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Dimensionality reduction?

> The problem:
» Given a point cloud {x;} € R
» There exists a latent model for the data at hand: discover it and map the

points into R?, with d < D

> Example: mapping point of the swiss roll from R? into R?




Before getting started: selected questions

> Data and their intrinsic dimension: see lecture #2

> Difficult questions:

» Underlying geometric model: linear vs non linear, manifold vs stratified
space

» Target dimension: input or output?
» Criterion optimized: local, global, mix of the two

» Number of dimensions vs number of samples

A stratified space: pieces of dimension 1, 2, 3



Taxonomy of dimensionality reduction methods

>Ref: van der Maaten et al, Dimensionality reduction: a comparative
review, 2009
>Ref :

J.A. Lee and M. Verleysen, Nonlinear dimensionality reduction,
Springer, 2007

DA
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Johnson-Lindenstrauss lemma:
no distance distorsion with high probability

> Embedding dimension k: k = 52/‘;—%/3
flai) .
Ly

[i—a;]]

> Theory: see lecture #2
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Data model in matrix form: notations

> Selected matrices.
» Matrix 1,: a n X 1 column vector of n ones.

» Matrix H,: the following matrix of ones

1 --- 1
H=1,1," =

> Notations. We consider a matrix whose
» rows: individuals, i=1,...,n

» columns: features, j=1,...,d

(1)

(2)



The centroid

> Centroid — aka center of mass. The centroid or center of mass
1 . 1
,U,:EZX;:(,U,,' /“Ld) Wlthpﬂ':; Z Xi.j
i i=1,...,n
One has the equivalently form:
1
w= El,,TX.
The data centered matrix is defined by,
X —p=(xij— )
or equivalently in matrix form
1
X—pu=X—-1pu=X—-—H,X.
n
> One property of the centroid. One has:

Lemma 1. Consider a point set Xi,...,X,, and a point x. lts centroid p
minimizes the sum of squared distances to all points.

Proof.
Expand >, | Xi — X|* = SlXi—p+p— X|)?

(3)

(5)

(6)



Intermezzo: k-means (k-means—++) and variants

> k-means: uses the center of mass, aka centroid

> Using the sum of squared distances to data points:
» k-means: the center of a cluster is its centroid.
» k-medoids: the center of a cluster must be a data point.

» k-medians: the center of a cluster is a geometric median of the points —
requires a notion of median in d-dimensions (e.g. based on depth)

> Using the sum of distances to data points:
» point minimizing the sum of distances: the Fermat—Weber point.

» sample point minimizing the sum of distances.

> Nb: in general, difficult (NP-hard) optimization problems



The Covariance Matrix

The covariancel of two features is defined by
COV(Cja Z (XU i (Xlk lu“k)‘ (7)
Arranging these into a matrix yields the d X d covariance matrix:

C= 1 (X =W)X - ) ®)

Lemma 2. One has
C =

XX = pp. (9)
n—1

'Note the division by n — 1 and not n: this is the so-called Bessel
correction, which aims at ensuring that the estimator has no bias; this is
related to the fact that in computing the variance, there are n — 1 independent
residuals x; — X, since all residuals add up to 0.



The Gram matrix

The Gram matrix is the n X n matrix defined by
G =XX" = (gi), with gi; =< X;, X; >= X;X;". (10)
As we shall see below, it is convenient to work with the Gram matrix of the

centered data.

6= (X - (X -w". (1)



Squared Distance Matrix and Gram matrices

> Squared distance matrix D: the n x n matrix defined by

D= (d?), with &2 = ||X; — X}||* = gi.; + &; — 28 /- (12)

> For centered data:

Lemma 3 For centered data, the Gram matrix and the squared distance matrix
satisfy:

1 1
G = — - KDK, with Kj =0 — —. (13)
n

> General case:

Lemma 4. The Gram matrix of the centered data and the squared distance matrix
satisfy:

1 1 1 1
G*=—= (foDHffHD+—HDH.) (14)
2 n n n?
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Matrices and matrix norms

Definition 5. Let A be a m x n real matrix. A matrix norm is a function
f : RM™*" — R such that the following three properties hold:

> (i) f(A) =0,
> (i) F(A+ B) < f(A) + f(B),
(iii) f(0A) =| o | f(A),a € R.

> The Frobenius norm.

Al = [ a5 (15)

ij

Definition 6. (p-norms) Defined from the p-norms in the vector spaces associated
with the linear map encoded by matrix A:

HA Il

IAll, =
S Tixll,

= max|iy =1 [[Ax]|, - (16)

Def|n|t|0n 7 (Subordinate norm) Consider (i) A € R™*", (ii) ||-|| , a norm on R", (iii) Il 5 a norm
on R™ and define the subordinate norm
l1Ax] 5

A =sup ———. 17
1Al = sup o (17)



The Singular Value Decomposition

Definition 9. An SVD for a m x n real valued matrix A is a decomposition
Amscn = VinxmSmxnUnxn"
With
uuT =1,,ie,U orthogonal matrix,

WT =1, i.e., V orthogonal matrix.

> Properties: one has [1, Thm. 13.6]:
» Matrix S is diagonal; its entries are the so-called singular values.
»> The columns of U are the eigenvectors of ATA.
» The columns of V are the eigenvectors of AAT.
>

If the singular values are distinct, the SVD is unique—up to the same
permutation of the columns of U, V and S.

From Eq. 19, one gets

aj = E O kk Vik Ujk -
k=1,...,n

> Rmk. The singular values are unchanged upon transposing matrix A:
Am><n = Vm><m5m><nUn><nT

T
An><m = Un><n5n><me><m

(19)

(20)
(21)

(22)

(23)
(24)



The Covariance Matrix — again

Recall that an orthogonal matrix P is a matrix such that PPT = |. Recall also
the following spectral theorem [1, Chapter 12]:

Theorem ].0 For every d X d real symmetric matrix A, there is an orthogonal matrix P and a diagonal
matrix D = diag(\;),i =1,...,d, \; € R such that

A=PDP'. (25)

Let us now process the covariance matrix with the SVD:

C= MM (26)
vVn—1 v/n—-1
Plugging the following SVD 5,%’1 = VSUT into the previous equation yields:
C=US"suU". (27)
On the other hand, from the spectral Thm:
C=PDP". (28)

Comparing both:
» The squared singular values are the eigenvalues of C.
» The columns of U are the eigenvectors of C.



SVD and matrix approximation
Main refs: [2, 1]

Theorem 11. Let A be an m x n matrix of rank r, and let A= VSUT be an SVD
for A. Denote o1 > --- > 0, the singular of A, with p = min(m, n), and let u; and v;
the columns of U and V/, respectively.

The best rank k < r approximation of A, in the ||-||, sense, is given by

Ak: Z O';V,'u,'T: Vdiag(al,...,ak)UT. (29)
i=1,...,k

and one has ||A — Axll, = oky1-

Theorem 12. (Rayleigh-Ritz) Let A be a symmetric d X d matrix with
eigenvalues A1 > X2 > -+ > Ay, and let (u1, ..., uy) be any orthonormal basis of
eigenvectors of A, where u; is associated with \;. Then

xT Ax

=\ 30
M X b (30)

and this maximum is attained for x = u;. Also, working in the complementary space

xTAx
max

= Mt 31
x#0,x€{uy,...,u 3L xTx ket ( )

with the maximum attained for x = ug41, where 1 < k < d —1.
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Principal components analysis: rationale

> Projecting points on a vector: (X — p)visa (nx d) x (d x 1) = (n x 1) vector
> PCA: main idea
> find an orthonormal basis {v},

» such that the variance of the Y, = (X — p)vp is maximized,

We formalize as follows:

Definition 13. Let X be a n x d data matrix, and p the associated center of mass.
Consider a family {v4},1 < h < k < d of mutually orthogonal unit vectors from S9~1.
Define the associated centered points

Yh = (X — p)vh. (32)

These centered points define principal components provided that the following
conditions are met:

> Var[Y}] is maximized.

> Cov(Yp, Ypi1) = 0.



PCA: main theorem

Theorem 14. Consider an SVD decomposition of the centered data matrix, i.e.
X — = VSUT, and let o1 > --- > oy the associated singular values.
The principal components of X are the centered points

Yy = (X — p)up = ( the h-th column of VS) (33)
with {ux} the eigenvectors of U (ie the columns of U), and one has

2
%h

Var [Y}] = —

(34)

Algorithm 1 Algorithm for PCA.

Alternative to last step: diagonalize the covariance matrix.

Compute the centered data matrix (X — )

Compute its SVD (X — p) = VSUT

Compute the centered points E = (X — pu)U

Possibly compute a lower dimensional embedding R = (X — p)Ulyx «
{//Dimension-wise: (n x d)(d x d)(d X k)}




PCA: two steps of the proof

e Variance and covariance of two centered points.
Consider a centered point along a unit direction v: Y = (X — p)v € RY. The variance
of Y satisfies:

1

Var[¥] = (X =) (X —p)v =~

X =) (X = v, (35)

Likewise, the covariance of two centered points along unit directions v and w
Yy = (X —u)vand Y = (X — p)w satisfy

Cov(Y,Y') = ﬁvT(X — )" (X = p)w. (36)

e First principal directions. Maximizing the variance of Eq. (35) is equivalent to
maximizing
1
T (X )T - v (37)

By the Rayleigh-Ritz Thm (Thm. 12): max eigenvalue of —1-(X — u)T(X — p),

n—1

namely Uf/(n —1). Using the associated eigenvector u;, we get the first reduced point
Y1 = (X — p)u. (38)

e Remaining principal directions. One uses the second part of the Rayleigh-Ritz
theorem, observing also that the column vectors of U are mutually orthogonal.



PCA: practical matters

> Some guidelines:

» In choosing : always report the residual variance on the principal
directions discarded

» In case the point cloud does not have homogeneous dimension: also
perform local PCA — cf the local covariance dimension seen in Lecture #2
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Multi-dimensional scaling (MDS): rationale
> MDS: find coordinates from distance matrix or Gram matrix; reduce dimensionality

Gr=X-pm)X—p' (39)
= (VSUT)(vsUT)" = vs2vT = (vs)(vs)T. (40)
> Associated embedding: the so-called realizing coordinates for the centered data:

X.= VS (41)

> MDS and approximation: upon sorting the eigenvalues (or singular values) of G*,
consider the matrix defined from the first k rows of V, that is:

Gi= Y oy = Vdiag(o1,...,00)V". (42)
i=1,...,k

This matrix is the best approximation for the matrix 2-norm of G* (by Thm 11), and

HG* Gk||2 = Ok+1- (43)



Gram and PCA yield identical embeddings

> Gram, realizing coordinates: using the SVD of X — p yields
G* = (X —p)(X — )" = (VSUT)(VSUT) = vs*VT = (VS)(VS)". (44)
whence the realizing coordinates

X.=VS (45)

> PCA, centered points: also using X — = VSU™:
Y =(X—-p)U=VSU"U=VS. (46)



Python code: PCA with eingen decomposition

def pca_with_eigen_decomposition (X):
n, d = X.shape

# check X centered
assert np.allclose (X.mean(axis=0), np.zeros(d))

# Covariance matrix
C = np.dot(X.T, X) / (n-1)

# Eigen decomp.
eigen_vals , eigen_vecs = np.linalg.eig(C)

X_pca = np.dot(X, eigen_vecs) # project otno PC space
return X_pca



Python code: PCA with SVD

def pca_with_svd (X):
n, d = X.shape

# Compute full SVD

U, Sigma, Vh = np.linalg.svd (X,
full_matrices=False,
compute_uv=True)

# Transform X with SVD components
X_svd = np.dot(U, np.diag(Sigma))
return X_svd



Python code: MDS

def mds(X):
n, d = X.shape

# Gram matrix and Eigen decomposition
G = np.dot (X, X.T)
eigen_vals , eigen_vecs

= np.linalg.eig(G)

# Embedding

Y = np.dot(eigen_vecs ,

np.diag( np.sqrt(eigen_vals)))
return Y
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ISOMAP: rationale

> ISOMAP: distance MDS with geodesic distances

Figure: ISOMAP: illustration From [3].

» Nearest neighbors: avoid short-cut across the ambient space
> Sensitivity to the parameter ¢ controlling neighborhoods

» Nb: geodesic on the swiss roll < line in the plane



ISOMAP: algorithm

Algorithm 2 Algorithm ISOMAP, from [3].

Compute a nearest neighbor graph on the data — connect points i, j such that d; < e
Compute the matrix D of geodesic distances between all pairs of points — Floyd's algorithm
Compute the Gram matrix of centered data G* from the squared distance matrix

Apply MDS




ISOMAP: data centering

> Sampling on S1: consider n angles ©g = {6;}i=1,....n.
> Distance function:

Fp(6) = > wifi(6), with £(6) = d?(X(6), X(67))- (47)

i=1,...,n
> Center of mass on the unit circle: for p = 2, consider the min. of the function:

0* = in Fo(6). 48
arg | min | (0) (48)

> Fréchet mean of four points on S!:

> Functions: blue: function F,; green:
. . ’
® derivative F,; orange: second
. . "
0 1 derivative F,

s > Points: red bullets: data points;
A black bullets: antipodal points; blue
T A r T bullets: local minima of the function;
. \ large blue bullet: Fréchet mean 6*;

green bullet: circular mean.
-10

> Thm.: computing the Fréchet mean is decidable (due to Lindemann'’s theorem on
the transcendence of 7) and has O(nlog n) complexity.

>Ref: Fréchet mean on the unit circle, 0’Donnell - Cazals, submitted



ISOMAP and PCA in Riemannian geometry

RIEMANNIAN
GEOMETRIC
STATISTICS IN
MEDICAL IMAGE
ANALYSIS

>Ref: Riemannian Geometric Statistics in Medical Image Analysis;

Pennec, Sommer, Fletcher, 2019



Dimensionality reduction

Locally Linear Embedding



Locally Linear Embedding

> (NNG) Compute a nearest neighbor graph in RP

> (Local reconstruction) Compute weights to locally reconstruct x; from its
neighbors, Eq. 49
> (Embedding) Use the weights to find a mapping into RY, minimizing Eq. 50

> Local reconstruction in RP: > Embedding into R9:

2 2

e(W)=> |x— Z wixj|| - (49) S oy - Z wiiyj (50)

i

i

0 W %o g (@ setect neighbors
° 0.
o ® PN
3 X
o ® o
o
5% e °
o o
Reconstruct with
linear weights

Map to embedded coordinates

>Ref: Nonlinear Dimensionality Reduction by LLE, Science, 2020 [4]
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SNE : motivation
> Two algorithms:
» SNE : Stochastic Neighbor Embedding
> t-SNE : t-SNE, with t from Student-t

> Overview:
» Input: point set {x;} € R”
» Output: point set {y;} € RY, with d =2 or d = 3 (visualization)
» Rationale: conserve pairwise distances: D,-? ~ d,f
» Howto: convert the point clouds into probability distributions (whence

Stochastic), using Euclidean distances

xj <> P; = {Pi‘j};yi Qi = {q/\j}

g [
& 78
g 73
3 &9
b4 e
8 1=
b4 %3
8 &3
5 5 8




SNE : pairwise distances versus proba. distributions

> In RP:  proba. distribution P; = {pr} for x;: with Dy = ||x,- — XJH

exp(~0}/20,)

v Dkt exp(—Di/207)
> In R proba. distribution Q; = {qi|;} for y;: with dj = Hy,- — yj||
exp —d,.2.
(=) (Nb, bandwidth:1/+/2) (52)

gl = ——— 9
& Zk;«éi exp(—d3)

> Comparing the two distributions P = {P;} and Q = {Q;}: via Kullback-Leibler D.:

il
Cost C = KL(P, Q) = S _KL(P, Q) = pjjlog q"f (53)
i i ilj
> Remarks:
> Lack of symmetry for p;; and g;;
» In KL: small qij for large pilj: large penalty



SNE : choice of the bandwidth o; via perplexity

> Recall the def.:
exp(— D5 /207)

s ©P(~Phf20r) (54)

pPij =

> Entropy for P;:

> H(Pi) = —3_, pijjlog, pij;
» Nb: o; /= H(P;) / since conditional probas are more uniform

> Perplexity for P; associated with p;:
> Perp(P;) = 2H(P)
» Intuition: effective number of neighbors

> Observation: SNE robust in changes of the perplexity (values in the range
5..50), which makes the choice of o; relatively easy



SNE : global optimization — cost function
> Cost:  (non convex functional) C = KL(P, Q)

> Gradient of the cost wrt the projected points y;:

6C
Syi = ZZ(PJII — qjii + piy — 9)) (i — i) (55)
J

> Nb for colored terms: mismatches ... since we aim at Dj ~ djj and P; ~ Q;

> Initiation of the solution: Y© = {y{@ 01

» n points drawn from an isotropic Gaussian centered at the origin (plus
some Gaussian noise, at least at early stages)

> lterative solution via gradient descent:
1) _ _
y(f) _ y(t) +n—=+ a(t)(y(t 1) _ y(f 2)) (56)

with
» n: learning rate

> «(t): momentum at iteration t



From SNE to t-SNE

» Cost function in SNE : hard to optimize (non convex, complex gradient)

» SNE suffers from the so-called crowding problem: consider two shells
(region between two balls) centered at x; € RP: in projecting from RP to
R? (with d = 2,3), there not enough space to accommodate all points

Digits projected into 2D (Left) SNE (Right) pre-t-SNE



Symmetric SNE

> In R?: proba. distribution @; = {g;}:

o exp(—dj)
’ Ek#l exp(—dg)

> In RP: proba. distribution P; = {p;}:

exp(~Pi/20)
> ket exp(—Dh/20)

(Nb) quadratic # terms (57)

pij = (Nb) quadratic # terms (58)
> However: the latter is not good enough: for an outlier x;, pj; very small
> In R: proba. distribution P; = {p;}:

_ Piit P

pi 5 (59)

Guarantee: }; pj > Y/2n.

> Nb: still requires the choice of bandwidths o; — cf perplexity



New cost and its gradient

> Cost:

Cost C = KL(P, Q) = ZKL(P,,Q,) = Zpu Iog

> Associated gradient:

5y’ Z(Pu qi)(vj — vi)

(60)

(61)



Symmetry is not enough:
mismatched tails for mismatched dimensions
> Crowding effect: volumes are high dim and low dim are not consistent

> Geometry to proba. distributions: using Gaussian functions to convert
distances into distributions both for R® and R? maintains the problem

> Solution: use
> RP: Gaussian weights (light tail)
> RY: Student-t weights (heavy tail)

> Student-t with 1 d.o.f.

L+ lyi — )t
N VT
L+ lyi =yl ™)

> Student-t, wikipedia:
https://en.wikipedia.org/wiki/Student’27s_t-distribution


https://en.wikipedia.org/wiki/Student%27s_t-distribution

SNE and t-SNE : comparison of gradients

> Gradients as a function of the pairwise distances Dj; x djj: red:attraction (positive);
blue: repulsion (negative)

a

High—dimensional distance >

Low—dimensional distance > y—

ERTE S

SNE

> R,: t-SNE repels points distant in R but close in RY. Much more specific
than SNE .

> R;3: t-SNE attract points close in RP but far apart in RY. More homogeneous
than SNE .

> Rj: t-SNE relatively neutral for all other pairs, which is not the case of SNE .



t-SNE : algorithm

Algorithm 1: Simple version of t-Distributed Stochastic Neighbor Embedding.

Data: data set X = {x1,x2,..., x4},

cost function parameters: perplexity Perp,

optimization parameters: number of iterations T, learning rate 1, momentum (7).
Result: low-dimensional data representation i) = {¥1,92, .3}

begin
compute pairwise affinities p ;; with perplexity Perp (using Equation 1)
ot gy PP
set pij = —5—

sample initial solution % = {yy,y2, ..., v} from A(0, 10741}
for =1 to T do
compute low-dimensional affinities g;; (using Equation 4)
compute gradient %, (using Equation 5)
set (0 = 1] +Tl§§+ wl(r) [Dn’f—l,\ 79-(.'—2‘.‘)
end

end




Results on the MNIST Database

> MNIST dataset: total of 60,000 + 10,000 handwritten digits;
http://yann.lecun.com/exdb/mnist/

> 6000 random handwritten digits

((((((((((((((( byLLe

ISOMAP LLE t-SNE


http://yann.lecun.com/exdb/mnist/

Discussion and comparison to contenders

> Pros:
» vs PCA: t-SNE is non linear.

» vs MDS: MDS favors long distances; here, short and long distances on equal
footing.

> vs Isomap: no short-circuiting problem; similarly to MDS, Isomap favors long
(geodesic) distances.

> vs LLE: LLE preserves the covariance matrix (in low dim); can be achieved by
collapsing points + outliers. does not happen in t-SNE .
> Cons:

» Visualization — no quantitative assessment on the dimension. Also, what if
d> 37

» Quadratic cost — accelerations needed
» Local linearity assumption used: Euclidean distances used in weights
> Cost C is non convex; parameter tuning involved (7, a(t))
>Ref: Visualizing data using t-SNE, van der Maaten and Hinto, 2008 [5]

>Ref: Accelerating t-SNE using tree-based algorithms, van der Maaten,
2014 [6]
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Graph Laplacians,
random walks on graphs,
diffusion maps:
a primer

Frederic.CazalsQinria.fr



Graph and associated point set

> Weighted graph: we consider a weighted graph G whose nodes are index
from 1,..., n. The set of edges defined nodes which are connected that is i ~ j.
The weights are > 0 and symmetric, that is

wi > 0, w; = wji; W = (wy)ij=1,....n. (63)

> Geometric realization:
» nodes are associated to a point set {x;}i=1,...,n,

P> weights are typically given by a kernel, e.g. a Gaussian kernel — for some
€>0:

k(xi, xj) = exp(—“xﬁij”). (64)



Laplacian and normalized Laplacian

> Graph: node degree and volume

di = Z wj, Vol(G) = Zd;; D = Diag({d;}).

> Laplacian matrix:

di — w;; diagonal term
L=D-W=<{—w off diagonal and i ~ j
0 off diagonal and i  j.

> Normalized Laplacian matrix — a symmetric matrix:

1—- %  diagonal term
i
wij

L=DY? D72 = off diagonal and/i ~ j

J
0 off diagonal andi ¢ j.

(65)

(66)

(67)



Random walk on a graph
> Random walk on G: modeled as a Markov process x;
Plxeqr =[x =1i]. (68)
> Transitions: defined by the matrix
Wi
d;
> Matrix form: consider a row vector f of probabilities to be on the n vertices

of the graph. Upon applying one step of the random walk, the new occupancy
probabilities are given by

pi = —" P = (pi)ijot..n = DT'W. (69)

f P. (70)
> Trivial observations:
» Matrix P is row stochastic that is 1," P = 1,.

» Matrix P is not symmetric unless the graph is regular that is
d; = constant

> Graph and associated stochastic 1/4 1/3

matrix P @:@A®Q1 0 14 o 3/

1/12/2K Jl/(j P /2 0 1/3 1/6
3/4 @ 1/4 Co 1

0 1/2 1/4 1/4
1/4



Intermezzo: Google page rank

Three web pages  Sergei Brin - Larry Page

“PageRank can be thought of as a model of user behavior. We assume there is a
"random surfer” who is given a web page at random and keeps clicking on links, never
hitting "back” but eventually gets bored and starts on another random page. The
probability that the random surfer visits a page is its PageRank. And, the d damping
factor is the probability at each page the "random surfer” will get bored and request
another random page. One important variation is to only add the damping factor d to
a single page, or a group of pages. This allows for personalization and can make it
nearly impossible to deliberately mislead the system in order to get a higher ranking.”
> The Google matrix:

G=dA+(1-d)E

0 1/2 1/2 1/3 1/3 1/3
=dlo o 1 |+@-d)|1/3 1/3 1/3
1 0 0 1/3 1/3 1/3

http://infolab.stanford.edu/~backrub/google.html


http://infolab.stanford.edu/~backrub/google.html

Random walk on a graph

Graph and associated 1/4 1/3

stochastic matrix P @ @/_\‘®Q1 0 14 o 3

1/12/21 )1// P /2 0 1/3 1/6
i v 0 0 1 0
@ 0 12 1/4 1/4

O 1/4

> Random walk on G: modeled as a Markov process x:

Plxey1 =J | xe =1]. (71)

> Transitions: defined by the row-stochastic matrix P

> Iterating P: applying one step of the random walk to occupancy vector f
yields the new occupancy probabilities f P.

> Stationary distribution, def: invariant occupancy probabilities i.e. 7P = .

> Thm. A Markov chain which is irreducible and aperiodic convergences to its
stationary distribution.



Random walk: stationary distribution

> Stationary distribution, def: vector of occupancy probabilities that remain
unchanged upon applying P, that is

P = . (72)
> Stationary distribution, matrix form: 7 is given by the column vector

d; _ 1
= (Gaiey)) = = Veiggy 2 1» (73)
Indeed, one has

T _ 1
~ Vol(G)

- T
:W(G)(“'ZWU---) VoI(G Zw,,... =x'. (75

1,'D'D'W (74)



Transition matrix: a symmetric version

> Difficulty: P is not symmetric unless the graph is regular.
> Bringing it into a symmetric form:

P=D"'W=D"*D VWD /?)D"? (76)
=D Y(D-1) (77)
=D YD - DY?LD'?) (78)
=1— D Y?LDY? = D7V?(1 — £)DY>. (79)

> Key expression: P expressed via the symmetric matrix Ps
P =D'?P,D'? with P, =D WD ? =1 - L. (80)

> Eigenwork. Matrix Ps being symmetric, it can be diagonalized is an
orthonormal basis V = {v;}:
P, = VAVT, (81)

from which we get

P = D Y2p,D'2 = (D2V)A(VT D) = (D Y2V)A(D2V)' = wAeT,
(82)
with

V=DV = (¢1,...,¢n), and ® = D2V = (¢1,...,6,).  (83)



Random walk: the spectral expansion

> Random walk iteration: matrix form after t steps
Pt _ D71/2PstD1/2

t 2 : t T
Ps = )\,-V,'V,'
i

But

Whence
Pt =S AD Y2y TDY2 = 3T A D Y2y (DY)

= Aivioi'.

> Application to a connected graph — cf the Perron—Frobenius theorem:

Theorem 15. For a connected graph G, the
MM=1>M>X>-->X_1=0.

Moreover, the stationary distribution 7 is the eigenvector ¢q.
In this case, the matrix P of Eq. (78) is the n x n matrix defined by

Pi=Tago' + Y Atydy' -

jz1

(84)

(85)

(86)

(87)

(88)

(89)



Diffusion maps: definition and probability distribution

> k-dimensional approximation. due to the decay of eivenvalues, focusing on
the top k ones yields an embedding of points in dimension k. One defines:

Definition 16. The order 1 < k < n— 1 diffusion map is defined via the
embedding of point x; in the space of the first k eigenvectors:

W, (j) = (M [i], Mswalfl, - - -, Akwk[i]) - (nb: j-th coord.) (90)

> Diffusion map: probability distribution For any two points of the graph,
identified by their indices i and j: proba. to move from /i to j in t steps:

From Eq. (82), one gets

pe(inj) = doli] + D> Nwlil ¢l (92)

jz1



Diffusion maps: diffusion distance

> Similarity between two points: comparing their probability distributions
1

D?(io, ir) = Z(pt(io,j) - pt(ihj))z%—m (93)

The following holds:

Theorem 17. The diffusion distance between two points is equal to the
Euclidean distance in the diffusion map space, that is

D (io, ) = [|We(io) — ()| (94)
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