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Data discrepancies: two-sample problem and effect size

. The two-sample test (TST) approach

– Two datasets x (n0) ≡ {x1, . . . , xn0} and y (n1) ≡ {y1, . . . , yn1} in Rd

as i.i.d. samples from two unknown densities fX and fY
– Hypothesis testing:

H0 : fX = fY a.e.,
H1 : ¬H0

→ reject based on p-value: summarizes the difference in one bit!

. Effect size: “quantitative measure of the strength of a phenomenon”
– p-value: magnitude of the statistical significance?

for consistent TST: large sample size implies significance
– effect size: various options for univariate data

normalized difference between means

. Towards a notion of nonparametric multivariate effect size:
– accommodating general discrepancies in Rd

– amenable to comparisons via some kind of normalization



What do we provide?
Comparing two point clouds: 1. compute a local discrepancy,

2. find spatially coherent regions 3. provide a cluster based
of high discrepancy, normalized effect size.



Outline of our method: three steps

I Step 1: Estimate a measure of local discrepancy at each given point

I Ingredient: information theory

I Step 2: Aggregate local discrepancy in a spatially coherent way, to

produce clusters by removing low discrepancy points

I Ingredient: topological persistence

I Step 3: Produce an effect size barplot to summarize the discrepancy
profile

I Aftermath: Assess the stability of clusters
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Pre-requisite: Jensen-Shannon divergence

. Kullback-Leibler divergence (KLD):
DKL (f ‖g) ≡

∫∞
−∞ f (x) log f (x)

g(x)
dx

DKL (P‖Q) ≡
∑

l∈A P(l) log P(l)
Q(l)

. The Jensen-Shannon divergence (JSD): symmetrizes and smoothes the KLD:
Consider f ≡ (fX +fY )/2, then

JS (fX ‖fY ) ≡
1

2
(DKL (fX ‖f ) + DKL (fY ‖f ))

. Main properties of JS divergence:

– JSD is symmetric
– JSD is bounded between 0 and 1
– Its square root yields a metric



Step 1: Jensen-Shannon divergence and its decomposition

. Notations: two unknown densities fX and fY , and the associated samples x(n0) and y (n1)

. Define two random variables:
– a position variable Z with density fZ ≡ f = (fX + fY )/2
– a binary label L ∈ {0, 1} with pmf P(0) = 1/2,

indicating from which density (fX or fY ) an instance of Z is obtained.

. Equivalently, one defines a random vector:

(L,Z) =

{
(0,X ) with prob. 1

2

(1,Y ) with prob. 1
2

. Associated conditional and unconditional mass functions:{
P(l |z) = P (L = l |Z = z)

P(l) = P (L = l) = 1
2

. Lemma: the JSD can be expressed as:

JS (fX ‖fY ) =

∫
Rd

fZ (z)DKL (P(·|z)‖P(·)) dz



Step 1: the local discrepancy

. From

JS (fX‖fY ) =

∫
Rd

fZ (z)DKL (P(·|z)‖P(·)) dz

. We define the discrepancy at location z as

δ(z) ≡ DKL (P(·|z)‖P(·)) .

. Observation:

– δ(z) ∈ [0, 1] and δ(z) = 0⇔ fX (z) = fY (z).
NB: P(l) = 1/2; logarithm in base 2

. Exploiting the discrepancy: P(l) is known but P(l |z) is not:

we need to estimate P(l |z) at each given location z .



Step 1: random design nonparametric regression

. Consider random variables: location Z ∈ Rd , and response variable R ∈ R

. Associated regression function:

m(z) ≡ E [R|Z = z] .

. Consider data: {(Zi ,Ri )}i=1,...,n

. kn-nearest neighbor regressor: upon sorting samples by increasing distance to
the query point z :

mn(z) =
1

kn

∑
i=1,...,kn

R(i,n)(z)

.Ref: L. Györfi and A. Krzyzak; A distribution-free theory of

nonparametric regression; 2002

.Ref: S. Kpotufe, NIPS 2011



Step 1: estimation via k-nearest neighbors

. Using the labels as response variable i.e. R ≡ L

. Using n i.i.d. realizations of (L,Z): build an estimator mn(z) for

m(z) = E [L|Z = z] = P(1|z).

. Define the following estimator for P(l |z): if 0 ≤ mn(z) ≤ 1:

P̂n (l |z) ≡ |1− l −mn(z)|.

. Thm: Using a kn-nearest neighbor regressor, s.t. kn
log n
→∞ and kn

n
→ 0:

δ̂n(z) ≡ DKL

(
P̂n (·|z)‖P(·)

)
n→∞−−−→ δ(z) a.s.

for f -almost all z ∈ Rd .



The random multiplexer to obtain
i.i.d. realizations of (L,Z )

. A random sampler produces i.i.d. realizations of (Z , L) from x (n0) and y (n1):

L ∼ B (1/2)X

Y
(L,Z)

B: Bernoulli
distribution

Figure: Random multiplexer generating pairs (label, position).

. The case of uneven populations:

– the multiplexer will consume faster the small population, and halt
– unused samples of the large population remain – detrimental information loss
– resample B times and take the median of estimates, on a per sample basis



Step 1: Illustration: statistical image comparison
. Images: taking 2× 2 blocks + (R,G,B) color coding: yields points in R12.
. Discrepancy estimate: using kn = n1/3

. Discrepancy plot: interpolate gray scale pixel color with red scale representing
discrepancy at each pixel (upper left corner of the corresponding block)

. Multidimensional Scaling of
parameter space:

The two populations in R2. . .

. . . colored with δ̂:
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ToMATo: Topological Mode Analysis Tool
Persistence based clustering algorithm

. Mode seeking strategy
– Input: points sampled on a manifold
– From a density estimation: height ≡ estimated density
– Find the persistent modes: one cluster per mode

Step 1: build G+

Step 2: top-down processing yield potential merges between peaks
– Key benefits

existence diagram: estimate of the # of clusters
works in a Riemannian setting—points on a manifold

. W.r.t. Morse theory: persistent maxima and their stable manifolds

.Ref: Chazal, Guibas, Oudot, Skraba; ACM SoCG 2011



Persistent Minima and Sub-level Set Extraction from
Samples: the Tomato Algorithm

. Input: NNG connecting samples on the landscape

. Output: DG + persistence diagram + one sub-level set

. Algorithm: relies on three operations at once, in 2 passes
– quenches samples to their minima using a NNG discrete quench)
– finds bifurcations i.e. pairs of sample across a ridge
– cancels non persistent basins on the fly (Union-Find algorithm)

– Variant if all samples have been quenched:
detection of adjacencies between basins (yet: overestimation of barriers)

pj
pi

f

mj = minpk∈c.c.(pj)f(pk)

mi = minpk∈c.c.(pi)f(pk)

hi

hj

f(pi)

.Ref: Chazal, Guibas, Oudot, Skraba; ACM SoCG 2011
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Step 2: Building the clusters from sublevel sets of −δ̂(z)

. Ingredients:

I Height function −δ̂(z)
modeled with nearest
neighbor graph

I Parameter:
discrepancy/significance
threshold δmax

. Construction:

I Idea: one cluster ∼ one
connected component of the
sublevel set of −δ̂(z) defined
by δmax

I Extra ingredient: smoothing
the landscape to get rid of
small clusters : smoothing
using topological persistence
at threshold ρ

(B)

−δmax

(C)

δ̂

Rd

Rd

−δmax

−δ̂

−δ̂

(A)

Rd
zi

δ̂(zi)

C1 C2 C3 C4

C1 ∪ C2 C3 ∪ C4



Step 2: Building the clusters: persistence diagram

. Partition of the PD induced by:

I Significance threshold δmax

I Persistence threshold ρ

y : Death

x : Birth

y = x

0

0

−δmax

−δmax

R1
R3

R5

R4 R2

y = x + ρ

−1
−1

. Local minimum m of −δ̂(z):

I Selected/rejected: m was
born before −δmax .

I Persistent/canceled:
persistence(m) ≥ ρ

I Filtered (un-filtered): the
catchment basin of m dies
after (before) −δmax .

. Observation:

I # clusters : 1 + # points in
region R5 of the PD.

I # persistent local minima : 1
+ num points in the region
R4 ∪ R5 of the PD.

.Ref: Chazal, Guibas, Oudot, Skraba, J. ACM, 2013

.Ref: Cazals and D. Cohen-Steiner, CGTA, 2011



Step 2: Illustration: statistical image comparison

. Images again:

. Parameters: k = 10 (NNG), ρ = 0.1, δmax = 0.1
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Step 3: Effect size: discrepancy profile

. Global estimated JSD: area under dashed line

. Maximum JSD: area under continuous line (=1)

. Contribution of each cluster C to JSD: area of bar

JSC (fX‖fY ) ≡ 1

n0 + n1

∑
z∈(x(n0)∪y (n1))∩C

δ̂(z).

. Mass of each cluster: bar width

. Population balance in each cluster: bar color (heat map)

. Ellipses:
– Large global JSD (dashed line)
– Contributed by 2+2 balanced clusters

. Images:
– Smaller global JSD (dashed line)
– Contributed by 2 clusters



Wrapping-up: workflow

L ∼ B(1/2)
x(n0)

y(n1) {zji , lji}i=1,...,mj

Repeat from j = 1 to B

kn′
b

D
a
ta
se
ts
:t
w
o
p
oi
n
t
cl
o
u
d
s

Output: estimated discrepancy

δ̂(zi), zi ∈ x(n0) ∪ y(n1)

JSD decomp. by clusters {Ci}

JSCi
(fX‖fY )

Output: divergence by cluster

Output:

{Ci} s.t.
{
∪Ci = x(n0) ∪ y(n1)

∩Ci = ∅

Clustering with topological
persistence:
- k-Nearest neighbor graph
- Persistence: ρ
- Filtering: δmax

estimate
for δ(z)

. Compulsory parameters:
kn: regression parameter
δmax : discrepancy significance threshold
ρ: persistence threshold
k: number of nearest neighbors for the persistence analysis

. Optional parameter:
B: num. repetition in case of unbalanced populations
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On the stability of clusterings

. Question: are the clusters stable w.r.t. these compulsory parameters?
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F
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F ′

. General approach: comparing clusterings via clusters of clusters
– Find a matching between clusters of clusters, called meta-clusters
– Controlled by a parameter D monitoring the diameter of meta-clusters

In the example: compare D = 1 vs D = 2



Comparing clusterings: at which scale do clusters merge?

What is the right number of clusters?
. Example:

I Using k-means++ to cluster 5000 samples from five Gaussian blobs

I Using D-family matching to infer the right/natural # of clusters

(A) k-means++, k = 20 (B) k-means++, k = 50

(C) D = 3, 17 meta clusters, Φ=(4)068 (D) D = 4 , 4 meta clusters, Φ=(5)000



Comparing clusterings using
matchings between clusters of clusters

. Contributions:
– Formalization of the D-family matching problem
– NP-completeness results and unbounded approximation ratio for simple strategies

Open: is the problem APX hard?
– Exact polynomial time algos. for selected intersection graphs (trees)
– Heuristics for general graphs
– Extensive experiments (vs. the variation of information)

. Stability of kmeans++:

1

1

158

6

462

2

2

300

4

1

8

468

10

232

3

3

518

4

373

7

440

9

186

5

468

5

3046

6

362240

7

482

.Ref: Cazals, Mazauric, Tetley, Watrigant; submitted
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Conclusions - Outlook

I An elementary method providing a normalized discrepancy based upon
(provably correct) estimates of the JS divergence computed on a per
point basis

I Merely requires an efficient algorithm for (approximate) nearest neighbors

I By changing the sign of the discreancy: can be used to find clusters of
low discrepancy i.e. coherent regions

I Can be used as goodness-of-fit tool, by sampling from a given model,
then comparing data to spot discrepancies

I Clusters can be post-processed separately: e.g., PCA to find relevant
directions

I See also Mueller and Jaakkola, NIPS 2015



Try me: http://sbl.inria.fr
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