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Beyond two-sample tests

Introduction



Data discrepancies: two-sample problem and effect size

> The two-sample test (TST) approach
— Two datasets x{™) = {x1,...,x,} and y™) = {y1,...,yn } in R
as i.i.d. samples from two unknown densities fx and fy
— Hypothesis testing:
Hp : fx = fya.e.,
H; : —Ho
— reject based on p-value: summarizes the difference in one bit!

> Effect size: “quantitative measure of the strength of a phenomenon”
— p-value: magnitude of the statistical significance?
for consistent TST: large sample size implies significance
— effect size: various options for univariate data
normalized difference between means

> Towards a notion of nonparametric multivariate effect size:
— accommodating general discrepancies in R?
— amenable to comparisons via some kind of normalization



What do we provide?

Comparing two point clouds: 1. compute a local discrepancy,
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2. find spatially coherent regions 3. provide a cluster based
of high discrepancy, normalized effect size.
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Outline of our method: three steps

> Step 1: Estimate a measure of local discrepancy at each given point

> Ingredient: information theory

> Step 2: Aggregate local discrepancy in a spatially coherent way, to
produce clusters by removing low discrepancy points

» Ingredient: topological persistence

> Step 3: Produce an effect size barplot to summarize the discrepancy
profile

> Aftermath: Assess the stability of clusters



Beyond two-sample tests

Step 1: Local discrepancy



Pre-requisite: Jensen-Shannon divergence

> Kullback-Leibler divergence (KLD):
D (fllg) = [, f(x)log £t dx
Dk, (PIIQ) = X2 je.4 P(1) log i}

> The Jensen-Shannon divergence (JSD): symmetrizes and smoothes the KLD:
Consider f = (fx+fv)/2, then

JS (fxllfy) = - (Dxr (fx|If) + Dxr (fr[|f))

N =

> Main properties of JS divergence:

— JSD is symmetric
— JSD is bounded between 0 and 1
— Its square root yields a metric



Step 1: Jensen-Shannon divergence and its decomposition

> Notations: two unknown densities fx and fy, and the associated samples x(m) and y("l)

> Define two random variables:
— a position variable Z with density fz = f = (fx + fy)/2
— a binary label L € {0,1} with pmf P(0) =1/2,
indicating from which density (fx or fy) an instance of Z is obtained.

> Equivalently, one defines a random vector:

(L7)= (0,X)  with prob.
’ 1,Y) with prob.
(1Y) p

NIRN|—=

> Associated conditional and unconditional mass functions:

P(llz) =P(L=1Z = z)
P()=P(L=1)=1%

> Lemma: the JSD can be expressed as:

IS () = [ (=)D (PCI)IP() o



Step 1: the local discrepancy

> From

IS (06 = [ 2D (PCI)IP() oz

R
> We define the discrepancy at location z as
8(z) = Dxr (P(-2)[[P(-)) -
> Observation:
—-94(z) €]0,1] and §(z) = 0 < fx(z) = fy(2).
NB: P(/) = 1/2; logarithm in base 2

> Exploiting the discrepancy: P(/) is known but P(/|z) is not:

we need to estimate P(/|z) at each given location z.



Step 1: random design nonparametric regression

> Consider random variables: location Z € R?, and response variable R € R

> Associated regression function:

m(z) =E[R|Z =z].

> Consider data: {(Z;, Ri)}i=1,...,n

> kn-nearest neighbor regressor: upon sorting samples by increasing distance to
the query point z:

1
m,,(z) = k— Z R(,-,n)(z)
M =1, ke

>Ref : L. Gyorfi and A. Krzyzak; A distribution-free theory of
nonparametric regression; 2002
>Ref: S. Kpotufe, NIPS 2011



Step 1: estimation via k-nearest neighbors

> Using the labels as response variable i.e. R=1L

> Using n i.i.d. realizations of (L, Z): build an estimator m,(z) for

m(z) = E[L|Z = z] = P(1]2).

> Define the following estimator for P(/|z): if 0 < mp(z) < 1:

P, (l|z) = |1 — I — ma(2)].

kn
log n

> Thm: Using a k,-nearest neighbor regressor, s.t. — 00 and %” — 0:

5a(2) = Dice (Pa (12)IP()) "2 6(2) ass.

for f-almost all z € RY.



The random multiplexer to obtain
i.i.d. realizations of (L, Z)

> A random sampler produces i.i.d. realizations of (Z, L) from x(™) and y(m);

X .
L~ B(Y2) (L, Z)
Y B: Bernoulli ’
distribution

Figure: Random multiplexer generating pairs (label, position).

> The case of uneven populations:

— the multiplexer will consume faster the small population, and halt
— unused samples of the large population remain — detrimental information loss
— resample B times and take the median of estimates, on a per sample basis



Step 1: lllustration: statistical image comparison

> Images: taking 2 x 2 blocks + (R,G,B) color coding: yields points in R2.

> Discrepancy estimate: using k, = n'

> Discrepancy plot: interpolate gray scale pixel color with red scale representing
discrepancy at each pixel (upper left corner of the corresponding block)

> Multidimensional Scaling of
parameter space:
The two populations in R2. ..
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Beyond two-sample tests

ltermezzo: tomato



ToMATo: Topological Mode Analysis Tool
Persistence based clustering algorithm

> Mode seeking strategy
— Input: points sampled on a manifold
— From a density estimation: height = estimated density
— Find the persistent modes: one cluster per mode
Step 1: build G
Step 2: top-down processing yield potential merges between peaks
— Key benefits
existence diagram: estimate of the # of clusters
works in a Riemannian setting—points on a manifold
> W.r.t. Morse theory: persistent maxima and their stable manifolds

(O]

D>DRef: Chazal, Guibas, Oudot, Skraba; ACM SoCG 2011



Persistent Minima and Sub-level Set Extraction from
Samples: the Tomato Algorithm

> Input: NNG connecting samples on the landscape

> Qutput: DG + persistence diagram + one sub-level set

> Algorithm: relies on three operations at once, in 2 passes

— quenches samples to their minima using a NNG discrete quench)
— finds bifurcations i.e. pairs of sample across a ridge

— cancels non persistent basins on the fly (Union-Find algorithm)

— Variant if all samples have been quenched:
detection of adjacencies between basins (yet: overestimation of barriers)

Y

m; = ming, cc.c.(p)f (Pr)

»

D>DRef: Chazal, Guibas, Oudot, Skraba; ACM SoCG 2011



Beyond two-sample tests

Step 2: clustering



Step 2: Building the clusters from sublevel sets of —(z)

> Ingredients: (A)
> Height function —4(z) - \/j
modeled with nearest
neighbor graph . R?
» Parameter: 6 o o c

discrepancy/significance
threshold Jmax l W/\vwﬂ

> Construction:

» Idea: one cluster ~ one

aueG UG

connected component of the © RY
sublevel set of —d(z) defined [ V2 B 74\ S
by §max

> Extra ingredient: smoothing
the landscape to get rid of
small clusters : smoothing
using topological persistence
at threshold p



Step 2: Building the clusters: persistence diagram

> Partition of the PD induced by: > Local minimum m of —4(z):
> Significance threshold §max > Selected/rejected: m was
> Persistence threshold p born before —dmax.

> Persistent/canceled:
persistence(m) > p

> Filtered (un-filtered): the
catchment basin of m dies
after (before) —dmax-

y : Death y=x+p Y=<z
0

—Omax

> Observation:

» + clusters : 1 + # points in
region Rs of the PD.

-1 x : Birth . ..
-1 —Opax 0 > # persistent local minima : 1

+ num points in the region
R4 U Rs of the PD.

D>DRef: Chazal, Guibas, Oudot, Skraba, J. ACM, 2013
>Ref: Cazals and D. Cohen-Steiner, CGTA, 2011




Step 2: lllustration: statistical image comparison

> Images again:
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Beyond two-sample tests

Step 3: effect size: discrepancy profile



Step 3: Effect size: discrepancy profile

> Global estimated JSD: area under dashed line
> Maximum JSD: area under continuous line (=1)
> Contribution of each cluster C to JSD: area of bar

1 A
JSc (x||fy) = 0(z2).
c(klif) = —— > (2)
ZG(X("U)Uy("l))ﬂC

> Mass of each cluster: bar width
> Population balance in each cluster: bar color (heat map)

> Ellipses: > Images:
— Large global JSD (dashed line) — Smaller global JSD (dashed line)
— Contributed by 242 balanced clusters — Contributed by 2 clusters

10 1 10

oo oo




Wrapping-up: workflow

Datasets:two point clouds

2

Y

(n0)
(n1)

Output: estimated discrepancy

5(2:), 2 € () Yy(n1)

for 6(2)
k

n},

estimate

JSD decomp. by clusters {C;}

Output: divergence by cluster

JSe,(fxfr)

Clustering with topological

persistence:

- k-Nearest neighbor graph

- Persistence: p
- Filtering: 0pmaz

Output:

{Ci} s.t. {

uc;
nC;

= glno) | ylm)

> Compulsory parameters:
kn: regression parameter
Omax: discrepancy significance threshold
p: persistence threshold
k: number of nearest neighbors for the persistence analysis

> Optional parameter:
B: num. repetition in case of unbalanced populations




Beyond two-sample tests

Clustering: stability assessment



On the stability of clusterings

> Question: are the clusters stable w.r.t. these compulsory parameters?

> General approach: comparing clusterings via clusters of clusters
— Find a matching between clusters of clusters, called meta-clusters
— Controlled by a parameter D monitoring the diameter of meta-clusters
In the example: compare D =1vs D =2



Comparing clusterings: at which scale do clusters merge?

What is the right number of clusters?
> Example:
> Using k-means++ to cluster 5000 samples from five Gaussian blobs

» Using D-family matching to infer the right/natural # of clusters

(A) k-means++, k = 20 (B) k-means++, k = 50
A ‘ B) :
e -
0 : D)

(C) D = 3, 17 meta clusters, $_(4)068 (D) D =4, 4 meta clusters, $_(5)000



Comparing clusterings using
matchings between clusters of clusters

> Contributions:

— Formalization of the D-family matching problem

— NP-completeness results and unbounded approximation ratio for simple strategies
Open: is the problem APX hard?

— Exact polynomial time algos. for selected intersection graphs (trees)

— Heuristics for general graphs

— Extensive experiments (vs. the variation of information)

> Stability of kmeans++:

>Ref: Cazals, Mazauric, Tetley, Watrigant; submitted



Beyond two-sample tests

Conclusion



Conclusions - Outlook

» An elementary method providing a normalized discrepancy based upon
(provably correct) estimates of the JS divergence computed on a per
point basis

> Merely requires an efficient algorithm for (approximate) nearest neighbors

> By changing the sign of the discreancy: can be used to find clusters of
low discrepancy i.e. coherent regions

» Can be used as goodness-of-fit tool, by sampling from a given model,
then comparing data to spot discrepancies

» Clusters can be post-processed separately: e.g., PCA to find relevant
directions

» See also Mueller and Jaakkola, NIPS 2015
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