Covers and nerves: union of balls, geometric inference and Mapper

Frédéric Chazal
INRIA Saclay - Ile-de-France
frederic.chazal@inria.fr
Highlighting and inferring the topological structure of data

Idea:
Highlighting and inferring the topological structure of data

Idea:

• Group data points in “local clusters”
Highlighting and inferring the topological structure of data

Idea:

- Group data points in “local clusters”
- Summarize the data through the combinatorial/topological structure of intersection patterns of “clusters”
Highlighting and inferring the topological structure of data

Idea:
- Group data points in “local clusters”
- Summarize the data through the combinatorial/topological structure of intersection patterns of “clusters”

Goal: Do it in a way that preserves (some of) the topological features of the data.
Background mathematical notions

Topological space

A **topology** on a set X is a family \mathcal{O} of subsets of X that satisfies the three following conditions:

1) the empty set \emptyset and X are elements of \mathcal{O},
2) any union of elements of \mathcal{O} is an element of \mathcal{O},
3) any finite intersection of elements of \mathcal{O} is an element of \mathcal{O}.

The set X together with the family \mathcal{O}, whose elements are called open sets, is a **topological space**. A subset C of X is **closed** if its complement is an open set.

A map $f : X \rightarrow X'$ between two topological spaces X and X' is **continuous** if and only if the pre-image $f^{-1}(O') = \{x \in X : f(x) \in O'\}$ of any open set $O' \subset X'$ is an open set of X. Equivalently, f is continuous if and only if the pre-image of any closed set in X' is a closed set in X (exercise).

A topological space X is a **compact space** if any open cover of X admits a finite subcover, i.e. for any family $\{U_i\}_{i \in I}$ of open sets such that $X = \bigcup_{i \in I} U_i$ there exists a finite subset $J \subseteq I$ of the index set I such that $X = \bigcup_{j \in J} U_j$.
Background mathematical notions

Metric space

A metric (or distance) on X is a map $d : X \times X \to [0, +\infty)$ such that:

i) for any $x, y \in X$, $d(x, y) = d(y, x)$,

ii) for any $x, y \in X$, $d(x, y) = 0$ if and only if $x = y$,

iii) for any $x, y, z \in X$, $d(x, z) \leq d(x, y) + d(y, z)$.

The set X together with d is a metric space.

The smallest topology containing all the open balls $B(x, r) = \{y \in X : d(x, y) < r\}$ is called the metric topology on X induced by d.

Example: the standard topology in an Euclidean space is the one induced by the metric defined by the norm: $d(x, y) = \|x - y\|$.

Compacity: a metric space X is compact if and only if any sequence in X has a convergent subsequence. In the Euclidean case, a subset $K \subset \mathbb{R}^d$ (endowed with the topology induced from the Euclidean one) is compact if and only if it is closed and bounded (Heine-Borel theorem).
Comparing topological spaces

Homeomorphy and isotopy

- X and Y are homeomorphic if there exists a bijection $h : X \rightarrow Y$ s. t. h and h^{-1} are continuous.

- $X, Y \subset \mathbb{R}^d$ are ambient isotopic if there exists a continuous map $F : \mathbb{R}^d \times [0, 1] \rightarrow \mathbb{R}^d$ s. t. $F(., 0) = Id_{\mathbb{R}^d}$, $F(X, 1) = Y$ and $\forall t \in [0, 1]$, $F(., t)$ is an homeomorphism of \mathbb{R}^d.
Comparing topological spaces

Homotopy, homotopy type

- Two maps $f_0 : X \rightarrow Y$ and $f_1 : X \rightarrow Y$ are homotopic if there exists a continuous map $H : [0,1] \times X \rightarrow Y$ s. t. $\forall x \in X$, $H(0,x) = f_0(x)$ and $H(1,x) = f_1(x)$.

- X and Y have the same homotopy type (or are homotopy equivalent) if there exists continuous maps $f : X \rightarrow Y$ and $g : Y \rightarrow X$ s. t. $g \circ f$ is homotopic to Id_X and $f \circ g$ is homotopic to Id_Y.
Comparing topological spaces

Homotopy, homotopy type

If $X \subset Y$ and if there exists a continuous map $H : [0, 1] \times X \to X$ s.t.:

i) $\forall x \in X, \ H(0, x) = x$,

ii) $\forall x \in X, \ H(1, x) \in Y$

iii) $\forall y \in Y, \ \forall t \in [0, 1], \ H(t, y) \in Y$,

then X and Y are homotopy equivalent. If one replaces condition iii) by $\forall y \in Y, \ \forall t \in [0, 1], \ H(t, y) = y$ then H is a deformation retract of X onto Y.

\[f_0(x) = x \]

\[f_t(x) = (1-t)x \]

\[f_1(x) = 0 \]
Given a set $P = \{p_0, \ldots, p_k\} \subset \mathbb{R}^d$ of $k + 1$ affinely independent points, the k-dimensional simplex σ, or k-simplex for short, spanned by P is the set of convex combinations

$$\sum_{i=0}^{k} \lambda_i p_i, \quad \text{with} \quad \sum_{i=0}^{k} \lambda_i = 1 \quad \text{and} \quad \lambda_i \geq 0.$$

The points p_0, \ldots, p_k are called the vertices of σ.

0-simplex: vertex
1-simplex: edge
2-simplex: triangle
3-simplex: tetrahedron

etc...
A (finite) simplicial complex K in \mathbb{R}^d is a (finite) collection of simplices such that:

1. any face of a simplex of K is a simplex of K,
2. the intersection of any two simplices of K is either empty or a common face of both.

The underlying space of K, denoted by $|K| \subset \mathbb{R}^d$ is the union of the simplices of K.
Abstract simplicial complexes

Let \(P = \{p_1, \ldots, p_n\} \) be a (finite) set. An abstract simplicial complex \(K \) with vertex set \(P \) is a set of subsets of \(P \) satisfying the two conditions:

1. The elements of \(P \) belong to \(K \).
2. If \(\tau \in K \) and \(\sigma \subseteq \tau \), then \(\sigma \in K \).

The elements of \(K \) are the simplices.

Let \(\{e_1, \ldots, e_n\} \) a basis of \(\mathbb{R}^n \). “The” geometric realization of \(K \) is the (geometric) subcomplex \(|K| \) of the simplex spanned by \(e_1, \ldots, e_n \) such that:

\[
[e_{i_0} \ldots e_{i_k}] \in |K| \text{ iff } \{p_{i_0}, \ldots, p_{i_k}\} \in K
\]

\(|K| \) is a topological space (subspace of an Euclidean space)!
Abstract simplicial complexes

Let $P = \{p_1, \cdots, p_n\}$ be a (finite) set. An abstract simplicial complex K with vertex set P is a set of subsets of P satisfying the two conditions:

1. The elements of P belong to K.
2. If $\tau \in K$ and $\sigma \subseteq \tau$, then $\sigma \in K$.

The elements of K are the simplices.

IMPORTANT

Simplicial complexes can be seen at the same time as geometric/topological spaces (good for top./geom. inference) and as combinatorial objects (abstract simplicial complexes, good for computations).
Covers and nerves

An open cover of a topological space X is a collection $\mathcal{U} = (U_i)_{i \in I}$ of open subsets $U_i \subseteq X$, $i \in I$ where I is a set, such that $X = \bigcup_{i \in I} U_i$.

Given a cover of a topological space X, $\mathcal{U} = (U_i)_{i \in I}$, its nerve is the abstract simplicial complex $C(\mathcal{U})$ whose vertex set is \mathcal{U} and such that

$$\sigma = [U_{i_0}, U_{i_1}, \cdots, U_{i_k}] \in C(\mathcal{U}) \text{ if and only if } \bigcap_{j=0}^{k} U_{i_j} \neq \emptyset.$$
The Nerve Theorem:
Let $\mathcal{U} = (U_i)_{i \in I}$ be a finite open cover of a subset X of \mathbb{R}^d such that any intersection of the U_i's is either empty or contractible. Then X and $C(\mathcal{U})$ are homotopy equivalent.

For non-experts, you can replace:
- “contractible” by “convex”,
- “are homotopy equivalent” by ”have many topological invariants in common”.
Building interesting covers and nerves

Two directions:

1. Covering data by balls:
 → distance functions frameworks, persistence-based signatures,...
 → geometric inference, provide a framework to establish various theoretical results in TDA.

2. Using a function defined on the data:
 → the Mapper algorithm
 → exploratory data analysis and visualization
Covers and nerves for exploratory data analysis.
Let $f : X \to \mathbb{R}$ (or \mathbb{R}^d) a continuous function where X is a topological space and let $\mathcal{U} = (U_i)_{i \in I}$ be a cover of \mathbb{R} (or \mathbb{R}^d).

The collection of open sets $(f^{-1}(U_i))_{i \in I}$ is the pull back cover of X induced by (f, \mathcal{U}).
Take the connected components of the $f^{-1}(U_i), i \in I \to$ the refined pull back cover.

Take the nerve of the refined cover.

Warning: The nerve theorem does not apply in general!
The Mapper algorithm

Input:
- a data set X with a metric or a dissimilarity measure,
- a function $f : X \to \mathbb{R}$ or \mathbb{R}^d,
- a cover \mathcal{U} of $f(X)$.

1. for each $U \in \mathcal{U}$, decompose $f^{-1}(U)$ into clusters $C_{U,1}, \cdots, C_{U,k_U}$.
2. Compute the nerve of the cover of X defined by the $C_{U,1}, \cdots, C_{U,k_U}, U \in \mathcal{U}$

Output: a simplicial complex, the nerve (often a graph for well-chosen covers → easy to visualize):
- a vertex $v_{U,i}$ for each cluster $C_{U,i}$,
- an edge between $v_{U,i}$ and $v_{U',j}$ iff $C_{U,i} \cap C_{U',j} \neq \emptyset$
The Mapper algorithm

Input:
- a data set X with a metric or a dissimilarity measure,
- a function $f : X \rightarrow \mathbb{R}$ or \mathbb{R}^d,
- a cover \mathcal{U} of $f(X)$.

1. for each $U \in \mathcal{U}$, decompose $f^{-1}(U)$ into clusters $C_{U,1}, \cdots, C_{U,k_U}$.
2. Compute the nerve of the cover of X defined by the $C_{U,1}, \cdots, C_{U,k_U}$, $U \in \mathcal{U}$

Output: a simplicial complex, the nerve (often a graph for well-chosen covers \rightarrow easy to visualize):
- a vertex $v_{U,i}$ for each cluster $C_{U,i}$,
- an edge between $v_{U,i}$ and $v_{U',j}$ iff $C_{U,i} \cap C_{U',j} \neq \emptyset$

A very simple method but many choices to make!

Many (still open) theoretical questions!
Choice of lens/filter

\[f : X \rightarrow \mathbb{R} \] is often called a lens or a filter.

Classical choices:

- density estimates
- centrality \(f(x) = \sum_{y \in X} d(x, y) \)
- excentricity \(f(x) = \max_{y \in X} d(x, y) \)
- PCA coordinates, NLDR coordinates,…
- Eigenfunctions of graph laplacians.
- Functions detecting anomalous behavior or outliers.
- Distance to a root point (filamentary structures reconstruction).
- Etc …
Choice of lens/filter

\(f : X \rightarrow \mathbb{R} \) is often called a lens or a filter.

Classical choices:

- density estimates
- centrality \(f(x) = \sum_{y \in X} d(x, y) \)
- excentricity \(f(x) = \max_{y \in X} d(x, y) \)
- PCA coordinates, NLDR coordinates, ...
- Eigenfunctions of graph laplacians.
- Functions detecting anomalous behavior or outliers.
- Distance to a root point (filamentary structures reconstruction).
- Etc ...
Choice of lens/filter

\(f : X \rightarrow \mathbb{R} \) is often called a **lens** or a **filter**.

May reveal some ambiguity in the use of non linear dimensionality reduction (NLDR) methods.

Classical choices:

- density estimates
- centrality \(f(x) = \sum_{y \in X} d(x, y) \)
- excentricity \(f(x) = \max_{y \in X} d(x, y) \)
- PCA coordinates, NLDR coordinates,…
- Eigenfunctions of graph laplacians.
- Functions detecting anomalous behavior or outliers.
- Distance to a root point (filamentary structures reconstruction).
- Etc …
The resolution r is the maximum diameter of an interval in \mathcal{U}. The resolution may also be replaced by a number N of intervals in the cover.

The gain g is the percentage of overlap between intervals (when they overlap).

Intuition:
- small r (large N) \rightarrow finer resolution, more nodes.
- large r (small N) \rightarrow rougher resolution, less nodes.
- small g \rightarrow less connectivity.
- large g \rightarrow more connectivity (the dimensionality of the nerve increases).
Choice of covers (case of \mathbb{R})

The **resolution** r is the maximum diameter of an interval in \mathcal{U}. The resolution may also be replaced by a number N of intervals in the cover. The **gain** g is the percentage of overlap between intervals (when they overlap).

The resolution r is the maximum diameter of an interval in \mathcal{U}. The resolution may also be replaced by a number N of intervals in the cover. The gain g is the percentage of overlap between intervals (when they overlap).

Intuition:
- small r (large N) \rightarrow finer resolution, more nodes.
- large r (small N) \rightarrow rougher resolution, less nodes.
- small g \rightarrow less connectivity.
- large g \rightarrow more connectivity (the dimensionality of the nerve increases).

Major warning: the output of Mapper is very sensitive to the choice of the parameters (see practical classes).

Not a well-understood phenomenon
Choice of clusters

2 strategies:
Choice of clusters

2 strategies:

1. Take the connected components of the subgraph spanned by the vertices in the bin $f^{-1}(U)$.

2. Build a neighboring graph (kNN, Rips,...). In general, need to select a global parameter, such as number of neighbors for kNN, radius for Rips, to build the graph: not adaptative.

Take the connected components of the subgraph spanned by the vertices in the bin $f^{-1}(U)$.
Choice of clusters

2 strategies:

Clustering of each bin $f^{-1}(U)$ (using your favorite clustering algorithm)

More adaptive: the clustering parameters (or even the clustering algorithm) can be adapted to each bin.
Two “classical” applications of Mapper: clustering and feature selection

Clustering:

1. Build a Mapper graph/complex from the data,
2. Find interesting structures (loops, flares),
3. Use these structures to exhibit interesting clusters.
Two “classical” applications of Mapper: clustering and feature selection

Clustering:

1. Build a Mapper graph/complex from the data,
2. Find interesting structures (loops, flares),
3. Use these structures to exhibit interesting clusters.

Some difficulties:

Choice of the parameters?

Done by hand...

Statistical relevance?
Two “classical” applications of Mapper: clustering and feature selection

Clustering:

Example:
Data: conformations of molecules
Goal: detect different folding pathways

\(f : \) distance to folded/unfolded states
\(N = 8, \ g = 0.25 \)

Idea: 1 loop = 2 different pathways

Topological Methods for Exploring Low-density States in Biomolecular Folding Pathways, Yao et al., J. Chemical Physics, 2009
Two “classical” applications of Mapper: clustering and feature selection

Feature selection:

1. Build a Mapper graph/complex from the data,
2. Find interesting structures (loops, flares),
3. Select the features/variables that best discriminate the data in these structures.
Two “classical” applications of Mapper: clustering and feature selection

Feature selection:

Some difficulties:

Choice of the parameters?

1. Build a Mapper graph/complex from the data,
2. Find interesting structures (loops, flares),
3. Select the features/variables that best discriminate the data in these structures.

Done by hand...
Two “classical” applications of Mapper: clustering and feature selection

Feature selection:

Example:

Data: breast cancer patients that went through specific therapy.

Extracting insights from the shape of complex data using topology, Lum et al., Nature, 2013

\(f : \) eccentricity, \(N = 30, g = 0.33 \)

Goal: detect variables that influence survival after therapy in breast cancer patients
Reeb graph and Mapper

The output of the Mapper algorithm can be seen as a discretized version of the Reeb graph.

Equivalence relation:
\[x \sim x' \text{ iff } x \text{ and } x' \text{ are in the same connected comp. of } f^{-1}(f(x)). \]

Reeb “graph”:
\[G_f := X/ \sim \]

Warning:
- \(G_f \) is not always a graph (very specific conditions on \(X \) and \(f \)),
- No clear connection or convergence result relating the Mapper graph and the Reeb graph.
Reeb graph and Mapper

Exercise: What is the Mapper/Reeb graph of the height function on the trefoil knot?
Take-home messages

The Mapper algorithm:
1. local clustering guided by a function,
2. global connectivity relationships between clusters (covers and nerves).
→ other ways to combine local clustering, covers and nerves can be imagined!

The Mapper methods is an exploratory data analysis tool:
+ it has been shown to be very powerfull in various applications,
- but it usually does not come with theoretical guarantees.

Covers and nerves:
+ very interesting, simple and fruitfull ideas for topological data analysis,
+ many ideas and open questions to explore (in a statistical and data analysis perspective) from the theoretical point of view.
A few basic ideas about geometric inference: union of balls and distance functions
Union of balls and distance functions

Data set: a point cloud P embedded in \mathbb{R}^d, sampled around a compact set M.

General idea:

1. Cover the data with union of balls of fixed radius centered on the data points.

2. Infer topological information about M from (the nerve of) the union of balls centered on P.

Union of balls and distance functions

Data set: a point cloud P embedded in \mathbb{R}^{d}, sampled around a compact set M.

General idea:

1. Cover the data with union of balls of fixed radius centered on the data points.

2. Infer topological information about M from (the nerve of) the union of balls centered on P.

Nerve theorem

Bridge the gap between continuous approximations of K and combinatorial descriptions required by algorithms.
Union of balls and distance functions

Data set: a point cloud P embedded in \mathbb{R}^d, sampled around a compact set M.

General idea:

1. Cover the data with union of balls of fixed radius centered on the data points.

2. Infer topological information about M from (the nerve of) the union of balls centered on P.

Sublevel set of the **distance function** $d_P : \mathbb{R}^d \to \mathbb{R}_+$ is defined by

$$d_P(x) = \inf_{p \in P} \|x - p\|$$

→ Compare the topology/geometry of the offsets

$$M^r = d_M^{-1}([0, r]) \text{ and } P^r = d_P^{-1}([0, r])$$
Union of balls and distance functions

Data set: a point cloud P embedded in \mathbb{R}^d, sampled around a compact set M.

General idea:

1. Cover the data with union of balls of fixed radius centered on the data points.

2. Infer topological information about M from (the nerve of) the union of balls centered on P.

Sublevel set of the distance function $d_P : \mathbb{R}^d \to \mathbb{R}^+$ is defined by

$$d_P(x) = \inf_{p \in P} \|x - p\|$$

→ Compare the topology/geometry of the offsets

$$M^r = d_M^{-1}([0, r]) \text{ and } P^r = d_P^{-1}([0, r])$$

Regularity conditions? Sampling conditions?
The Hausdorff distance

The distance function to a compact $M \subset \mathbb{R}^d$, $d_M : \mathbb{R}^d \to \mathbb{R}_+$ is defined by

$$d_M(x) = \inf_{p \in M} \|x - p\|$$

The Hausdorff distance between two compact sets $M, M' \subset \mathbb{R}^d$:

$$d_H(M, M') = \sup_{x \in \mathbb{R}^d} |d_M(x) - d_{M'}(x)|$$
Medial axis and critical points

\[\Gamma_M(x) = \{ y \in M : d_M(x) = \|x - y\| \} \]

The Medial axis of \(M \):

\[\mathcal{M}(M) = \{ x \in \mathbb{R}^d : |\Gamma_M(x)| \geq 2 \} \]

\(x \in \mathbb{R}^d \) is a critical point of \(d_M \) iff \(x \) is contained in the convex hull of \(\Gamma_M(x) \).

Theorem: [Grove, Cheeger,...] Let \(M \subset \mathbb{R}^d \) be a compact set.

- if \(r \) is a regular value of \(d_M \), then \(d_M^{-1}(r) \) is a topological submanifold of \(\mathbb{R}^d \) of codim 1.
- Let \(0 < r_1 < r_2 \) be such that \([r_1, r_2]\) does not contain any critical value of \(d_M \).
 Then all the level sets \(d_M^{-1}(r), r \in [r_1, r_2] \) are isotopic and
 \[M^{r_2} \setminus M^{r_1} = \{ x \in \mathbb{R}^d : r_1 < d_M(x) \leq r_2 \} \]
 is homeomorphic to \(d_M^{-1}(r_1) \times (r_1, r_2] \).
The reach of M, $\tau(M)$, is the smallest distance from $M(M)$ to M:

$$\tau(M) = \inf_{y \in M(M)} d_M(y)$$

The weak feature size of M, $wfs(M)$, is the smallest distance from the set of critical points of d_M to M:

$$wfs(M) = \inf\{d_M(y) : y \in \mathbb{R}^d \setminus M \text{ and } y \text{ crit. point of } d_M\}$$
Reach, μ-reach and geometric inference
(Not developed in this course - just an example of result)

"Theorem:" Let $M \subset \mathbb{R}^d$ be such that $\tau = \tau(M) > 0$ and let $P \subset \mathbb{R}^d$ be such that $d_H(M, P) < c\tau$ for some (explicit) constant c. Then, for well-chosen (and explicit) r, P^r, and thus its nerve, is homotopy equivalent to M.

More generally, for compact sets with positive μ-reach ($\text{wfs}(M) \leq r_\mu(M) \leq \tau(M)$):

Topological/geometric properties of the offsets of K are stable with respect to Hausdorff approximation:

1. Topological stability of the offsets (CCSL'06, NSW'06).
2. Approximate normal cones (CCSL’08).
3. Boundary measures (CCSM’07), curvature measures (CCSLT’09), Voronoi covariance measures (GMO’09).
The probabilistic setting

Let \(M \subset \mathbb{R}^d \) be a \(k \)-dim compact submanifold with positive reach \(r_1(M) \geq \tau > 0 \).

Let \(\mu \) be a probability measure such that \(\text{Supp}(\mu) = M \) which is \((a,k)\)-standard: there exists \(r_0 \geq \tau/8 > 0 \) such that for any \(x \in M \), \(\mu(B(x,r)) \geq ar^k \).

Let \(X = \{x_1, \cdots, x_n\} \subset \mathbb{R}^d \) be \(n \) points i.i.d. sampled according to \(\mu \).

Goal: Upper bound \(P(X^r \not\sim M) \) where \(\sim \) denotes the homotopy equivalence.

Connection to support estimation problems: it is enough to bound \(P(d_H(X, M) > \varepsilon) \).
Minimax risk

Let $Q = Q(d, k, \tau, a)$ be the family of probability measures on \mathbb{R}^d such that for any $\mu \in Q$:
- $\text{Supp}(\mu)$ is a compact k-dimensional manifold with positive reach larger than τ;
- μ is (a, k)-standard.

Given $\mu \in Q$, $\text{Supp}(\mu) = M$, denote by \hat{M} any homotopy type estimator of M that takes as input n-uples of points from M and outputs a set whose homotopy type “estimates” the homotopy type of M (e.g. a union of balls).

$$R_n = \inf_{\hat{M}} \sup_{Q \in Q} Q^n(\hat{M} \neq M)$$

Theorem: There exist constants $C_a, C_a', C_a'' > 0$ such that

$$\frac{1}{8} \exp(-nC_a \tau^k) \leq R_n \leq C_a' \frac{1}{\tau^k} \exp(-nC_a'' \tau^k)$$
Minimax risk

Let $Q = Q(d, k, \tau, a)$ be the family of probability measures on \mathbb{R}^d such that for any $\mu \in Q$:
- $\text{Supp}(\mu)$ is a compact k-dimensional manifold with positive reach larger than τ;
- μ is (a, k)-standard.

Given $\mu \in Q$, $\text{Supp}(\mu) = M$, denote by \hat{M} any homotopy type estimator of M that takes as input n-uples of points from M and outputs a set whose homotopy type “estimates” the homotopy type of M (e.g. a union of balls).

\[
R_n = \inf_{\hat{M}} \sup_{Q \in \mathcal{Q}} Q^n(\hat{M} \not\sim M)
\]

Theorem: There exist constants $C_a, C'_a, C''_a > 0$ such that

\[
\frac{1}{8} \exp(-nC_a \tau^k) \leq R_n \leq C'_a \frac{1}{\tau^k} \exp(-nC''_a \tau^k)
\]
More details on geometric inference and minimax convergence rates
Reconstruction theorem: (Weak version)
Let $K \subset \mathbb{R}^d$ be a compact set s.t. $r_\mu = r_\mu(K) > 0$ for some $\mu > 0$. Let $K' \subset \mathbb{R}^d$ be such that $d_H(K, K') = \varepsilon < \kappa r_\mu(K)$ with $\kappa < \frac{\mu^2}{5\mu^2 + 12}$ Then for any d, d' s.t.

$$0 < d < \text{wfs}(K) \quad \text{and} \quad \frac{4\varepsilon}{\mu^2} \leq d' < r_\mu - 3\varepsilon$$

the offsets K'^d and K^d are homotopy equivalent.
Reconstruction theorem: smooth case

Let $M \subset \mathbb{R}^d$ be a k-dimensional compact submanifold with positive reach $r_1(M) \geq \tau > 0$.

Lemma: for any $0 < r < \tau$, the offset M^r deformation retracts on M. In particular, M^r and M are homotopy equivalent.

Reconstruction theorem:
Let $X \subset \mathbb{R}^d$ be a compact set such that $d_H(M, X) = \varepsilon < \frac{1}{17} \tau$ Then for any r s.t. $4\varepsilon \leq r < \tau - 3\varepsilon$ the offset X^r and M are homotopy equivalent.

Rem: A more careful analysis leads to slightly better bounds [NSW 2008, CL 2008].
Let $M \subset \mathbb{R}^d$ be a k-dim compact submanifold with positive reach $r_1(M) \geq \tau > 0$.

Let P be a probability measure such that $\text{Supp}(P) = M$ which is (a, k)-standard: there exists $r_0 \geq \tau/8 > 0$ such that for any $x \in M$, $P(B(x, r)) \geq ar^k$.

Let $X = \{x_1, \cdots, x_n\} \subset \mathbb{R}^d$ be n points i.i.d. sampled according to P.

Goal: Upper bound $P(X^{r'} \not\cong M)$ where \cong denotes the homotopy equivalence.
Lemma: Let \(\{A_i\}_{i=1}^{l} \) be a finite collection of measurable sets such that \(M \subset \bigcup_{i=1}^{l} A_i \) and \(P(A_i) > \alpha \) for some \(\alpha > 0 \).
Let \(X = \{x_1, \ldots, x_n\} \) a set of \(n \) i.i.d. points sampled according to \(P \).
Given \(\delta \in (0, 1) \), if \(n \geq \frac{1}{\alpha} \left(\log(l) + \log\left(\frac{1}{\delta}\right) \right) \) then with probability larger than \(1 - \delta \), one has \(X \cap A_i \neq \emptyset \) for any \(i = 1, \ldots, l \).
In other words,
\[
P(X \cap A_i = \emptyset, \text{ for some } i = 1, \ldots, l) \leq 1 - e^{-n\alpha}.
\]

Proof:
- Let \(E_i \) be the event \(X \cap A_i = \emptyset \)
- \(P(E_i) = (1 - P(A_i))^n \leq (1 - \alpha)^n \)
- \(P(\bigcup E_i) \leq \sum P(E_i) \leq l(1 - \alpha)^n \)
- Use that \((1 - \alpha) \leq e^{-\alpha} \)

Idea: Take \(A_i = B(x_i, r) \) and bound \(l \).
Covering and packing numbers

\[C_M(r) = \text{minimum number of balls of radius } r \text{ needed to cover } M \]

\[P_M(r) = \text{maximum number of balls of radius } r \text{ and center on } M \text{ that may be packed into } M \text{ without overlap in } M \]

\[= \max \{ k : \exists y_1 \cdots y_k \in M \text{ s.t. } \forall i \neq j, B(y_i, r) \cap B(y_j, r) \cap M = \emptyset \}. \]

Lemma:

\[P_M(2r) \leq C_M(2r) \leq P_M(r) \]

Corollary: for any \(r \leq 2r_0 \),

\[C_M(r) \leq P_M\left(\frac{r}{2}\right) \leq \frac{2^d}{a} r^{-k} \]
An upper bound

1. As soon as \(d_H(X_n, M) < \frac{\tau}{8} \), one can recover the homotopy type of \(M \) from \(X^{r'}_n \) for well chosen \(r' \).

2. Let \(r = \frac{\tau}{8} \). Then
 \[
 C_M(r) \leq \frac{2^{4k}}{a} \left(\frac{1}{\tau} \right)^k
 \]

3. Let \(B_1, \cdots B_l \) a covering of \(M \) by balls of radius \(r \) with \(l \leq \frac{2^{4k}}{a} \left(\frac{1}{\tau} \right)^k \).
 For any \(i = 1, \cdots, l \), \(P(B_i) \geq \alpha = ar^k = \frac{a}{2^{3k}} \tau^k \).

4. Then
 \[
 P(d_H(X_n, M) > \frac{\tau}{8}) \leq le^{-n\alpha} \leq \frac{2^{4k}}{a} \frac{1}{\tau^k} e^{-n\frac{a}{2^{3k}} \tau^k}
 \]

Corollary: Let \(a' = \frac{a}{2^{3k}} \) and let \(r' \in \left(\frac{7\tau}{16}, \frac{5\tau}{8} \right) \). then
 \[
 P(X^{r'} \not\simeq M) \leq \frac{2^k}{a'} \frac{1}{\tau^k} e^{-na' \tau^k}
 \]

Rem: This bound only depends on \(a, k \) and \(\tau \).
Minimax risk

Let $Q = Q(d, k, \tau, a)$ be the family of probability measures on \mathbb{R}^d such that for any $Q \in Q$:
- $\text{Supp}(Q)$ is a compact k-dimensional manifold with positive reach larger than τ;
- Q is (a, k)-standard.

Given $Q \in Q$, $\text{Supp}(Q) = M$, denote by \hat{M} any homotopy type estimator of M that takes as input n-uples of points from M and outputs a set whose homotopy type “estimates” the homotopy type of M (e.g. a union of balls).

$$R_n = \inf_{\hat{M}} \sup_{Q \in Q} Q^n(\hat{M} \not\sim M)$$

Proposition:

$$R_n \leq 2^k \frac{1}{a'} \frac{1}{\tau^k} \exp(-n a' \tau^k)$$
Minimax risk

Let $Q = Q(d, k, \tau, a)$ be the family of probability measures on \mathbb{R}^d such that for any $Q \in Q$:
- $\text{Supp}(Q)$ is a compact k-dimensional manifold with positive reach larger than τ;
- Q is (a, k)-standard.

Given $Q \in Q$, $\text{Supp}(Q) = M$, denote by \hat{M} any homotopy type estimator of M that takes as input n-uples of points from M and outputs a set whose homotopy type “estimates” the homotopy type of M (e.g. a union of balls).

$$R_n = \inf_{\hat{M}} \sup_{Q \in Q} Q^n(\hat{M} \not\sim M)$$

Proposition:

$$R_n \leq \frac{2^k}{a'} \frac{1}{\tau^k} \exp(-na'\tau^k)$$

Lower bound for R_n?
Lemma: Let Q be a set of probability distributions and let $\theta(Q)$ taking values in a metric space with metric ρ. Let $Q_1, Q_2 \in Q$ be any pair of distributions. Let $x_1 \cdots x_n$ be n points i.i.d sampled from some $Q \in Q$. Then

$$\inf_{\hat{\theta}} \sup_{Q \in Q} \mathbb{E}_{Q^n}[\rho(\hat{\theta}(x_1, \cdots, x_n), \theta(Q))] \geq \frac{1}{4} \rho(\theta(Q_1), \theta(Q_2))(1 - TV(Q_1, Q_2))^{2n}$$

where Q^n is the product measure and $TV(., .)$ is the total variation distance.
Lecam lemma

Lemma: Let \mathcal{Q} be a set of probability distributions and let $\theta(\mathcal{Q})$ taking values in a metric space with metric ρ. Let $\mathcal{Q}_1, \mathcal{Q}_2 \in \mathcal{Q}$ be any pair of distributions. Let $x_1 \cdots x_n$ be n points i.i.d sampled from some $\mathcal{Q} \in \mathcal{Q}$. Then

$$\inf_{\hat{\theta}} \sup_{\mathcal{Q} \in \mathcal{Q}} \mathbb{E}_{\mathcal{Q}^n} \left[\rho(\hat{\theta}(x_1, \cdots, x_n), \theta(\mathcal{Q})) \right] \geq \frac{1}{4} \rho(\theta(\mathcal{Q}_1), \theta(\mathcal{Q}_2))(1 - TV(\mathcal{Q}_1, \mathcal{Q}_2))^{2n}$$

where \mathcal{Q}^n is the product measure and $TV(., .)$ is the total variation distance.

In our case:
- \mathcal{Q} as before
- metric space: the set of homotopy equivalent classes of compact subsets of \mathbb{R}^d with $\rho(K, K') = 1$ if K and K' are not homotopy equivalent, and 0 otherwise.
Lower bound

\(M_1 = S^k(0, R) \) : a \(k \) dim. sphere of radius \(R > \tau \).

\(M_2 = M_1 \cup S^k(\tau) \) where \(S^k(\tau) \) is at distance at least \(2\tau \) from \(M_1 \).

\(v_k = \text{vol}(S^k(0, 1)) \)

\(Q_1: \) unif density (w.r.t. \(k \)-vol) \(\rightarrow f_1 = \frac{1}{v_k R^k} \)

\(Q_2: \) unif density (w.r.t. \(k \)-vol) \(\rightarrow f_2 = \frac{1}{v_k (R^k + \tau^k)} \)

\(TV(Q_1, Q_2) = Q_2(M_2 \backslash M_1) - Q_1(M_2 \backslash M_1) \)

\[= f_2 v_k \tau^k - 0 = \frac{\tau^d}{R^k + \tau^k} \leq C_R \tau^k \]

So, \((1 - TV(Q_1, Q_2))^2n \geq (1 - C_a \tau^k)^2n \)

\[R_n \geq \frac{1}{8} (1 - C_a \tau^k)^{2n} \geq \frac{1}{8} \exp(-4C_a n \tau^k) \]
Affinity, total variation and Hellinger distances

Let P and Q be two (σ-finite, Borel) probability measures with density p and q with respect to any third measure that dominates both P and Q.

Definition: Let $p \wedge q(x) = \min(p(x), q(x))$. The **affinity** between P and Q is

$$
\|P \wedge Q\| = \int p \wedge q = 1 - \frac{1}{2} \int |p - q|
$$

Definition: The **total variation** distance between P and Q is defined as

$$
TV(P, Q) = \sup_{A \text{ borel set}} |P(A) - Q(A)|
= P(G) - Q(G) \text{ where } G = \{x : p(x) \geq q(x)\}
= 1 - \int p \wedge q = 1 - \|P \wedge Q\|
$$

Definition: The **Hellinger distance** between P and Q is defined by

$$
h^2(P, Q) = \int (\sqrt{p} - \sqrt{q})^2 = 2(1 - \int \sqrt{pq})
$$
Proof of Le Cam lemma

Let $\hat{\theta}$ and n be fixed.

$$\sup_{Q \in \mathcal{Q}} \mathbb{E}_Q^n (\rho(\hat{\theta}, \theta(Q))) \geq \frac{1}{2} \left[\mathbb{E}_{Q_1^n} (\rho(\hat{\theta}, \theta(Q_1))) + \mathbb{E}_{Q_2^n} (\rho(\hat{\theta}, \theta(Q_2))) \right]$$
Proof of Le Cam lemma

Let $\hat{\theta}$ and n be fixed.

$$\sup_{Q \in \mathcal{Q}} \mathbb{E}_Q^n (\rho(\hat{\theta}, \theta(Q))) \geq \frac{1}{2} \left[\mathbb{E}_{Q_1}^n (\rho(\hat{\theta}, \theta(Q_1))) + \mathbb{E}_{Q_2}^n (\rho(\hat{\theta}, \theta(Q_2))) \right]$$

Let μ be a measure dominating Q_1 and Q_2.

$$A = \int \rho(\hat{\theta}, \theta(Q_1))q_{1,n}d\mu^n + \int \rho(\hat{\theta}, \theta(Q_2))q_{2,n}d\mu^n$$
Proof of Le Cam lemma

Let $\hat{\theta}$ and n be fixed.

$$\sup_{Q \in \mathcal{Q}} \mathbb{E}_Q^n (\rho(\hat{\theta}, \theta(Q))) \geq \frac{1}{2} \left[\mathbb{E}_{Q_1}^n (\rho(\hat{\theta}, \theta(Q_1))) + \mathbb{E}_{Q_2}^n (\rho(\hat{\theta}, \theta(Q_2))) \right]$$

Let μ be a measure dominating Q_1 and Q_2.

$$A = \int \rho(\hat{\theta}, \theta(Q_1)) q_{1,n} d\mu^n + \int \rho(\hat{\theta}, \theta(Q_2)) q_{2,n} d\mu^n$$

But $\rho(\hat{\theta}, \theta(Q_1)) + \rho(\hat{\theta}, \theta(Q_2)) \geq \rho(\theta(Q_1), \theta(Q_2))$
Proof of Le Cam lemma

Let $\hat{\theta}$ and n be fixed.

$$\sup_{Q \in \mathcal{Q}} \mathbb{E}_Q^n (\rho(\hat{\theta}, \theta(Q))) \geq \frac{1}{2} \left[\mathbb{E}_{Q_1^n} (\rho(\hat{\theta}, \theta(Q_1))) + \mathbb{E}_{Q_2^n} (\rho(\hat{\theta}, \theta(Q_2))) \right]$$

Let μ be a measure dominating Q_1 and Q_2.

$$A = \int \rho(\hat{\theta}, \theta(Q_1)) q_{1,n} d\mu^n + \int \rho(\hat{\theta}, \theta(Q_2)) q_{2,n} d\mu^n$$

But $\rho(\hat{\theta}, \theta(Q_1)) + \rho(\hat{\theta}, \theta(Q_2)) \geq \rho(\theta(Q_1), \theta(Q_2))$

$$A \geq \rho(\theta(Q_1), \theta(Q_2)) \int q_{1,n} \wedge q_{2,n} d\mu^n = \rho(\theta(Q_1), \theta(Q_2)) \| Q_1^n \wedge Q_2^n \|$$
Proof of Le Cam lemma

Let \(\hat{\theta} \) and \(n \) be fixed.

\[
\sup_{Q \in \mathcal{Q}} \mathbb{E}_Q^n (\rho(\hat{\theta}, \theta(Q))) \geq \frac{1}{2} \left[\mathbb{E}_{Q_1}^n (\rho(\hat{\theta}, \theta(Q_1))) + \mathbb{E}_{Q_2}^n (\rho(\hat{\theta}, \theta(Q_2))) \right]
\]

Let \(\mu \) be a measure dominating \(Q_1 \) and \(Q_2 \).

\[
A = \int \rho(\hat{\theta}, \theta(Q_1)) q_1, n d\mu^n + \int \rho(\hat{\theta}, \theta(Q_2)) q_2, n d\mu^n
\]

But \(\rho(\hat{\theta}, \theta(Q_1)) + \rho(\hat{\theta}, \theta(Q_2)) \geq \rho(\theta(Q_1), \theta(Q_2)) \)

\[
A \geq \rho(\theta(Q_1), \theta(Q_2)) \int q_1, n \wedge q_2, n d\mu^n = \rho(\theta(Q_1), \theta(Q_2)) \| Q_1^n \wedge Q_2^n \|
\]

Lemma:

\[
\| Q_1^n \wedge Q_2^n \| \geq \frac{1}{2} \left(1 - \frac{1}{2} \int |q_1 - q_2| \right)^{2n} = \frac{1}{2} \| Q_1 \wedge Q_2 \|^{2n}
\]
Proof of Le Cam lemma

Lemma:
\[\| Q_1^n \land Q_2^n \| \geq \frac{1}{2} \left(1 - \frac{1}{2} \int |q_1 - q_2| \right)^{2n} = \frac{1}{2} \| Q_1 \land Q_2 \|^{2n} \]

Proof:

Claim A: \(h^2(P, Q) \leq \int |p - q| = l_1(P, Q) \)

Claim B: \(h^2(P^n, Q^n) = 2 \left(1 - [1 - \frac{h^2(P, Q)}{2}]^n \right) \)

Claim C: \(\left(1 - \frac{h^2(P, Q)}{2} \right)^2 \leq 2 \| P \land Q \| \)

\[
\| Q_1^n \land Q_2^n \| \geq \frac{1}{2} \left(1 - \frac{h^2(Q_1^n, Q_2^n)}{2} \right)^2 \quad (C)
\]
\[
= \frac{1}{2} \left(1 - \frac{h^2(Q_1, Q_2)}{2} \right)^{2n} \quad (B)
\]
\[
\geq \frac{1}{2} \left(1 - \frac{l_1(Q_1, Q_2)}{2} \right)^{2n} = \frac{1}{2} \| Q_1 \land Q_2 \|^{2n} \quad (A)
\]
References

