.
 - 1 from the MNIST OCR dataset; 20x20 B&W images, i.e. points in ambient dimension 400.
 - *Love* cluster from Australian Sign Language time-series
 - *aw* phoneme from MFCC TIMIT dataset

- **Ref:** Verma, Kpotufe, and Dasgupta, UAI 2009.
Empirical results: local covariance dimension estimation

▷ Conventions: bold lines: estimate \(d(r) \); dashed lines: std dev; numbers: ave. over samples in balls of the given radius

▷ Observations:
 ▷ Swiss roll (ambient space dim is 3): failure at small (noise dominates) and large scales (sheets get blended).
 ▷ Teapot: clear small dimensional structure at low scale, but rather 3-4 than 1.
 ▷ Robotic arm: tiny spot (\(r \) values) to get the correct dimension...noise.

▷ Ref: Verma, Kpotufe, and Dasgupta, UAI, 2009
Empirical results: performance for NN searches

- **Searching $p(1)$**: performance is the order of the NN found / dataset size
 - percentile order: order of NN found / dataset size (the smaller the better; max is 100%)
 - tree depth: NN sought at each level in the tree
 - decorating numbers: distance ratio $\|q - nn(q)\| / \|q - p(1)\|$

Observations:

- percentile order deteriorates with depth – separation does occur
- yet, the distance ratio remains *small* even at *high* percentile orders
- 2M and PD (i.e. PCA trees) consistently yield better nearest neighbors: better adaptation to the intrinsic dimension

Ref: Verma, Kpotufe, and Dasgupta, UAI, 2009
Empirical results: regression

- **Regression:**
 - predicting the rotation angle (response variable) from the average values found in the cell containing the query point
 - performance is L_2 error on the response variable
 - theory says that best results are expected for data structure adapting to the intrinsic dimension

- **Observations:**
 - Small tree depth: averaging over many neighbors is detrimental
 - Best results for 2M trees, PD (i.e., PCA) trees, and RP trees.

Ref: N. Verma, S. Kpotufe, and S. Dasgupta, UAI, 2009
Intermezzo: medial axis of an open set

- **Def.:**

- **Construction from Voronoi: idea**
References

Nearest Neighbors Algorithms in Euclidean and Metric Spaces: Analysis

Intrinsic dimension?

Selected experiments on NN, regression, dimension estimation

RPTrees: search performance analysis

Random projections, intrinsic dimension and locality

Concentration phenomena: application to nearest neighbor searches

Concentration phenomena: key properties
Recap:

- Points iteratively projected on random directions
- Risks jeopardizing the search strategy: points far away (from the NN) squeeze in-between q and $nn(q)$
- Hardness of the NN search: function Φ

$$\Phi(q, P) = \frac{1}{n} \sum_{i=2}^{n} \frac{\|q - x^{(1)}\|_2}{\|q - x^{(i)}\|_2}.$$ (1)
Projections on random directions for separation

Separation property fails in using coordinate axis (kd-trees)

Consider the following point set \(\{x_1, \ldots, x_n\} \):
- \(x_1 \): the all-ones vector
- For each \(x_i, i > 1 \): pick a random coord and set it to a large value \(M \); set the remaining coords to uniform random numbers is \((0, 1)\)

Query point \(q \): the origin

kd-trees separate \(q \) and \(x_1 \), even though function \(\Phi \) is arbitrarily small:
- The NN of \(q \) (=origin) is \(x_1 \)
- But by growing \(M \), function \(\Phi \) gets close to 0 \(\Rightarrow \) random projections will work well
- However, any coord. projection separates \(q \) and \(x_1 \): on average, the fraction of points falling in-between \(q \) and \(x_1 \) is arbitrarily large:
\[
\frac{1}{n} (n - \frac{n}{d}) = 1 - \frac{1}{d}
\]

Coming next: RPTrees work well in this case; randomness is needed.
Demo with DrGeo

Compulsory tools for geometers

- In the sequel: Consider 3 points q, x, y with $\|q - x\| \leq \|q - y\|$.
- In projection on a random direction U: probability to have the projection of y nearest to q than the projection of x?

- DrGeo: http://www.drgeo.eu/

- Event E to avoid: $\langle y, U \rangle$ falls strictly in-between $\langle q, U \rangle$ and $\langle x, U \rangle$

Random projections: relative position of three points

▷ In the sequel: q, x, y: 3 points with $\|q - x\| \leq \|q - y\|$

▷ Colinearity index q, x, y:

$$\text{coll}(q, x, y) = \frac{\langle q - x, y - x \rangle}{\|q - x\| \|y - x\|}$$

▷ Event E: $\langle y, U \rangle$ falls strictly in-between $\langle q, U \rangle$ and $\langle x, U \rangle$

Lemma 1. Consider $q, x, y \in \mathbb{R}^d$ and $\|q - x\| \leq \|q - y\|$. The proba. over random directions U, of E, satisfies:

$$\mathbb{P}[E] = \frac{1}{\pi} \arcsin \left(\frac{\|q - x\|}{\|q - y\|} \sqrt{1 - \text{coll}(q, x, y)^2} \right)$$

Corollary 2.

$$\frac{1}{\pi} \frac{\|q - x\|}{\|q - y\|} \sqrt{1 - \text{coll}(q, x, y)^2} \leq \mathbb{P}[E] \leq \frac{1}{2} \frac{\|q - x\|}{\|q - y\|}$$
Proof of the corollary

ências

Using the Inequality:

\[\theta \in [0, \pi/2] \colon \frac{2\theta}{\pi} \leq \sin \theta \leq \theta \]

(5)

Lower bound of the corr.: from the upper bound of Eq. (5): \(\theta \leq \arcsin \theta \) applied to \(\mathbb{P}[E] \)

Upper bound of the corr.:

First note that:

\[
\frac{\|q - x\|}{\|q - y\|} \sqrt{1 - \text{coll}(q, x, y)^2} \leq \frac{\|q - x\|}{\|q - y\|}
\]

Then, apply \((2\phi/\pi) \leq \phi \) to \(\phi = \arcsin \frac{\|q - x\|}{\|q - y\|} \).
Random projections: separation of neighbors

Recall that for \(m \geq 1 \)

\[
\Phi_m(q, P) = \frac{1}{m} \sum_{i=2}^{m} \frac{\|q - p(1)\|_2}{\|q - p(i)\|_2}. \tag{6}
\]

Theorem 3. Consider \(q, p_1, \ldots, p_n \in \mathbb{R}^d \), and a random direction \(U \).

The expected fraction of the projected \(p_i \) that fall between \(q \) and \(p(1) \) is at most

\[
\frac{1}{2} \Phi(q, P).
\]

Proof. Let \(Z_i \) be the event : “\(p(i) \) falls between \(q \) and \(p(1) \) in the projection”. By the corollary 2, \(\mathbb{P}[Z_i] \leq (1/2) \|q - p(1)\| / \|q - p(i)\| \). Then, apply the linearity of expectation to \(\sum Z_i / n \) (divide by \(n \) to get the fraction).

Theorem 4. Let \(S \subset P \) with \(p(1) \in S \). If \(U \) is chosen uniformly at random, then for any \(0 < \alpha < 1 \), the probability (over \(U \)) that a fraction \(\alpha \) of the projected points in \(S \) fall between \(q \) and \(p(1) \) is

\[
\leq \frac{1}{2\alpha} \Phi_{|S|}(q, P).
\]

Proof. \(\Phi \) is maximized when \(S \) consists of the points closest to \(q \). Then, previous Thm + Markov’s inequality.
Regular spill trees—i.e. redundant storage

Recap:

- Storage: point possibly stored twice using overlapping split with parameter α; depth is $O(\log n/n_0)$
- Query routing: routing to a single leaf

Theorem 5. Let $\beta = 1/2 + \alpha$. The error probability is:

$$ P[\text{Err}] \leq \frac{1}{2\alpha} \sum_{i=0,\ldots,l} \Phi_{\beta^i n}(q, P) \quad (7) $$

Proof, steps:

- Internal node at depth i contains $\beta^i n$ points
- For such a node: proba to have q separated from $p_{(1)}$
 $p_{(1)}$ transmitted to one side of the split \Rightarrow a fraction α of the points of the cell fall between q and the median m \Rightarrow a fraction α of the points of the cell fall between q and $p_{(1)}$: this occurs with proba upper-bounded by $(1/2\alpha)\Phi_{\beta^i n}(q, P)$
- To conclude: union-bound over all levels i
Virtual spill trees

Recap:

- Storage: each point stored in a single leaf with median splits; depth is $O(\log \frac{n}{n_0})$
- Query routing: with overlapping splits of parameter α

Theorem 6. Let $\beta = 1/2$. The error probability is:

$$\mathbb{P} [Err] \leq \frac{1}{2\alpha} \sum_{i=0,\ldots,l} \Phi_{\beta^n}(q, P)$$

Proof, mutatis mutandis:

- Consider the path root - leaf of $p_{(1)}$
- For a level, bound the proba. to have q routed to one side only
- Add up for all levels
Theorem 7. (Spill trees) Consider a spill tree of depth \(l = \log \frac{1}{1 - \beta} (\frac{n}{n_0}) \), with

- \(\beta = 1/2 + \alpha \) for regular spill trees,
- and \(\beta = 1/2 \) for virtual spill trees.

If this tree is used to answer a query \(q \), then:

\[
\mathbb{P}[Err] \leq \frac{1}{2\alpha} \sum_{i=0}^{l} \Phi_{\beta^n} (q, P) \tag{9}
\]

Nb: \(\beta^n \): number of data points found in an internal node at depth \(i \)
Random projection trees

Recap:

- Pick a random direction and project points onto it
- Split at the β fractile for $\beta \in (1/4, 3/4)$
- Storage: each point mapped to a single leaf
- Query routing: query point mapped to a single leaf too

Theorem 8. Consider an RP tree for P. Define $\beta = 3/4$, and $l = \log_{1/\beta}(n/n_0)$. One has:

$$ \mathbb{P} \left[\text{NN query does not return } p_{(1)} \right] \leq \sum_{i=0, \ldots, l} \Phi_{\beta^n} \ln \frac{2e}{\Phi_{\beta^n}} \tag{10} $$

Proof, key steps:

- F: fraction of points separating q and $p_{(1)}$ in projection
- Since split chosen at random in interval of mass $1/2$: it separates q and $p_{(1)}$ with proba. $F/(1/2)$
- Integrating yields the result for one level; then, union bound.
Error bound depends on Φ?

- Φ qualifies the hardness of the query situations
- Focus: pathological cases versus settings with some regularity
Bounding function Φ in specific settings

Improving the bound $\Phi \leq 1$

- **Perspective:** assume that x_1, \ldots, x_n are drawn i.i.d. from a doubling measure. Can this regularity be used?

Theorem 9. Let μ be a continuous measure on \mathbb{R}^d, a doubling measure of dimension $d_0 \geq 2$. Assume $p_1, \ldots, p_n \sim \mu$. Let $0 < \delta < 1/2$. With probability $\geq 1 - 3\delta$:

$$\forall m \in [2, n] : \quad \Phi_m(q, P) \leq 6 \left(\frac{2}{m} \ln \frac{1}{\delta} \right)^{1/d_0}$$

Theorem 10. Under the same hypothesis, with k the num. of NN sought:
- For both variants of the spill trees:

$$\mathbb{P}[\text{Err}] \leq \frac{c_0kd_0}{\alpha} \left(\frac{8 \max(k, \ln 1/\delta)}{n_0} \right)^{1/d_0}$$

- For random projection trees with $n_0 \geq c_0(3k)^{d_0} \max(k, \ln 1/\delta)$:

$$\mathbb{P}[\text{Err}] \leq c_0k(d_0 + \ln n_0) \left(\frac{8 \max(k, \ln 1/\delta)}{n_0} \right)^{1/d_0}$$

- **Rmk:** failure proba. can be made arbitrarily small by taking n_0 large enough.
References

Nearest Neighbors Algorithms in Euclidean and Metric Spaces: Analysis

Intrinsic dimension?

Selected experiments on NN, regression, dimension estimation

RPTrees: search performance analysis

Random projections, intrinsic dimension and locality

Concentration phenomena: application to nearest neighbor searches

Concentration phenomena: key properties
Partitioning rules that adapt to intrinsic dimension

- **Principal component analysis**: split the data at the median along the principal direction of covariance.
 - Drawback 1: estimation of principal component requires a significant amount of data and only about $\frac{1}{2^l}$ fraction of data remains at a cell at level l
 - Drawback 2: computationally too expensive for some applications

- **2-means i.e. solution of k-means with $k = 1$**: compute the 2-means solution, and split the data as per the cluster assignment
 - Drawback 1: 2-means is an NP-hard optimization problem
 - Drawback 2: the best known $(1 + \epsilon)$-approximation algorithm for 2-means (A. Kumar, Y. Sabharwal, and S. Sen, 2004) would require a prohibitive running time of $O(2^{d^{O(1)}} Dn)$, since we need $\epsilon \approx 1/d$.
 - Approximate solution can be obtained using Loyd iterations.
Doubling dimension – Assouad dimension – locality

- Assouad and doubling dimensions (seen earlier)
- On the importance of locality: see examples of the accuracy of regressors based on nearest neighbors (seen earlier)
Recursive splits: how many splits are required to halve the diameter of a point set?

- A set defined along coordinate axis in \mathbb{R}^D:
 - Consider $S = \bigcup_{i=1,...,D} \{t e_i, -1 \leq t \leq 1 \}$.
 - $S \subset B(0,1)$ and covered by $2D$ balls $B(\cdot, 1/2)$ (this num. is minimal)
 - Assouad dimension is $\log 2D$

- Observation: kd-trees requires
 - d splits / levels to halve the diameter of S
 - this requires in turn $\geq 2^d$ points

- Fact: RPTree will halve the diameter faster ($d \log d$ levels with d the intrinsic dim.)
Random projections and distances

- In \mathbb{R}^D: distance roughly get shrunk by a factor $1/\sqrt{D}$

Lemma 11. Fix any vector $x \in \mathbb{R}^d$. Pick any random unit vector U on S^{d-1}. One has:

\[
P \left[|< x, U >| \leq \alpha \frac{\|x\|}{\sqrt{D}} \right] \leq \frac{2}{\pi} \alpha \]

\[
P \left[|< x, U >| \geq \beta \frac{\|x\|}{\sqrt{D}} \right] \leq \frac{2}{\beta} e^{-\beta^2/2}
\]

- Rmk: these are so-called concentration inequalities, see later.
Random projections and diameter

- Projecting a subset $S \subset \mathbb{R}^d$ along a random direction: how does the diameter of the projection compares to that of S?

- S full dimensional:
 \[\text{diam(projection)} \leq \text{diam}(S) \]

- S has Assouad dimension d:
 (then, with high probability...)
 \[\text{diam(projection)} \leq \text{diam}(S) \sqrt{d/D} \]

- Rmk:
Cover S with 2^d balls of radius $1/2$
4^d balls of radius $1/4$
$(1/\varepsilon)^d$ balls of radius ε
Random projection trees algorithm: rationale

Keep the good properties of PCA at a much lower cost

- intuition: splitting along a random direction is not that different since it will have some component in the direction of the principal component

Generally works, but in some cases fails to reduce diameter

- Think of a dense spherical cluster around the mean containing most of the data and a concentric shell of points much farther away (think: outliers)
- characterized by the average interpoint distance Δ_A within cell being much smaller than its diameter Δ
- \Rightarrow another split is used, based on distance from the mean
Linear versus spherical cuts

- **Linear split with jitter:**

 \{Split by projection: no outlier\}

 ChooseRule(\(S\))

 choose a random unit direction \(v\)

 pick any \(x \in S\) at random

 let \(y \in S\) its furthest neighbor

 choose \(\delta\) at random in \([-1, 1]\) \(\|x - y\| / \sqrt{d}\)

 \[Rule(x) := x \cdot v \leq (\text{median}_{z \in S} (z \cdot v) + \delta)\]

- **Combined split:**

 \{Split by projection: no outlier\}

 ChooseRule(\(S\))

 if \(\Delta^2(\(S\)) \leq c \cdot \Delta_A^2(\(S\))\) then

 choose a random unit direction \(v\)

 \[Rule(x) := x \cdot v \leq \text{median}_{z \in S} (z \cdot v)\]

 else

 \{Spherical cut: remove outliers\}

 \[Rule(x) := \|x - \text{mean}(\(S\))\| \leq \text{median}_{z \in S} (\|z - \text{mean}(\(S\))\|)\]

NB: \(\Delta\): diameter; \(\Delta_A\): average interpoint distance
Random projection trees algorithm: RPTree-max and RPTree-mean

▷ Algorithm:

\[
\text{MakeTree}(S) \\
\text{if } |S| < \text{MinSize then} \\
\quad \text{return } (\text{Leaf}) \\
\text{else} \\
\quad \text{Rule } \leftarrow \text{ChooseRule}(S) \\
\quad \text{LeftTree } \leftarrow \text{Maketree}(\{x \in S : \text{Rule}(x) = \text{true}\}) \\
\quad \text{RightTree } \leftarrow \text{Maketree}(\{x \in S : \text{Rule}(x) = \text{false}\}) \\
\text{return } [\text{Rule, LeftTree, RightTree}]
\]

▷ Two options

- RPTree-max: linear split with jitter
- RPTree-mean: combined split
Performance guarantee:
amortized (i.e., global) result for RPTree-max

▷ Def.: \textit{radius} of a cell C of a
RPTree: smallest $r > 0$ such that
$S \cap C \subset B(x, r)$ for some $x \in C$.

\textbf{Theorem 12.} (RPTree-max) Consider a RPTree-max built for a dataset $S \subset \mathbb{R}^d$. Pick any cell C of the tree; assume that $S \cap C$ has \textbf{Assouad dimension} \leq d. There exists a constant c_1 such that with proba. $\geq 1/2$, for every descendant C' more than $c_1 d \log d$ levels below C, one has \text{radius}(C') \leq \text{radius}(C)/2$.

▷ \textbf{Summary:} $d \log d$ levels suffice to halve the diameter (with high probability)
Intermezzo: complexity analysis in computer science

Various complexities used to analyse the performances of an algorithm:

- Worst-case - best-case.
 Example: quicksort.

- Average case: averaged over some randomness hypothesis.
 Example: quicksort.

- Amortized: averaged over a sequence of operations. A costly operation can help reorganize / optimize the data structure - construction, which helps future operations.
 Example: insertion into a red-black tree.

Ref: Cormen, Leiserson, Rivest; Introduction to algorithms; MIT press
Theorem 13. (RPTree-mean) There exists constants $0 < c_1, c_2, c_3 < 1$ for which the following holds.

- Consider any cell C such that $S \cap C$ has covariance dimension (d, ϵ), $\epsilon < c_1$
- Pick $x \in S \cap C$ at random, and let C' be the cell containing it at the next level down
- Then, if C is split:
 - by projection (focus on interpoint distance): $(\Delta^2(S) \leq c \cdot \Delta^2_A(S))$
 $$E[\Delta^2_A(S \cap C')] \leq (1 - (c_3/d))\Delta^2_A(S \cap C)$$
 - by distance i.e. spherical cut (focus on diameter):
 $$E[\Delta^2(S \cap C')] \leq c_2 \Delta^2(S \cap C)$$

NB: the expectation is over the randomization in splitting C and the choice of $x \in S \cap C$.
Results presented:

Related:

- Kpotufe S. k-NN regression adapts to local intrinsic dimension. NIPS 2011.
Diameter reduction again: the revenge of kd-trees

- **Diameter reduction property:** holds for kd-trees on randomly rotated data
- **Rmk:** one random rotation suffices

Nearest Neighbors Algorithms in Euclidean and Metric Spaces: Analysis

Intrinsic dimension?

Selected experiments on NN, regression, dimension estimation

RPTrees: search performance analysis

Random projections, intrinsic dimension and locality

Concentration phenomena: application to nearest neighbor searches

Concentration phenomena: key properties
p-norms and Unit Balls

▶ **Notations:**

► **d**: the dimension of the space
► **\(\mathcal{F} \)**: a 1d distribution
► **\(X = (X_1, \ldots, X_d) \)** a random vector such that \(X_i \sim \mathcal{F} \)
► **\(P = \{p^{(j)}\} \)**: a collection on \(n \) iid realizations of \(X \)

▶ **Generalizations of** \(L_p \) **norms, \(p > 0 \):**

\[
\|X\|_p = \left(\sum_{i} |X_i|^p \right)^{1/p}
\]

(13)

Unit balls: see plots

▶ **Cases of interest in the sequel:**

► **Minkowski norms**: \(p \), an integer \(p \geq 1 \):
► **fractional p-norms**: \(0 < p < 1 \). NB: triangle inequality not respected; NB: balls not convex for \(p < 1 \). sometimes called pre-norms.

▶ **Study the variation of** \(|||\|_p \) **as a function of** \(d \)
Concentration of the Euclidean norm: Observations

Plotting the variation of the following for random points in $[0, 1]^d$:

$$\min \|\cdot\|_2, \ E[\|\cdot\|_2] - \sigma[\|\cdot\|_2], \ E[\|\cdot\|_2], \ E[\|\cdot\|_2] + \sigma[\|\cdot\|_2], \ \max \|\cdot\|_2, M = \sqrt{d}$$

(14)

Observation:

- The average value increases with the dimension d
- The standard deviation seems to be constant; likewise for the min-max values
- For $d \leq 10$ i.e. d small: the min and max values are close to the bounds: lower bound is 0, upper bound is $M = \sqrt{d}$
- For d large say $d \geq 10$, the norm concentrates within a small portion of the domain; the gap wrt the bounds widens when d increases.

Fig. 1. From bottom to top: minimum observed value, average minus standard deviation, average value, average plus standard deviation, maximum observed value, and maximum possible value of the Euclidean norm of a random vector. The expectation grows, but the variance remains constant. A small subinterval of the domain of the norm is reached in practice.
Theorem 14. Let $X \in \mathbb{R}^d$ be a random vector with iid components $X_i \sim F$. There exist constants a and b that do not depend on the dimension (they depend on F), such that:

\[
\mathbb{E} \left[\|X\|_2 \right] = \sqrt{ad} - b + O(1/d) \tag{15}
\]
\[
\text{Var} \left[\|X\|_2 \right] = b + O(1/\sqrt{d}). \tag{16}
\]

Remarks:

- The variance is small wrt the expectation, see plot.
- The error made in using $\mathbb{E} \left[\|X\|_2 \right]$ instead of $\|X\|_2$ becomes negligible: it looks like points are on a sphere of radius $\mathbb{E} \left[\|X\|_2 \right]$.
- The results generalize even if the X_i are not independent; then, d gets replaced by the number of degrees of freedom.
Contrast and Relative Contrast: Definition

Contrast and relative contrast of \(n \) iid random draws from \(X \). The annulus centered at the origin and containing the points is characterized by:

\[
\text{Contrast}_a := D_{\text{max}} - D_{\text{min}} = \max_j \left\| p^{(j)} \right\|_p - \min_j \left\| p^{(j)} \right\|_p.
\]

(17)

and the relative contrast is defined by:

\[
\text{Contrast}_r = \frac{D_{\text{max}} - D_{\text{min}}}{D_{\text{min}}}.
\]

(18)

Variation of the contrast \(|D_{\text{max}} - D_{\text{min}}| \) for various \(p \) and increasing \(d \):

- (a) \(p = 3 \)
- (b) \(p = 2 \)
- (c) \(p = 1 \)
- (d) \(p = 2/3 \)
- (e) \(p = 2/5 \)

Fig. 1. \(|D_{\text{max}} - D_{\text{min}}|\) depending on \(d \) for different metrics (uniform data)
Contrast and Relative Contrast: the case of Minkowski norms

Theorem 15. Consider n points which are iid realization of X. There exists a constant C_p such that the absolute contrast of a Minkowski norm satisfies:

$$C_p \leq \lim_{d \to \infty} \mathbb{E} \left[\frac{D_{\text{max}} - D_{\text{min}}}{d^{1/p-1/2}} \right] \leq (n - 1)C_p.$$

(19)

Observations:

- The contrast grows as $d^{1/p-1/2}$

<table>
<thead>
<tr>
<th>Metric</th>
<th>Contrast $D_{\text{max}} - D_{\text{min}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>L_1</td>
<td>$C_1 \sqrt{d}$</td>
</tr>
<tr>
<td>L_2</td>
<td>C_2</td>
</tr>
<tr>
<td>L_3</td>
<td>0</td>
</tr>
</tbody>
</table>

- The Manhattan metric: only one for which the contrast grows with d.
- For the Euclidean metric, the contrast converge to a constant.
- For $p \geq 3$, the contrast converges to zero: the distance does not discriminate between the notions of close and far.
- NB: the bounds depend on n; it makes sense to try to exploit the particular coordinates at hand (cf later).

NB: Thm also exist for the relative contract and other p-norms.
Practical Implications for (Exact) NN Queries

▷ The concentration of distances:
 ▷ The first NN (of the origin) is well defined – cf the min curve
 ▷ But in seeking k-NN: the concentration is likely to yield a large number of points at the same distance – these points are equivalent distance-wise.

▷ Complexity-wise: the curse of dimensionality:
 ▷ Exact strategies (cf kd-trees, metric trees): likely to trigger a visit of almost all nodes in the tree: the concentration of distance can be such that a method does no better than the linear scan.
 ▷ In contrast: defeatist search strategies suffice.

▷ Sanity check: in running a NN query, make sure that distances are meaningful: multi-modality (at least bi-modality) of the distribution of distance is a good sanity check to ensure some samples are really closer.

▷ If possible: use less concentrated metrics, with more discriminative power – see also feature selection.
A wise use of distances

- Distance filtering:

- Feature selection:
References

Nearest Neighbors Algorithms in Euclidean and Metric Spaces: Analysis

Intrinsic dimension?

Selected experiments on NN, regression, dimension estimation

RPTrees: search performance analysis

Random projections, intrinsic dimension and locality

Concentration phenomena: application to nearest neighbor searches

Concentration phenomena: key properties
Geometry in high dimension: scaled bodies and their volume

Scaling a body from \mathbb{R}^d:

For $\gamma = 1 - \varepsilon$:

$$\frac{\text{Vol}((1 - \varepsilon)A)}{\text{Vol}(A)} = (1 - \varepsilon)^d \leq e^{-\varepsilon d}.$$ \hfill (20)

Fix ε and let $d \to \infty$: the ratio tends to zero. That is: nearly all the volume of A belongs to the annulus of width ε.

\[\text{Use } e^{-x} \geq 1 - x \]
Unit sphere: surface area and volume

- The Gamma function Γ:

\[
\Gamma (x) = \int_0^\infty s^{x-1} e^{-s} \, ds. \tag{21}
\]

NB: for integers $\Gamma (n) = (n - 1)!$

- The surface area and volume of the unit sphere S^d are given by:

\[
A(d) = \frac{2\pi^{d/2}}{\Gamma (d/2)}, \quad V(d) = \frac{A(d)}{d}. \tag{22}
\]

Variation of the surface area (red) and volume (blue) of the unit sphere, as a function of the dimension d
Unit ball: volume concentration near the equator

▷ Thm: (Slab Thm.) For $c \geq 1$ and $d \geq 3$, at least a fraction $1 - \frac{2}{c} e^{-c^2/2}$ of the volume of the unit ball satisfies $|x_1| \leq \frac{c}{\sqrt{d-1}}$.

▷ Corr: With $c = 2\sqrt{\ln d}$, a fraction at least $1 - O\left(\frac{1}{d}\right) \geq 1/2$ of the volume of the unit ball lies in a cube of half side length $c/\sqrt{d-1} = 2\sqrt{\ln d}/\sqrt{d-1}$. Since the vol. of this cube $\to 0$, the volume of the unit ball goes to 0 when $d \to \infty$.

Proof: apply the Them with $c = 2\sqrt{\ln d}$. Details on the blackboard.

Nb: Vertices of the cube are outside the ball. This does not matter since the Thm integrates slices up to $c/\sqrt{d-1}$.
Unit ball:

are points near the surface of within a small cubic core?

▶ Apparent contradiction:

▶ Argument from body scaling: mass located near the surface of the unit sphere

▶ Previous argument: $\geq 1/2$ of the mass located near the equator, within a cube of side length $4\sqrt{\ln d/d - 1}$

▶ Explanation:

▶ cube whose vertices are on the unit sphere: half side $1/\sqrt{d}$

▶ corners of the cube of half side length $h = 2\sqrt{\ln d/d - 1}$ are at distance $\sim 2\sqrt{\ln d}$ from the origin. this cube covers a significant portion of the unit ball.

The cube of small side length h projects vertices far away from the unit sphere.
Random points are almost orthogonal with high probability

\[\text{Thm.} \quad \text{Consider } n \text{ points } \{x_1, \ldots, x_n\} \text{ drawn uniformly at random from the unit ball. The following holds with probability } 1 - O(1/n): \]

1. \(\mathbb{P} \left[\|x_i\| \geq 1 - \frac{2 \ln n}{d} \right] \geq 1 - O(1/n), \forall i \)

2. \(\mathbb{P} \left[|\langle x_i, x_j \rangle| \leq \sqrt{\frac{6 \ln n}{d-1}} \right] \geq 1 - O(1/n), \forall i \neq j. \)
Generating random points on/inside S^{d-1}

- Generate a point $x = (x_1, \ldots, x_d)^t$ whose coordinates are iid Gaussians:
 - Generate x_1, \ldots, x_d iid Gaussian with $\mu = 0$ and $\sigma = 1$
 - distribution is spherically symmetric (on a sphere of given radius).
 - random vector has arbitrary norm
 - The density of X is
 \[
 f_G(x) = \frac{1}{(2\pi)^{d/2}} e^{-\frac{x_1^2+\cdots+x_d^2}{2}} = \frac{1}{(2\pi)^{d/2}} e^{-\|x\|^2/2}.
 \] (23)
 - To obtain a unit vector: $\frac{x}{\|x\|}$. NB: its coordinates are not independent.
 - Inside the unit ball: the point $\frac{x}{\|x\|}$ needs to be scaled by a density
 $\rho(r) = dr^{d-1}$.
The Gaussian annulus theorem

for an isotropic d dimensional Gaussian

▷ Density of the isotropic Gaussian: Gaussian of zero mean and σ^2 along each dir.:

$$f_G(X) = \frac{1}{(2\pi)^{d/2}} e^{-\frac{x_1^2+x_2^2+\cdots+x_d^2}{2}}.$$ \hspace{1cm} (24)

▷ Expectation of $\|X\|^2$:

$$E[\|X\|^2] = E\left[\sum_{i=1,\ldots,d} x_i^2\right] = \sum_{i=1,\ldots,d} E[x_i^2] = dE[x_1^2] = d.$$ \hspace{1cm} (25)

▷ Thm. Consider an isotropic d dimensional Gaussian with $\sigma = 1$ in each direction. For any $\beta \leq \sqrt{d}$, consider the annulus defined by

$$A = \{X \text{ such that } \sqrt{d} - \beta \leq \|X\| \leq \sqrt{d} + \beta\}.$$ \hspace{1cm} (26)

There exists a fixed positive constant c such that

$$P(A^c) \leq 3e^{-c\beta^2}.$$ \hspace{1cm} (27)

▷ Rmk: how come the mass concentrates around \sqrt{d}?

▷ Concentration thm: the mass concentrates near $\sqrt{E[\|X\|^2]} = \sqrt{d}$

▷ The density f_G is max. at the origin; but integrating over the unit ball ... no mass since the volume of the unit ball tends to 0. (prop. seen earlier.)

▷ In going well beyond \sqrt{d}: the density f_G gets too small.
Projecting onto a (random) affine subspace

- **k-dimensional affine subspace**: matrix $R : d \times k$ whose vectors define an (orthonormal) basis
- **To obtain such an orthonormal matrix R**:
 - draw k (unit) random vectors (see above)
 - perform a Gram–Schmidt orthonormalization
 \(\text{NB: the orthonormalization process *complicates things*, since entries of the matrix are no longer independent} \)
- **To get a randomized dimension-k matrix R – dim is $d \times k$**:
 - Draw the $d \times k$ entries at random, using a the normal distribution (Gaussian with 0 mean and unit variance)
 - Then $f(\mathbf{v}) = (\mathbf{u}_1 \cdot \mathbf{v}, \mathbf{u}_2 \cdot \mathbf{v}, \ldots, \mathbf{u}_k \cdot \mathbf{v})^T$

Projection $f(\mathbf{v})$ of a vector \mathbf{v} onto a (random) affine space of dimension k, in matrix form:

$$f(\mathbf{v}) = R^t \cdot \mathbf{v}. \quad (28)$$

\(\text{NB: } f(\mathbf{v}) \text{ has dimensions} \ (k \times d)(d \times 1) = k \times 1 \)
Projection theorem
onto a random dimension k affine subspace

- **Goal:** we shall prove that in projection $\|f(v)\| \sim \sqrt{k} \|v\|

- **Rmks:**
 - The distance/norm $\|f\| (\cdot)$ increases since the vectors defining the affine space are not unit length.
 - The basis defined by R is not orthonormal.
 - **BUT:** the analysis are much simpler!

- **Thm.** Let v be a vector from \mathbb{R}^d. Consider a random affine subspace as defined on the previous slide. Then, for any $\varepsilon > 0$:

$$\mathbb{P} \left[\left| \|f(v)\| - \sqrt{k} \|v\| \right| \geq \varepsilon \sqrt{k} \|v\| \right] \leq 3e^{-ck\varepsilon^2}. \quad (29)$$

NB: the constant c comes from the Gaussian annulus them.

- **Proof:** blackboard.

- **NB:** versions where matrix R is orthonormal also exist. See the bibliography.
Application: the Johnson-Lindenstrauss lemma

▷ Rationale: project a point set $P = \{x_1, \ldots, x_n\}$ from \mathbb{R}^d to \mathbb{R}^k while preserving distances / with low distortion.

▷ Thm / lemma: Johnson-Lindenstrauss For any $\varepsilon \in (0, 1)$, consider

$$ k \geq \frac{3}{c\varepsilon^2} \ln n. \quad (30) $$

(NB: c from the Gaussian annulus Thm.) For a random projection onto an affine space of dim. k, define the event:

$$ \mathcal{E} : (1 - \varepsilon)\sqrt{k} \leq \frac{\|f(x_i) - f(x_j)\|}{\|x_i - x_j\|} \leq (1 + \varepsilon)\sqrt{k}, \forall (x_i, x_j). \quad (31) $$

One has:

$$ \mathbb{P} [\mathcal{E}] \geq 1 - \frac{3}{2n}. \quad (32) $$

▷ Proof: blackboard.

▷ NB: the only property of data used while defining the projection is the number of samples.
Johnson-Lindenstrauss: lower bound

- Embedding dimension k:
 \[k = \frac{3}{c\varepsilon^2} \ln n. \quad (33) \]

- Large: $\varepsilon \in [0.5 - 0.99]$
- Medium: $\varepsilon \in [0.1 - 5]$
- Small: $\varepsilon \in [0.01 - 0.1]$
Bibliography

- S. Levy, Flavors of geometry, Cambridge, 1997