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Dimensionality reduction?

. The problem:

I Given a point cloud {xi} ∈ RD

I There exists a latent model for the data at hand: discover it and map the
points into Rd , with d < D

. Example: mapping point of the swiss roll from R3 into R2



Before getting started: selected questions
. Data and their intrinsic dimension: see lecture #2

. Difficult questions:

I Underlying geometric model: linear vs non linear, manifold vs stratified
space

I Target dimension: input or output?

I Criterion optimized: local, global, mix of the two

I Number of dimensions vs number of samples

A stratified space: pieces of dimension 1, 2, 3



Taxonomy of dimensionality reduction methods

t-SNE

Worst case: JL

Local+global

.Ref: van der Maaten et al, Dimensionality reduction: a comparative

review, 2009

.Ref: J.A. Lee and M. Verleysen, Nonlinear dimensionality reduction,

Springer, 2007
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Johnson-Lindenstrauss lemma:
no distance distorsion with high probability

. Embedding dimension k: k = 4 ln n
ε2/2−ε3/3

xi

xjxk

f : RD 7→ Rk

f (xi)

f (xj)

f (xk)

∀(i, j) : 1− ε ≤ ||f(xi)−f(xj)||
||xi−xj ||

≤ 1 + ε

. Theory: see lecture #2
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Data model in matrix form: notations

. Selected matrices.

I Matrix 1n: a n × 1 column vector of n ones.

I Matrix Hn: the following matrix of ones

H = 1n1n
T =

1 · · · 1
...

...
...

1 · · · 1

 (1)

. Notations. We consider a matrix whose

I rows: individuals, i = 1, . . . , n

I columns: features, j = 1, . . . , d

X =

x1,1 x1,2 · · · x1,d

...
...

. . .
...

xn,1 xn,2 · · · xn,d

 =

(
... Cj

...

)
=

. . .Xi

. . .

 (2)



The centroid
. Centroid – aka center of mass. The centroid or center of mass

µ =
1

n

∑
i

Xi =
(
µi . . . µd

)
with µj =

1

n

∑
i=1,...,n

xi,j (3)

One has the equivalently form:

µ =
1

n
1n

TX . (4)

The data centered matrix is defined by,

X − µ =
(
xi,j − µj .

)
(5)

or equivalently in matrix form

X − µ = X − 1nµ = X − 1

n
HnX . (6)

. One property of the centroid. One has:

Lemma 1. Consider a point set X1, . . . ,Xn, and a point x . Its centroid µ
minimizes the sum of squared distances to all points.

Proof.
Expand

∑
i ‖Xi − X‖2 =

∑
i ‖Xi − µ+ µ− X‖2



Intermezzo: k-means (k-means++) and variants

. k-means: uses the center of mass, aka centroid

. Using the sum of squared distances to data points:

I k-means: the center of a cluster is its centroid.

I k-medoids: the center of a cluster must be a data point.

I k-medians: the center of a cluster is a geometric median of the points –
requires a notion of median in d-dimensions (e.g. based on depth)

. Using the sum of distances to data points:

I point minimizing the sum of distances: the Fermat–Weber point.

I sample point minimizing the sum of distances.

. Nb: in general, difficult (NP-hard) optimization problems



The Covariance Matrix

The covariance1 of two features is defined by

Cov(Cj ,Ck ) =
1

n − 1

∑
i=1,...,n

(xij − µi )(xik − µk ). (7)

Arranging these into a matrix yields the d × d covariance matrix:

C =
1

n − 1
(X − µ)T(X − µ). (8)

Lemma 2. One has

C =
1

n − 1
XTX − µTµ. (9)

1Note the division by n − 1 and not n: this is the so-called Bessel
correction, which aims at ensuring that the estimator has no bias; this is
related to the fact that in computing the variance, there are n − 1 independent
residuals xi − X , since all residuals add up to 0.



The Gram matrix

The Gram matrix is the n × n matrix defined by

G = XXT =
(
gi,j
)
, with gi,j =< Xi ,Xj >= XiXj

T. (10)

As we shall see below, it is convenient to work with the Gram matrix of the

centered data.

G? = (X − µ)(X − µ)T. (11)



Squared Distance Matrix and Gram matrices

. Squared distance matrix D: the n × n matrix defined by

D =
(
d2
i,j

)
, with d2

i,j =
∥∥Xi − Xj

∥∥2
= gi,i + gj,j − 2gi,j . (12)

. For centered data:

Lemma 3. For centered data, the Gram matrix and the squared distance matrix
satisfy:

G = −
1

2
KDK , with Kij = δij −

1

n
. (13)

. General case:

Lemma 4. The Gram matrix of the centered data and the squared distance matrix
satisfy:

G? = −
1

2

(
D −

1

n
DH −

1

n
HD +

1

n2
HDH.

)
(14)
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Matrices and matrix norms

Definition 5. Let A be a m × n real matrix. A matrix norm is a function
f : Rm×n → R such that the following three properties hold:

I (i) f (A) ≥ 0,

I (ii) f (A + B) ≤ f (A) + f (B),

I (iii) f (αA) =| α | f (A), α ∈ R.

. The Frobenius norm.

‖A‖F =

√∑
i,j

| aij |2. (15)

Definition 6. (p-norms) Defined from the p-norms in the vector spaces associated
with the linear map encoded by matrix A:

‖A‖p = sup
x 6=0

‖Ax‖p
‖x‖p

= max‖x‖p=1 ‖Ax‖p . (16)

Definition 7. (Subordinate norm) Consider (i) A ∈ Rm×n , (ii) ‖·‖α a norm on Rn , (iii) ‖·‖β a norm

on Rm and define the subordinate norm

‖A‖α,β = sup
x 6=0

‖Ax‖β
‖x‖α

. (17)

Lemma 8. The subordinate norm satisfies:

‖Ax‖β ≤ ‖A‖α,β ‖x‖α . (18)

Comments are in order:

I Eqs (15) and (16) define families of norms – which depend on the dimension n and m.

I Not all matrix norms satisfy the property ‖AB‖ ≤ ‖A‖ ‖B‖.



The Singular Value Decomposition

Definition 9. An SVD for a m × n real valued matrix A is a decomposition

Am×n = Vm×mSm×nUn×n
T (19)

With

UUT = In, i .e.,U orthogonal matrix, (20)

VVT = Im, i .e.,V orthogonal matrix. (21)

. Properties: one has [1, Thm. 13.6]:

I Matrix S is diagonal; its entries are the so-called singular values.

I The columns of U are the eigenvectors of ATA.

I The columns of V are the eigenvectors of AAT.

I If the singular values are distinct, the SVD is unique–up to the same
permutation of the columns of U, V and S.

From Eq. 19, one gets

aij =
∑

k=1,...,n

σkkvikujk . (22)

. Rmk. The singular values are unchanged upon transposing matrix A:

Am×n = Vm×mSm×nUn×n
T (23)

An×m = Un×nSn×mVm×m
T (24)



The Covariance Matrix – again
Recall that an orthogonal matrix P is a matrix such that PPT = I. Recall also
the following spectral theorem [1, Chapter 12]:

Theorem 10. For every d × d real symmetric matrix A, there is an orthogonal matrix P and a diagonal
matrix D = diag(λi ), i = 1, . . . , d, λi ∈ R such that

A = PDPT
. (25)

Let us now process the covariance matrix with the SVD:

C =
(X − µ)T

√
n − 1

X − µ√
n − 1

. (26)

Plugging the following SVD X−µ√
n−1

= VSUT into the previous equation yields:

C = USTSUT. (27)

On the other hand, from the spectral Thm:

C = PDPT. (28)

Comparing both:

I The squared singular values are the eigenvalues of C .

I The columns of U are the eigenvectors of C .



SVD and matrix approximation
Main refs: [2, 1]

Theorem 11. Let A be an m× n matrix of rank r , and let A = VSUT be an SVD
for A. Denote σ1 ≥ · · · ≥ σp the singular of A, with p = min(m, n), and let ui and vi
the columns of U and V , respectively.
The best rank k < r approximation of A, in the ‖·‖2 sense, is given by

Ak =
∑

i=1,...,k

σiviui
T = Vdiag(σ1, . . . , σk )UT. (29)

and one has ‖A− Ak‖2 = σk+1.

Theorem 12. (Rayleigh-Ritz) Let A be a symmetric d × d matrix with
eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λd , and let (u1, . . . , ud ) be any orthonormal basis of
eigenvectors of A, where ui is associated with λi . Then

max
x 6=0

xTAx

xTx
= λ1, (30)

and this maximum is attained for x = u1. Also, working in the complementary space

max
x 6=0,x∈{u1,...,uk}⊥

xTAx

xTx
= λk+1, (31)

with the maximum attained for x = uk+1, where 1 ≤ k ≤ d − 1.



Dimensionality reduction

Dimensionality reduction

Johnson-Lindenstrauss

Data model and representation

Matrices and matrix norms: selected properties

Principal components analysis (PCA)

Multi-dimensional scaling (MDS)

Isomap

Locally Linear Embedding

tSNE

Diffusion maps



Principal components analysis: rationale

. Projecting points on a vector: (X − µ)v is a (n × d)× (d × 1) = (n × 1) vector

. PCA: main idea

I find an orthonormal basis {vh},
I such that the variance of the Yh = (X − µ)vh is maximized,

We formalize as follows:

Definition 13. Let X be a n× d data matrix, and µ the associated center of mass.
Consider a family {vh}, 1 ≤ h ≤ k ≤ d of mutually orthogonal unit vectors from Sd−1.
Define the associated centered points

Yh = (X − µ)vh. (32)

These centered points define principal components provided that the following
conditions are met:

I Var [Yh] is maximized.

I Cov(Yh,Yh+1) = 0.



PCA: main theorem

Theorem 14. Consider an SVD decomposition of the centered data matrix, i.e.
X − µ = VSUT, and let σ1 ≥ · · · ≥ σd the associated singular values.
The principal components of X are the centered points

Yh = (X − µ)uh = ( the h-th column ofVS) (33)

with {uk} the eigenvectors of U (ie the columns of U), and one has

Var [Yh] =
σ2
h

n − 1
. (34)

Algorithm 1 Algorithm for PCA.
Alternative to last step: diagonalize the covariance matrix.

Compute the centered data matrix (X − µ)

Compute its SVD (X − µ) = VSUT

Compute the centered points E = (X − µ)U
Possibly compute a lower dimensional embedding R = (X − µ)UId×k
{//Dimension-wise: (n × d)(d × d)(d × k)}



PCA: two steps of the proof
• Variance and covariance of two centered points.
Consider a centered point along a unit direction v : Y = (X − µ)v ∈ Rd . The variance
of Y satisfies:

Var [Y ] =
1

n − 1
((X − µ)v)T(X − µ)v =

1

n − 1
vT(X − µ)T(X − µ)v . (35)

Likewise, the covariance of two centered points along unit directions v and w
Yh = (X − µ)v and Y ′ = (X − µ)w satisfy

Cov(Y ,Y ′) =
1

n − 1
vT(X − µ)T(X − µ)w . (36)

• First principal directions. Maximizing the variance of Eq. (35) is equivalent to
maximizing

vT 1

n − 1
(X − µ)T(X − µ)v . (37)

By the Rayleigh-Ritz Thm (Thm. 12): max eigenvalue of 1
n−1

(X − µ)T(X − µ),

namely σ2
1/(n− 1). Using the associated eigenvector u1, we get the first reduced point

Y1 = (X − µ)u1. (38)

• Remaining principal directions. One uses the second part of the Rayleigh-Ritz
theorem, observing also that the column vectors of U are mutually orthogonal.



PCA: practical matters

. Some guidelines:

I In choosing : always report the residual variance on the principal
directions discarded

I In case the point cloud does not have homogeneous dimension: also
perform local PCA – cf the local covariance dimension seen in Lecture #2
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Multi-dimensional scaling (MDS): rationale

. MDS: find coordinates from distance matrix or Gram matrix; reduce dimensionality

G∗ = (X − µ)(X − µ)T (39)

= (VSUT)(VSUT)
T

= VS2VT = (VS)(VS)T. (40)

. Associated embedding: the so-called realizing coordinates for the centered data:

X̂c = VS (41)

. MDS and approximation: upon sorting the eigenvalues (or singular values) of G∗,
consider the matrix defined from the first k rows of V , that is:

G∗k =
∑

i=1,...,k

σivivi
T = Vdiag(σ1, . . . , σk )VT. (42)

This matrix is the best approximation for the matrix 2-norm of G∗ (by Thm 11), and

‖G − Gk‖2 = σk+1. (43)



Gram and PCA yield identical embeddings

. Gram, realizing coordinates: using the SVD of X − µ yields

G∗ = (X − µ)(X − µ)T = (VSUT)(VSUT)
T

= VS2V T = (VS)(VS)T. (44)

whence the realizing coordinates

X̂c = VS (45)

. PCA, centered points: also using X − µ = VSUT:

Y = (X − µ)U = VSUTU = VS . (46)



Python code: PCA with eingen decomposition

def p c a w i t h e i g e n d e c o m p o s i t i o n (X ) :
n , d = X . shape

# check X cen t e r e d
a s s e r t np . a l l c l o s e (X . mean ( a x i s =0) , np . z e r o s ( d ) )

# Cova r i ance mat r i x
C = np . dot (X . T, X) / ( n−1)

# Eigen decomp .
e i g e n v a l s , e i g e n v e c s = np . l i n a l g . e i g (C)

X pca = np . dot (X, e i g e n v e c s ) # p r o j e c t otno PC space
re tu rn X pca



Python code: PCA with SVD

def p c a w i t h s v d (X ) :
n , d = X . shape

# Compute f u l l SVD
U, Sigma , Vh = np . l i n a l g . svd (X,

f u l l m a t r i c e s=F a l s e ,
compute uv=True )

# Transform X with SVD components
X svd = np . dot (U, np . d i a g ( Sigma ) )
re tu rn X svd



Python code: MDS

def mds (X ) :
n , d = X . shape

# Gram mat r i x and Eigen decompos i t i on
G = np . dot (X, X . T)
e i g e n v a l s , e i g e n v e c s = np . l i n a l g . e i g (G)

# Embedding
Y = np . dot ( e i g e n v e c s , np . d i a g ( np . s q r t ( e i g e n v a l s ) ) )
re tu rn Y
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ISOMAP: rationale

. ISOMAP: distance MDS with geodesic distances

Figure: ISOMAP: illustration From [3].

I Nearest neighbors: avoid short-cut across the ambient space

I Sensitivity to the parameter ε controlling neighborhoods

I Nb: geodesic on the swiss roll ⇔ line in the plane



ISOMAP: algorithm

Algorithm 2 Algorithm ISOMAP, from [3].
Compute a nearest neighbor graph on the data – connect points i, j such that dij ≤ ε
Compute the matrix D of geodesic distances between all pairs of points – Floyd’s algorithm
Compute the Gram matrix of centered data G? from the squared distance matrix
Apply MDS



ISOMAP: data centering
. Sampling on S1: consider n angles Θ0 = {θi}i=1,...,n.
. Distance function:

Fp(θ) =
∑

i=1,...,n

wi fi (θ), with fi (θ) = dp(X (θ),X (θi )). (47)

. Center of mass on the unit circle: for p = 2, consider the min. of the function:

θ∗ = arg min
θ∈[0,2π)

Fp(θ). (48)

. Fréchet mean of four points on S1:

. Functions: blue: function F2; green:

derivative F
′
2 ; orange: second

derivative F
′′
2

. Points: red bullets: data points;
black bullets: antipodal points; blue
bullets: local minima of the function;
large blue bullet: Fréchet mean θ∗;
green bullet: circular mean.

. Thm.: computing the Fréchet mean is decidable (due to Lindemann’s theorem on
the transcendence of π) and has Õ(n log n) complexity.

.Ref: Fréchet mean on the unit circle, O’Donnell - Cazals, submitted



ISOMAP and PCA in Riemannian geometry

.Ref: Riemannian Geometric Statistics in Medical Image Analysis;

Pennec, Sommer, Fletcher, 2019
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Locally Linear Embedding
I (NNG) Compute a nearest neighbor graph in RD

I (Local reconstruction) Compute weights to locally reconstruct xi from its
neighbors, Eq. 49

I (Embedding) Use the weights to find a mapping into Rd , minimizing Eq. 50

. Local reconstruction in RD :

ε(W ) =
∑
i

∥∥∥∥∥∥xi −
∑
j

wijxj

∥∥∥∥∥∥
2

(49)

. Embedding into Rd :

∑
i

∥∥∥∥∥∥yi −
∑
j

wijyj

∥∥∥∥∥∥
2

(50)

.Ref: Nonlinear Dimensionality Reduction by LLE, Science, 2020 [4]
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SNE : motivation
. Two algorithms:

I SNE : Stochastic Neighbor Embedding

I t-SNE : t-SNE, with t from Student-t

. Overview:

I Input: point set {xi} ∈ RD

I Output: point set {yi} ∈ Rd , with d = 2 or d = 3 (visualization)

I Rationale: conserve pairwise distances: D2
ij ∼ d2

ij

I Howto: convert the point clouds into probability distributions (whence
Stochastic), using Euclidean distances

xi ↔ Pi = {pi|j}; yi ↔ Qi = {qi|j}



SNE : pairwise distances versus proba. distributions

. In RD : proba. distribution Pi = {pi|j} for xi : with Dij =
∥∥xi − xj

∥∥
pi|j =

exp(−D2
ij/2σi )∑

k 6=i exp(−D2
ik/2σi )

(51)

. In Rd : proba. distribution Qi = {qi|j} for yi : with dij =
∥∥yi − yj

∥∥
qi|j =

exp(−d2
ij )∑

k 6=i exp(−d2
ik )

(Nb, bandwidth:1/
√

2) (52)

. Comparing the two distributions P = {Pi} and Q = {Qi}: via Kullback-Leibler D.:

Cost C = KL(P,Q) =
∑
i

KL(Pi ,Qi ) =
∑
ij

pi|j log
pi|j

qi|j
(53)

. Remarks:

I Lack of symmetry for pi|j and qi|j

I In KL: small qi|j for large pi|j : large penalty



SNE : choice of the bandwidth σi via perplexity

. Recall the def.:

pi|j =
exp(−D2

ij/2σi)∑
k 6=i exp(−D2

ik/2σi)
(54)

. Entropy for Pi :

I H(Pi ) = −
∑

j pi|j log2 pi|j

I Nb: σi ↗⇒ H(Pi )↗ since conditional probas are more uniform

. Perplexity for Pi associated with pi :

I Perp(Pi ) = 2H(Pi )

I Intuition: effective number of neighbors

. Observation: SNE robust in changes of the perplexity (values in the range
5..50), which makes the choice of σi relatively easy



SNE : global optimization – cost function
. Cost: (non convex functional) C = KL(P,Q)

. Gradient of the cost wrt the projected points yi :

δC

δyi
= 2

∑
j

(pj|i − qj|i + pi|j − qi|j)(yj − yi ) (55)

. Nb for colored terms: mismatches ... since we aim at Dij ∼ dij and Pi ∼ Qi

. Initiation of the solution: Y(0) = {y (0)
1 , . . . , y

(0)
n }

I n points drawn from an isotropic Gaussian centered at the origin (plus
some Gaussian noise, at least at early stages)

. Iterative solution via gradient descent:

Y (t) = Y (t) + η
δC

δY + α(t)(Y (t−1) − Y (t−2)) (56)

with

I η: learning rate

I α(t): momentum at iteration t



From SNE to t-SNE

I Cost function in SNE : hard to optimize (non convex, complex gradient)

I SNE suffers from the so-called crowding problem: consider two shells
(region between two balls) centered at xi ∈ RD : in projecting from RD to
Rd (with d = 2, 3), there not enough space to accommodate all points

Digits projected into 2D (Left) SNE (Right) pre-t-SNE



Symmetric SNE

. In Rd : proba. distribution Qi = {qij}:

qij =
exp(−d2

ij )∑
k 6=l exp(−d2

kl)
(Nb) quadratic # terms (57)

. In RD : proba. distribution Pi = {pij}:

pij =
exp(−D2

ij/2σ)∑
k 6=l exp(−D2

kl/2σ)
(Nb) quadratic # terms (58)

. However: the latter is not good enough: for an outlier xi , pij very small

. In RD : proba. distribution Pi = {pij}:

pij =
pi|j + pj|i

2
. (59)

Guarantee:
∑

j pij >
1/2n.

. Nb: still requires the choice of bandwidths σi – cf perplexity



New cost and its gradient

. Cost:
Cost C = KL(P,Q) =

∑
i

KL(Pi ,Qi ) =
∑
ij

pij log
pij
qij

(60)

. Associated gradient:

δC

δyi
= 4

∑
j

(pij − qij)(yj − yi ) (61)



Symmetry is not enough:
mismatched tails for mismatched dimensions

. Crowding effect: volumes are high dim and low dim are not consistent

. Geometry to proba. distributions: using Gaussian functions to convert
distances into distributions both for RD and Rd maintains the problem

. Solution: use

I RD : Gaussian weights (light tail)

I Rd : Student-t weights (heavy tail)

. Student-t with 1 d.o.f.

qij =
(1 + ‖yi − yj‖)−1∑
k 6=l(1 + ‖yi − yj‖−1)

(62)

. Student-t, wikipedia:
https://en.wikipedia.org/wiki/Student%27s_t-distribution

https://en.wikipedia.org/wiki/Student%27s_t-distribution


SNE and t-SNE : comparison of gradients

. Gradients as a function of the pairwise distances Dij × dij : red:attraction (positive);
blue: repulsion (negative)

R1

R2

R3

SNE t-SNE

I R2: t-SNE repels points distant in RD but close in Rd . Much more specific
than SNE .

I R3: t-SNE attract points close in RD but far apart in Rd . More homogeneous
than SNE .

I R1: t-SNE relatively neutral for all other pairs, which is not the case of SNE .



t-SNE : algorithm



Results on the MNIST Database

. MNIST dataset: total of 60,000 + 10,000 handwritten digits;
http://yann.lecun.com/exdb/mnist/

. 6000 random handwritten digits

ISOMAP LLE t-SNE

http://yann.lecun.com/exdb/mnist/


Discussion and comparison to contenders

. Pros:

I vs PCA: t-SNE is non linear.

I vs MDS: MDS favors long distances; here, short and long distances on equal
footing.

I vs Isomap: no short-circuiting problem; similarly to MDS, Isomap favors long
(geodesic) distances.

I vs LLE: LLE preserves the covariance matrix (in low dim); can be achieved by
collapsing points + outliers. does not happen in t-SNE .

. Cons:

I Visualization – no quantitative assessment on the dimension. Also, what if
d > 3?

I Quadratic cost – accelerations needed

I Local linearity assumption used: Euclidean distances used in weights

I Cost C is non convex; parameter tuning involved (η, α(t))

.Ref: Visualizing data using t-SNE, van der Maaten and Hinto, 2008 [5]

.Ref: Accelerating t-SNE using tree-based algorithms, van der Maaten,

2014 [6]
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Graph and associated point set

. Weighted graph: we consider a weighted graph G whose nodes are index
from 1, . . . , n. The set of edges defined nodes which are connected that is i ∼ j .
The weights are ≥ 0 and symmetric, that is

wij ≥ 0,wij = wji ;W = (wij)i,j=1,...,n. (63)

. Geometric realization:

I nodes are associated to a point set {xi}i=1,...,n,

I weights are typically given by a kernel, e.g. a Gaussian kernel – for some
ε > 0:

k(xi , xj) = exp
(
−‖xi − xj‖2

ε

)
. (64)



Laplacian and normalized Laplacian

. Graph: node degree and volume

di =
∑
j

wij ,Vol(G) =
∑
i

di ;D = Diag({di}). (65)

. Laplacian matrix:

L = D −W =


di − wii diagonal term

−wij off diagonal and i ∼ j

0 off diagonal and i 6∼ j .

(66)

. Normalized Laplacian matrix – a symmetric matrix:

L = D−1/2LD−1/2 =


1− wii

di
diagonal term

− wij√
di dj

off diagonal andi ∼ j

0 off diagonal andi 6∼ j .

(67)



Random walk on a graph
. Random walk on G : modeled as a Markov process xt

P [xt+1 = j | xt = i ] . (68)

. Transitions: defined by the matrix

pij =
wij

di
,P = (pij)i,j=1,...,n = D−1W . (69)

. Matrix form: consider a row vector f of probabilities to be on the n vertices
of the graph. Upon applying one step of the random walk, the new occupancy
probabilities are given by

f P. (70)

. Trivial observations:

I Matrix P is row stochastic that is 1n
TP = 1n.

I Matrix P is not symmetric unless the graph is regular that is
di = constant

. Graph and associated stochastic
matrix P 1 2 3

4

1/4 1/3

11

1/2

1/2 1/6

1/4

3/4 1/4

0 01/4 3/4

1/2 0 1/3 1/6

0 0 01

0 1/2 1/4 1/4

P =



Intermezzo: Google page rank
1 2

3

Three web pages Sergei Brin - Larry Page

“PageRank can be thought of as a model of user behavior. We assume there is a
”random surfer” who is given a web page at random and keeps clicking on links, never
hitting ”back” but eventually gets bored and starts on another random page. The
probability that the random surfer visits a page is its PageRank. And, the d damping
factor is the probability at each page the ”random surfer” will get bored and request
another random page. One important variation is to only add the damping factor d to
a single page, or a group of pages. This allows for personalization and can make it
nearly impossible to deliberately mislead the system in order to get a higher ranking.”
. The Google matrix:

G = dA + (1− d)E

= d

0 1/2 1/2
0 0 1
1 0 0

+ (1− d)

1/3 1/3 1/3
1/3 1/3 1/3
1/3 1/3 1/3


http://infolab.stanford.edu/~backrub/google.html

http://infolab.stanford.edu/~backrub/google.html


Random walk on a graph

Graph and associated
stochastic matrix P 1 2 3

4

1/4 1/3

11

1/2

1/2 1/6

1/4

3/4 1/4

0 01/4 3/4

1/2 0 1/3 1/6

0 0 01

0 1/2 1/4 1/4

P =

. Random walk on G : modeled as a Markov process xt

P [xt+1 = j | xt = i ] . (71)

. Transitions: defined by the row-stochastic matrix P

. Iterating P: applying one step of the random walk to occupancy vector f
yields the new occupancy probabilities f P.

. Stationary distribution, def: invariant occupancy probabilities i.e. πP = π.

. Thm. A Markov chain which is irreducible and aperiodic convergences to its
stationary distribution.



Random walk: stationary distribution

. Stationary distribution, def: vector of occupancy probabilities that remain
unchanged upon applying P, that is

πP = π. (72)

. Stationary distribution, matrix form: π is given by the column vector

π = (
di

Vol(G)
)i=1,...,n =

1

Vol(G)
D 1n. (73)

Indeed, one has

πTP =
1

Vol(G)
1n

TDTD−1W (74)

=
1

Vol(G)
(· · ·

∑
i

wij . . . ) =
1

Vol(G)
(· · ·

∑
i

wji . . . ) = πT. (75)



Transition matrix: a symmetric version
. Difficulty: P is not symmetric unless the graph is regular.
. Bringing it into a symmetric form:

P = D−1W = D−1/2(D−1/2WD−1/2)D1/2 (76)

= D−1(D − L) (77)

= D−1(D − D1/2LD1/2) (78)

= I− D−1/2LD1/2 = D−1/2(I− L)D1/2. (79)

. Key expression: P expressed via the symmetric matrix Ps

P = D−1/2PsD
1/2, with Ps = D−1/2WD−1/2 = I− L. (80)

. Eigenwork. Matrix Ps being symmetric, it can be diagonalized is an
orthonormal basis V = {vj}:

Ps = VΛV T, (81)

from which we get

P = D−1/2PsD
1/2 = (D−1/2V )Λ(V TD1/2) = (D−1/2V )Λ(D1/2V )

T
≡ ΨΛΦT,

(82)
with

Ψ = D−1/2V = (ψ1, . . . , ψn), and Φ = D1/2V = (φ1, . . . , φn). (83)



Random walk: the spectral expansion
. Random walk iteration: matrix form after t steps

P t = D−1/2P t
sD

1/2 (84)

But
P t
s =

∑
i

λt
i vivi

T (85)

Whence

P t =
∑
i

λiD
−1/2vivi

TD1/2 =
∑
i

λiD
−1/2vi (D

1/2vi )
T

(86)

=
∑
i

λt
iψiφi

T. (87)

. Application to a connected graph – cf the Perron–Frobenius theorem:

Theorem 15. For a connected graph G , the

λ0 = 1 > λ1 ≥ λ2 ≥ · · · ≥ λn−1 = 0. (88)

Moreover, the stationary distribution π is the eigenvector φ0.

In this case, the matrix P t
s of Eq. (78) is the n × n matrix defined by

P t
s = 1nφ0

T +
∑
j≥1

λt
jψjφj

T. (89)



Diffusion maps: definition and probability distribution

. k-dimensional approximation. due to the decay of eivenvalues, focusing on
the top k ones yields an embedding of points in dimension k. One defines:

Definition 16. The order 1 ≤ k ≤ n − 1 diffusion map is defined via the
embedding of point xj in the space of the first k eigenvectors:

Ψt(j) = (λt
1ψ1[j ], λt

2ψ2[j ], . . . , λt
kψk [j ]) (nb: j-th coord.) (90)

. Diffusion map: probability distribution For any two points of the graph,
identified by their indices i and j : proba. to move from i to j in t steps:

pt(i , j) (91)

From Eq. (82), one gets

pt(i , j) = φ0[j ] +
∑
j≥1

λt
jψj [i ] φj [j ]. (92)



Diffusion maps: diffusion distance

. Similarity between two points: comparing their probability distributions

D2
t (i0, i1) =

∑
j

(pt(i0, j)− pt(i1, j))2 1

φ0[j ]
. (93)

The following holds:

Theorem 17. The diffusion distance between two points is equal to the
Euclidean distance in the diffusion map space, that is

D2
t (i0, i1) = ‖Ψt(i0)−Ψt(i1)‖2 . (94)
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