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Decoding the energy landscape: understanding and redesigning the emergent 
properties of a kinetic transition network

CONTEXT. Describing a potential energy surface in terms of local minima and the 
transition states that connect them provides a conceptual and computational 
framework for understanding and predicting observable properties [1]. Landscapes 
involving competing morphologies support multiple potential energy funnels, which 
may exhibit characteristic heat capacity features and relaxation time scales. These 
connections between the organisation of the landscape and structure, dynamics and 
thermodynamics are universal, and can be extended to the loss landscapes 
associated with machine learning [2]. 

Databases of minima and transition states constitute a kinetic transition network 
(KTN), and there are three principal tools required to understand how  observable 
properties are encoded, namely (1) global optimisation for structure prediction; (2) 
enhanced sampling of densities of states for thermodynamic properties; (3) rare 
event techniques to extract global dynamics. This project will advance the state-of-
the-art by developing new theory and computational tools for analysis of mechanism 
and rates in large, ill-conditioned transition networks. In particular, we will gain 
insight by comparing the organisation of landscapes in biophysics and machine 
learning, and correlating this structure with the emergent properties. 

WORKPLAN
The geometry optimisation techniques employed in basin-hopping global 
optimisation and characterisation of transition states and pathways between local 



minima are relatively mature, and these tools will be exploited to construct new 
databases for the SARS-CoV-2 spike protein and the RNA genome of this virus, and 
for the loss function associated with neural networks for benchmark problems in 
machine learning. To extract observable dynamical properties, and the analogues 
defined for a loss function landscape [2], we will exploit and develop some new tools 
to predict kinetically relevant paths from the infinite number of routes through a 
KTN, and calculate phenomenological rates. 

The new theory and associated computational tools for analysis of complex kinetic 
transition networks [3[ has three principal components: (1) convergence of 
observable kinetic properties;  (2) calculating observables; (3) coarse-graining the 
network. The key observables that we wish to calculate for comparison with 
experiment are moments of the first passage time between the initial and final states
of interest. For biomolecules these states are usually the denatured ensemble and 
the functional form corresponding to the native state. One key observable encoded 
in the landscape is the first passage time. We must therefore sample the underlying 
KTN sufficiently to converge the probability distribution function of the passage time. 
We have derived expressions for pairwise and pathwise measures of the sensitivity to
new network connections,  which have proved to be very effective in guiding 
sampling and network convergence [3,6]. A key objective is to optimise this 
procedure for larger systems and extend it using Bayesian techniques, in combination
with the coarse-graining and kinetic path sampling methods described below.

Kinetic path sampling [4]  (kPS) uses graph transformation to simplify the description 
of an escape trajectory from a trapping energy basin. This procedure permits exact 
and efficient sampling of Markov chains, including higher moments of the passage 
time. We will combine kPS with the m distinct paths (mDP) algorithm [5] to 
determine whether the networks support parallel pathways. The mDP method uses a
scalable path deviation algorithm to identify the m most kinetically relevant paths in 
a transition network, where each path is distinguished by a distinct rate-limiting 
edge.

Methods to reduce the network dimensionality, while preserving the key 
observables, produce essential gains in efficiency for large networks and highly 
metastable systems. We will analyse two new coarse-graining methods, namely a 
moment-based approach based on spectral analysis of the relaxation modes [6], and 
partial graph transformation. The moment-based approach filters the relaxation 
modes to preserve the first and second moments of the passage time [6]. In contrast,
partial graph transformation lumps together and prunes nodes from the network. 
Implementing this methodology  in the PATHSAMPLE program is a key  objective, 
which will enable us to extract mean first passage times and associated rates in large,
poorly conditioned networks associated with broken ergodicity and rare events. 

In a complementary approach, we will also explore a method relying on a hierarchical
representation of energy landscapes based on topological persistence, a framework 
providing a nested representation based on barriers [7].  In theory, the derivation of 
the stationary distribution of a Markov chain can be performed with matrix inversion,



at a cost that is cubic in the number of states. This cubic complexity being prohibitive 
for the systems we aim to study, in a manner akin to importance sampling, we will 
explore novel algorithms iterating in tandem the calculation of the stationary 
distribution for a coarse-grained system, and the refinement of this model when 
novel states and transitions are considered. Practically, we will combine the 
hierarchical representation of landscapes provided in the Structural Bioinformatics 
Library [8], and state-of-the-art numerical methods for Markov chains provided in 
MarmoteCore [9]. In a different context, we have indeed shown recently that such 
calculations could be performed to convergence within minutes for Markov models 
with tens of thousands of nodes [10].  We also anticipate that this approach will yield
a novel strategy to compare energy landscapes, an important problem for which few 
effective solutions have been developed [11].

Having developed an efficient and robust framework for understanding the 
properties of landscapes that feature metastability we will consider how these 
features emerge from the underlying intermolecular potential or the structure of a 
neural network. This insight will provide the foundations for our long-term ambition 
to design target properties through mutations of a molecular system or the 
architecture of a machine learning problem.
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CONDITIONS

 Location : the post-doc will be hosted at Inria Sophia-Antipolis, with regular vists to  
Cambridge

 Remuneration : around 3120 euros gross monthly, according to experience.
 Duration: 24 months.
 Teaching: optional, to be decided with the supervisor(s).


