Nearest Neighbors Algorithms in Euclidean and Metric Spaces

Frederic.Cazals@inria.fr
Introduction

kd-trees and basic search algorithms

kd-trees and random projection trees: improved search algorithms

kd-trees and random projection trees: diameter reduction

Metric trees and variants

Distance concentration phenomena: an introduction

A metric from optimal transportation: the earth mover distance
Introduction

kd-trees and basic search algorithms

kd-trees and random projection trees: improved search algorithms

kd-trees and random projection trees: diameter reduction

Metric trees and variants

Distance concentration phenomena: an introduction

A metric from optimal transportation: the earth mover distance
Nearest Neighbors Algorithms in Euclidean and Metric Spaces

Introduction

kd-trees and basic search algorithms

kd-trees and random projection trees: improved search algorithms

kd-trees and random projection trees: diameter reduction

Metric trees and variants

Distance concentration phenomena: an introduction

A metric from optimal transportation: the earth mover distance
Applications

A core problem in the following applications:

- clustering, k-means algorithms
- information retrieval in data base
- information theory: vector quantization encoding
- classification in learning theory
- ...
Nearest Neighbors: Getting Started

- **Input:** a set of points (aka sites) \(P \) in \(\mathbb{R}^d \), a query point \(q \)
- **Output:** \(\text{nn}(q, P) \), the point of \(P \) nearest to \(q \)

\[
d(q, P) = d(q, \text{nn}(q, P)).
\]
The Euclidean Voronoi Diagram and its Dual the Delaunay Triangulation

Key properties:

- Voronoi cells of all dimensions
- Voronoi - Delaunay via the nerve construction
- Duality: cells of dim. $d - k$ vs cells of dimension k
- The *empty ball property*
Nearest Neighbors Using Voronoi Diagrams

▷ Nearest neighbor by walking
- start from any point \(p \in P \)
- while \(\exists \) a neighbor \(n(p) \) of \(p \) in \(\text{Vor}(P) \)
 closer to \(q \) than \(p \),
 step to it: \(p = n(p) \)
- done \(\text{nn}(q) = p \)

▷ Argument: the Delaunay neighborhood of a point is complete
\(\text{Vor}(p, P) = \) cell of \(p \) in \(\text{Vor}(P) \)
\(N(p) = \) set of neighbors of \(p \) in \(\text{Vor}(P) \)
\(N'(p) = \{p\} \cup N(p) \)
\[\text{Vor}(p, N'(p)) = \text{Vor}(p, P) \]
The Nearest Neighbors Problem: Overview

- **Strategy**: preprocess point set \(P \) of \(n \) points in \(\mathbb{R}^d \) into a data structure (DS) for fast nearest neighbor queries answer.

- **Ideal wish list:**
 - The DS should have linear size
 - A query should have sub-linear complexity i.e. \(o(n) \)
 - When \(d = 1 \): balanced binary search trees yield \(O(\log n) \)

- **Core difficulties:**
 - *curse of dimensionality*: typically space \(\mathbb{R}^d \) has a high \(d \) dimension and \(n \gg d \).
 - Interpretation (meaningfull-ness) of distances in high dimensional spaces.
The Nearest Neighbors Problem: Elementary Options

▷ The trivial solution:
$O(dn)$ space, $O(dn)$ query time

▷ Voronoi diagram

\[d = 2, \quad O(n) \text{ space} \quad \quad O(\log n) \text{ query time}\]
\[d > 2, \quad O\left(n^{\left\lceil \frac{d}{2} \right\rceil}\right) \text{ space}\]

→ Under locally uniform condition on point distribution
the 1-skeleton Delaunay hierarchy achieves:
$O(n)$ space, $O(c^d \log n)$ expected query time.

▷ Spatial partitions based on trees
The Nearest Neighbors Problem: Variants

▶ Variants:

▶ k-nearest neighbors: find the k points in P that are nearest to q
▶ given $r > 0$, find the points in P at distance less than r from q
▶ Various metrics
 ▶ L_2, L_p, L_∞
 ▶ String: Hamming distance
 ▶ Images, graphs: optimal transport
 ▶ Point sets: distances via optimal alignment

▶ Main contenders:

▶ Tree like data structures:
 ▶ kd-trees
 ▶ quad-trees
 ▶ metric trees
▶ Locally Sensitive Hashing
▶ Hierarchical k-means
Main Contenders: Typical Results

▷ Four main contenders

▷ Winners: size effect

Randomized kd-trees and forest: data structures which are simple, effective, versatile, controlled (in terms of quality performances).

Ref: Muja and Lowe, VISAPP 2009
Ref: O’Hara and Draper, Applications of Computer Vision (WACV), 2013
Nearest Neighbors Algorithms in Euclidean and Metric Spaces

Introduction

kd-trees and basic search algorithms

kd-trees and random projection trees: improved search algorithms

kd-trees and random projection trees: diameter reduction

Metric trees and variants

Distance concentration phenomena: an introduction

A metric from optimal transportation: the earth mover distance
kd-tree for a collection of points (sites) P

- **Definition:**
 - A binary tree
 - Any internal node implements a spatial partition induced by a hyperplane H, splitting the point cloud into two equal subsets
 - right subtree: points p on one side of H
 - left subtree: remaining points
 - The process halts when a node contains $\leq n_0$ points
kd-tree for a collection of points P

▷ Algorithm build_kdTree(S)

$n \leftarrow newNode$

if $|S| \leq n_0$ then
 Store the point of S into a container of n
 return n

else
 $dir = depth \mod d$
 Project the points of S along direction dir
 Compute the median m
 💶 Split into two equal subsets
$n.sample \leftarrow$ sample v realizing the median value
$L \leftarrow$ point from $S \{v\}$ whose dirth coord is $< m$
$R \leftarrow$ point from $S \{v\}$ whose dirth coord is $\geq m$
$n.left \leftarrow$ build_kdTree(L)
$n.right \leftarrow$ build_kdTree(R)

return n
kd-tree: search

Three strategies:

- the defeatist search: simple, but may fail (Nb: see later, distance concentration phenomena)
- the descending search: always succeeds, but may take time
- the priority search: strikes a compromise between the defeatist and descending strategies
kd-tree search: the defeatist search

▷ Key idea: recursively visit the subtree containing the query point
▷ Algorithm defeatist_search_kdTree: the defeatist search in a kd tree.

Require: Maintains $nn(q)$ of q, and $\tau = d(q, nn(q))$

$n \leftarrow \text{root}; \tau \leftarrow d(q, n.\text{sample})$

while $n \neq \text{NIL}$ do

Possibly update $nn(q)$ using $n.\text{sample}$, and τ

if $q \in \text{Domain of } L$ then

defeatist_search_kdTree($n.\text{left}$)

if $q \in \text{Domain of } R$ then

defeatist_search_kdTree($n.\text{right}$)

Complexity: assuming leaves of size n_0 – depth satisfies $2^h n_0 = n$

▷ search cost: $O(n_0 + \log(n/n_0))$

▷ Caveat: failure
kd-tree search: the descending search

- Key idea: visit one or two subtree, depending on the distance $d(q, nn(q))$ computed
- Algorithm descending_search_kdTree: the descending search in a kd tree.

Require: Maintains $nn(q)$ of q, and $\tau = d(q, nn(q))$

Require: Uses the domain of a node n (an intersection of half-spaces)

$n \leftarrow \text{root}$

$\tau \leftarrow d(q, n\.sample)$

while $n \neq \text{NIL}$ do
 Possibly update $nn(q)$ using $n\.sample$
 if $\text{Sphere}(q, \tau) \cap \text{Domain of } L$ then
 descending_search_kdTree($n\.left$)
 if $\text{Sphere}(q, \tau) \cap \text{Domain of } R$ then
 descending_search_kdTree($n\.right$)

The value of τ ensures that the top cell will be visited.
kd-tree search: the priority search (idea)

- Priority search, key ideas:
 - Uses a priority queue to store nodes (regions), with a priority inversely proportional to the distance to q.
 - Upon popping a node, the corresponding subtree is descended to visit the node closest to q. Upon descending, $nn(q)$ is updated.
 - While descending, the child not visited is possibly enqueued,
kd-tree search: priority search (algorithm)

- Uses a priority queue Q to enumerate nodes by increasing distance to query q

Ensure: Maintains $nn(q)$ of q, and $\tau = d(q, nn(q))$

1. $nn(q) \leftarrow root.sample$
2. $Q.insert(root)$
3. **while** True **do**
4. **if** $Q.empty()$ **then**
5. **return**
6. \{Node with highest priority\}
7. \[r \leftarrow Q.pop()\]
8. \{The nearest box is too far wrt $nn(q)$\}
9. **if** $d(bbox(r), q) > \tau$ **then**
10. **return**
11. \{Descend into box nearest to q, \} \{and possibly enqueue the second node\}
12. **for** Nodes n on the path from r to the box nearest to q **do**
13. \{Possibly update $nn(q)$ and τ\}
14. \[d \leftarrow d(q, r.sample)\]
15. **if** $d < \tau$ **then**
16. $nn(q) \leftarrow r.sample; \tau \leftarrow d$
17. \{Possibly enqueue the second subtree\}
18. $f \leftarrow$ farther subtree of r w.r.t q
19. **if** $d(bbox(f), q) \leq \tau$ **then**
20. \{Insert with priority inverse to distance to q\}
21. $Q.insert(f, 1/d)$
kd-tree search: priority search (analysis)

- Pros and cons:
 - ++ nn always found
 - ++ linear storage
 - – nn often found at an early stage ... then time spent in useless recursion
 - – In the worst-case, all nodes are visited.
 - – Maintaining the priority queue Q has a cost

- Improvements:
 - Stopping the recursion once a fraction of nodes has been visited
 - Backing up defeatist search with overlapping cells
 - Combining multiple randomized kd-trees
References

Nearest Neighbors Algorithms in Euclidean and Metric Spaces

Introduction

d-trees and basic search algorithms

d-trees and random projection trees: improved search algorithms

d-trees and random projection trees: diameter reduction

Metric trees and variants

Distance concentration phenomena: an introduction

A metric from optimal transportation: the earth mover distance
Random projection trees (RPTrees)

Aka Random partition trees (RPTrees!)

- kd-tree: axis parallel splits

- Splitting along a random direction $U \in S^{d-1}$: project onto U and split at the (perturbed) median

Resulting spatial partition
Improvements aiming at fixing the defeatist search

- **Defeatist search**: (early) choice of one side is risky

- **Simple improvements**:
 - Allow overlap between cells in a node
 selected points stored twice: spill trees
 - Use randomization to obtain different partitions:
 several spatial partitions may rescue the defeatist search:
 - Use several trees, and pick the best neighbor(s)
Random projection trees: generic algorithm

Below: version where one also jitters the median

Algorithm build_RPTree(S)

Ensure: Build the RPTree of a point set S

if $|S| \leq n_0$ then

$n \leftarrow$ newNode

Store S into n

return n

Pick U uniformly at random from the unit sphere

Pick β uniformly at random from $[1/4, 3/4]$

Let v be the β-fractile point on the projection of S onto U

$Rule(x) = \text{left if } < x, U > < v, \text{ otherwise right}$

$left_tree \leftarrow \text{build_RPTree}\{x \in S : Rule(x) = \text{left}\}$

$right_tree \leftarrow \text{build_RPTree}\{x \in S : Rule(x) = \text{right}\}$

return $(Rule(\cdot), left_tree, right_tree)$

Remark: RP trees have the following property – more later: diameter of the cells decrease down the tree at a rate depending on the intrinsic dimension of the data.
RPTrees: varying splits and their applications

- **Various types of splits possible**
 - Randomized partition tree:
 - exact split
 - Randomized partition tree:
 - perturbed split
 - Spill tree with overlapping split:
 - regular spill tree
 - virtual spill tree

\[
\frac{1}{2} \quad 1/2 \quad \beta \quad 1 - \beta \quad 1/2 + \alpha
\]

- **NB:** splits monitor the tree structure and the search route

- **Spill trees:**
 - Regular spill trees:
 - overlapping cells yield redundant storage of points
 - Virtual spill trees:
 - median splits used – no redundant storage
 - query routed in multiple leaves using overlapping splits

- **Summary: tree creation versus search**

<table>
<thead>
<tr>
<th></th>
<th>Routing data</th>
<th>Routing queries (defeatist style)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RP tree</td>
<td>Perturbed split</td>
<td>Perturbed split</td>
</tr>
<tr>
<td>Regular spill tree</td>
<td>Overlapping split</td>
<td>Median split</td>
</tr>
<tr>
<td>Virtual spill tree</td>
<td>Median split</td>
<td>Overlapping split</td>
</tr>
</tbody>
</table>
Regular spill trees: size

▷ Tree depth: assume that
 ▷ the number of nodes transmitted to a son decreases by a factor at least \(\beta = 1/2 + \alpha \),
 ▷ a leaf accommodates up to \(n_0 \) points

Then: the tree depth \(l \) satisfies \(\beta^l n \leq n_0 \) i.e. \(l = O(\log_{1/\beta} \frac{n}{n_0}) \).

▷ Tree size:

\[
n_02^l = n_02^{\log_{1/\beta} \frac{n}{n_0}}.
\]

▷ Examples:
 ▷ \(\alpha = 0.05 \): \(O(n^{1.159}) \).
 ▷ \(\alpha = 0.1 \): \(O(n^{1.357}) \).
Spill trees: compromising Storage vs NN searches

- Spill trees: overlapping splits yield superlinear storage
- Yet, search mail fail too:

 \[p_1 = \text{nn}(q) \in \text{Left} \quad q \in \text{right} \]

- \(p_1 = \text{nn}(q) \): routed in left subtree only
- query point \(q \): routed in right subtree only
Failure of the defeatist search

- **Goal:** probability that a defeatist search does not return the exact nearest neighbor(s)?

- The event to be analyzed, denoted \(\text{Err} \):
 - \(k = 1 \): the NN query does not return \(p_{(1)} \)
 - \(k > 1 \): the NN query does not return \(p_{(1)}, \ldots, p_{(k)} \)
Qualifying the hardness of nearest neighbor queries

▶ Notations:
 ▶ Dataset $P = p_1, \ldots, p_n$
 ▶ Sorted dataset wrt q: $p(1), \ldots, p(n)$

$$\Phi(q, P) = \frac{1}{n} \sum_{i=2}^{n} \frac{\|q - p(1)\|}{\|q - p(i)\|}.$$ \hspace{1cm} (2)

▶ Extreme cases:
 ▶ $\Phi \sim 0$: p_1 isolated, finding it should be easy
 ▶ $\Phi \sim 1$: points equidistant from q; finding $p(1)$ should be hard

▶ Rationale: in using RPT and spill trees with the defeatist search, the probability of success should depend upon Φ.

$
\begin{array}{c}
\end{array}$
Generalizations of the function Φ

▷ **Rationale:** function Φ shall be used for nodes containing a subset of the database

▷ For a cell containing m points – evaluate the remaining points in that cell:

$$\Phi_m(q, P) = \frac{1}{m} \sum_{i=2}^{m} \frac{\|q - p(i)\|}{\|q - p(1)\|}. \quad (3)$$

▷ If one is interested in the k nearest neighbors – evaluate the remaining points too:

$$\Phi_{k,m}(q, P) = \frac{1}{m} \sum_{i=k+1}^{m} \frac{\|q - p(1)\| + \cdots + \|q - p(k)\|}{\|q - p(i)\|}. \quad (4)$$
Random projections: relative position of three points

- In the sequel: q, x, y: 3 points with $\|q - x\| \leq \|q - y\|

- Colinearity index q, x, y:

$$\text{coll}(q, x, y) = \frac{\langle q - x, y - x \rangle}{\|q - x\| \|y - x\|}$$

- Event E: $\langle y, U \rangle$ falls strictly in-between $\langle q, U \rangle$ and $\langle x, U \rangle$

Lemma 1. Consider $q, x, y \in \mathbb{R}^d$ and $\|q - x\| \leq \|q - y\|$. The probability over random directions U, of E, satisfies:

$$\mathbb{P}[E] = \frac{1}{\pi} \arcsin \frac{\|q - x\|}{\|q - y\|} \sqrt{1 - \text{coll}(q, x, y)^2}$$

Corollary 2.

$$\frac{1}{\pi} \frac{\|q - x\|}{\|q - y\|} \sqrt{1 - \text{coll}(q, x, y)^2} \leq \mathbb{P}[E] \leq \frac{1}{2} \frac{\|q - x\|}{\|y - x\|}$$
Demo with DrGeo

Compulsory tools for geometers

- **DrGeo**: http://www.drgeo.eu/
Random projections: separation of neighbors

Theorem 3. Consider $q, p_1, \ldots, p_n \in \mathbb{R}^d$, and a random direction U. The expected fraction of the projected p_i that fall between q and $p_{(1)}$ is at most

$$\frac{1}{2} \Phi(q, P).$$

Proof. Let Z_i be the event: $p(i)$ falls between q and $p_{(1)}$ in the projection. By the corollary 2, $\mathbb{P}[Z_i] \leq (1/2) \frac{\|q - p_{(1)}\|}{\|q - p(i)\|}$. Then, apply the linearity of expectation.

Theorem 4. Let $S \subset P$ with $p_{(1)} \in S$. If U is chosen uniformly at random, then $0 < \alpha < 1$, the probability that an α fraction of the projected points in S fall between q and $p_{(1)}$ is bounded by

$$\frac{1}{2\alpha} \Phi_{|S|}(q, P).$$

Proof. Previous Thm + Markov’s inequality.
Regular spill trees

▶ Recap:
 ▶ Storage: point possibly stored twice using overlapping split with parameter α; depth is $O(\log n/n_0)$
 ▶ Query routing: routing to a single leaf

Theorem 5. Let $\beta = 1/2 + \alpha$. The error probability is:

$$
\mathbb{P}[\text{Err}] \leq \frac{1}{2\alpha} \sum_{i=0,\ldots,l} \Phi_{\beta^i n}(q, P)
$$

▶ Proof, steps:
 ▶ Internal node at depth i contains $\beta^i n$ points
 ▶ For such a node: proba to have q separated from $p_{(1)}$
 $p_{(1)}$ transmitted to one side of the split \Rightarrow a fraction α of the points of the cell fall between q and $p_{(1)}$: this occurs with proba $(1/2\alpha)\Phi_{\beta^i n}(q, P)$
 ▶ To conclude: union-bound over all levels i
Virtual spill trees

Recap:

- Storage: each point stored in a single leaf with median splits; depth is $O(\log n/n_0)$
- Query routing: with overlapping splits of parameter α

Theorem 6. Let $\beta = 1/2$. The error probability is:

$$P[\text{Err}] \leq \frac{1}{2\alpha} \sum_{i=0,\ldots,l} \Phi_{\beta^n}(q, P)$$ \hspace{1cm} (9)

Proof, mutatis mutandis:

- Consider the path root - leaf of $p(1)$
- For a level, bound the proba. to have q routed to one side only
- Add up for all levels
Random projection trees

Recap:
- Pick a random direction and project points onto it
- Split at the β fractile for $\beta \in (1/4, 3/4)$
- Storage: each point mapped to a single leaf
- Query routing: query point mapped to a single leaf too

Theorem 7. Consider an RP tree for P. Define $\beta = 3/4$, and
\[l = \log_{1/\beta}(n/n_0). \]
One has:
\[
\mathbb{P} \left[\text{NN query does not return } \text{p}(1) \right] \leq \sum_{i=0,\ldots,l} \Phi_{\beta^i n} \ln \frac{2e}{\Phi_{\beta^i n}} \tag{10}
\]

Proof, key steps:
- F: fraction of points separating q and $\text{p}(1)$ in projection
- Since split chosen at random in interval of mass 1/2: it separates q and $\text{p}(1)$ with proba. $F/(1/2)$
- Integrating yields the result for one level; then, union bound.
Theorem 8. (Spill trees) Consider a spill tree of depth \(l = \log \frac{1}{\beta} \left(\frac{n}{n_0} \right) \), with

- \(\beta = \frac{1}{2} + \alpha \) for regular spill trees,
- and \(\beta = \frac{1}{2} \) for virtual spill trees.

If this tree is used to answer a query \(q \), then:

\[
\Pr[\text{Err}] \leq \frac{1}{2\alpha} \sum_{i=0,\ldots,l} \Phi_{\beta^n}(q, P)
\]

Nb: \(\beta^n \): number of data points found in an internal node at depth \(i \)
Randomization is critical for separation

Separation property fails in using coordinate axis (kd-trees)

Consider the following point set:

- x_1: the all-ones vector
- For each $x_i, i > 1$: pick a random coord and set it to a large value M; set the remaining coords to uniform random numbers is $(0, 1)$

This examples rules out kd-trees: kd-trees separate q and $p_{(1)}$, even though function Φ is arbitrarily small

- The NN of q (=origin) is x_1
- Upon picking a random direction (a coord. axis), the fraction of points falling in-between q and x_1 is arbitrarily large:

\[
\frac{1}{n} \left(n - \frac{n}{d}\right) = 1 - \frac{1}{d}
\]

- But by growing M, function Φ gets close to 0.
Doubling dimension (Assouad dimension) and doubling measures

- Def.: A metric space X with metric is called doubling is any ball $B(x, r)$ with $x \in X$ and $r > 0$ is contained in at most M balls of radius $r/2$. The doubling dimension is $\log_2 M$.

- Exple: line

- Exple: k-affine space: $O(k)$

- Example: smooth k manifold: also $O(k)$

 Nb: proof uses bound on sectional curvatures.

- Def.: A measure μ on a metric space X is called doubling if

$$\mu(B(x, 2r) \leq C \mu(B(x, r)).$$

Equivalently, $\exists d_0$ such that $\forall \alpha > 0$:

$$\mu(B(x, 2r) \leq \alpha^{d_0} \mu(B(x, r)).$$

The dimension of the doubling measure satisfies $d_0 = \log_2 C$.

- Remarks:

 - A measure space supporting a doubling measure is necessarily a doubling metric space, with dimension depending on C.

 - Conversely, any complete doubling metric space supports a doubling measure.
Intermezzo: Data and their intrinsic dimension

- **Intrinsic dimension**: in many real world problems, features may be correlated, redundant, causing data to have low *intrinsic dimension*, i.e., data lies close to a low-dimensional manifold

- **Example 1: rotating an image**
 - Consider an $n \times n$ pixel image, with each pixel encode in the RGB channels: 1 image \sim on point in dimension $d = 3n^2$.
 - Consider N rotated versions of this image: N point in \mathbb{R}^{3n^2}
 - But these points intrinsically have one degree of freedom (that of the rotation)

- **Example 2: human body motion capture**
 - N markers attached to body (typically $N=100$).
 - each marker measures position in 3 dimensions, $3N$ dimensional feature space.
 - But motion is constrained by a dozen-or-so joints and angles in the human body.

- Ref: Verma et al. Which spatial partitions are adaptive to intrinsic dimension? UAI 2009
Bounding function Φ in specific settings

Improving the bound $\Phi \leq 1$

Theorem 9. Let μ be a continuous measure on \mathbb{R}^d, a doubling measure of dimension $d_0 \geq 2$. Assume $p_1, \ldots, p_n \sim \mu$. With probability $\geq 1 - 3\delta$, for all $2 \leq m \leq n$:

$$
\Phi_m(q, P) \leq 6\left(\frac{2}{m} \ln \frac{1}{\delta}\right)^{1/d_0}.
$$

Theorem 10. Under the same hypothesis:

- For both variants of the spill trees:

$$
P[Err] \leq \frac{c_0 kd_0}{\alpha} \left(\frac{8 \max(k, \ln 1/\delta)}{n_0}\right)^{1/d_0}
$$

- For random projection trees with $n_0 \geq c_0(3k)^{d_0} \max(k, \ln 1/\delta)$:

$$
P[Err] \leq c_0 (d_0 + \ln n_0)\left(\frac{8 \max(k, \ln 1/\delta)}{n_0}\right)^{1/d_0}
$$

▶ Rmk: failure proba. can be made arbitrarily small by taking n_0 large enough.
References

VKD09 N. Verma, S. Kpotufe, S. Dasgupta, Which spatial partitions are adaptive to intrinsic dimension? UAI 2009.
Nearest Neighbors Algorithms in Euclidean and Metric Spaces

Introduction

kd-trees and basic search algorithms

kd-trees and random projection trees: improved search algorithms

kd-trees and random projection trees: diameter reduction

Metric trees and variants

Distance concentration phenomena: an introduction

A metric from optimal transportation: the earth mover distance
Recursive splits: how many splits are required to halve the diameter of a point set?

- Another set defined along axis:
 - Consider $S = \bigcup_{i=1,...,d} \{ t e_i, -1 \leq t \leq 1 \}$.
 - $S \subseteq B(0,1)$ and covered by $2d$ balls $B(\cdot, 1/2)$ (this num. is minimal).
 - Assouad dimension is $\log 2d$

- Observation: kd-trees requires
 - d splits / levels to halve the diameter of S
 - this requires in turn $\geq 2^d$ points

- Fact: RPTree will do the job!
Local covariance dimension and its multi-scale estimation

▶ Def.: A set $T \subset \mathbb{R}^D$ has covariance dimension (d, ϵ) if the largest d eigenvalues of its covariance matrix satisfy

$$\sigma_1^2 + \cdots + \sigma_d^2 \geq (1 - \epsilon) \cdot (\sigma_1^2 + \cdots + \sigma_D^2).$$

▶ Def.: Local covariance dimension with parameters (d, ϵ, r): the previous must hold when restricting T to balls of radius r.

▶ Multi-scale estimation from a point cloud P:

For each datapoint p and each scale r
- Collect samples in $B(x, r)$
- Compute covariance matrix
- Check how many eigenvalues are required: yields the dimension
Partitioning rules that adapt to intrinsic dimension

- **Principal component analysis**: split the data at the median along the principal direction of covariance.
 - Drawback 1: estimation of principal component requires a significant amount of data and only about \(\frac{1}{2^l} \) fraction of data remains at a cell at level \(l \)
 - Drawback 2: computationally too expensive for some applications

- **2-means i.e. solution of k-means with \(k = 1 \)**: compute the 2-means solution, and split the data as per the cluster assignment
 - Drawback 1: 2-means is an NP-hard optimization problem
 - Drawback 2: the best known \((1 + \epsilon)\)-approximation algorithm for 2-means (A. Kumar, Y. Sabharwal, and S. Sen, 2004) would require a prohibitive running time of \(O(2^{dO(1)} Dn) \), since we need \(\epsilon \approx 1/d \).
 - Approximate solution can be obtained using Loyd iterations.
Random projections and distances

In \mathbb{R}^D: distance roughly get shrunk by a factor $1/\sqrt{D}$

Lemma 11. Fix any vector $x \in \mathbb{R}^D$. Pick any random unit vector U on S^{d-1}. One has:

\[
\mathbb{P} \left[|\langle x, U \rangle| \leq \alpha \frac{\|x\|}{\sqrt{D}} \right] \leq \frac{2}{\pi} \alpha \quad (12)
\]

\[
\mathbb{P} \left[|\langle x, U \rangle| \geq \beta \frac{\|x\|}{\sqrt{D}} \right] \leq \frac{2}{\beta} \exp -\frac{\beta^2}{2} \quad (13)
\]
Random projections and diameter

- Projecting a subset $S \subset \mathbb{R}^D$ along a random direction: how does the diameter of the projection compares to that of S?

- S full dimensional:
 \[
 \text{diam(projection)} \leq \text{diam}(S)
 \]

- S has Assouad dimension d:
 (with high probability)
 \[
 \text{diam(projection)} \leq \text{diam}(S)\sqrt{d/D}
 \]

- Rmk:

 Cover S with
 - 2^d balls of radius $1/2$
 - 4^d balls of radius $1/4$
 - $(1/\varepsilon)^d$ balls of radius ε
Random projection trees algorithm: rationale

- Keep the good properties of PCA at a much lower cost
 - Intuition: splitting along a random direction is not that different since it will have some component in the direction of the principal component
- Generally works, but in some cases fails to reduce diameter
 - Think of a dense spherical cluster around the mean containing most of the data and a concentric shell of points much farther away
 - Characterized by the average interpoint distance Δ_A within cell being much smaller than its diameter Δ
 - \Rightarrow another split is used, based on distance from the mean
Linear versus spherical cuts

▷ Linear split with jiter:

\{\text{Split by projection: no outlier}\}

\textbf{ChooseRule}(S)

choose a random unit direction \(v\)
pick any \(x \in S\) at random
let \(y \in S\) a point realizing the diameter of \(S\)
choose \(\delta\) at random in \([-1, 1]\) \(\|x - y\| / \sqrt{d}\)

\text{Rule}(x) := x \cdot v \leq (\text{median}_{z \in S}(z \cdot v) + \delta)

▷ Combined split:

\{\text{Split by projection: no outlier}\}

\textbf{ChooseRule}(S)

\textbf{if} \ \Delta^2(S) \leq c \cdot \Delta_A^2(S) \ \textbf{then}

choose a random unit direction \(v\)

\text{Rule}(x) := x \cdot v \leq \text{median}_{z \in S}(z \cdot v)

\textbf{else}

\{\text{Spherical cut: remove outliers}\}

\text{Rule}(x) := \|x - \text{mean}(S)\| \leq \text{median}_{z \in S}(\|z - \text{mean}(S)\|)
Random projection trees algorithm: RPTree-max and RPTree-mean

▷ Algorithm:

\begin{verbatim}
MakeTree(S)
if |S| < MinSize then
 return (Leaf)
else
 Rule ← ChooseRule(S)
 LeftTree ← Maketree(\{x ∈ S : Rule(x) = true\})
 RightTree ← Maketree(\{x ∈ S : Rule(x) = false\})
 return [Rule, LeftTree, RightTree]
\end{verbatim}

▷ Two options

- RPTree-max: linear split with jiter
- RPTree-mean: combined split
Performance guarantee:
amortized (i.e., global) result for RPTree-max

▷ Def.: \textit{radius} of a cell C of a
RPTree: smallest $r > 0$ such that
$S \cap C \subset B(x, r)$ for some $x \in C$.

\textbf{Theorem 12.} (RPTree-max) Consider a RPTree-max built for a dataset
$S \subset \mathbb{R}^D$. Pick any cell C of the tree; assume that $S \cap C$ has Assouad
dimension $\leq d$. There exists a constant c_1 such that with proba. $\geq 1/2$, for
every descendant C' more than $c_1 d \log d$ levels below C, one has
radius(C') \leq radius(C)/2.
Performance guarantee:
per-level result for RPTree-mean, with adaptation to covariance dimension

Theorem 13. (RPTree-mean) There exists constants $0 < c_1, c_2, c_3 < 1$ for which the following holds.

- Consider any cell C such that $S \cap C$ has covariance dimension (d, ϵ), $\epsilon < c_1$.
- Pick $x \in S \cap C$ at random, and let C' be the cell containing it at the next level down.
- Then, if C is split:
 - by projection: $(\Delta^2(S) \leq c \cdot \Delta_A^2(S))$
 $$\mathbb{E}[\Delta_A^2(S \cap C')] \leq (1 - (c_3/d))\Delta_A^2(S \cap C)$$
 - by distance i.e. spherical cut:
 $$\mathbb{E}[\Delta^2(S \cap C')] \leq c_2 \Delta^2(S \cap C)$$

NB: the expectation is over the randomization in splitting C and the choice of $x \in S \cap C$.
Empirical results: contenders

 Algorithms:

- dyadic trees: pick a direction and split at the midpoint; cycle through coordinates.
- kd-tree: split at median along direction with largest spread.
- random projection trees: split at the median along a random direction.
- PD / PCA trees: split at the median along the principal eigenvector of the covariance matrix.
- two means trees: solve the 2-means; pick the direction spanned by the centroids, and split the data as per cluster assignment.
Real world datasets

- Teapot dataset: rotated images of a teapot (1 B&W image: 50×30 pixels); thus, 1D dataset in ambient dimension 1500.
- Robotic arm: dataset in \mathbb{R}^{12}; yet, robotic arm has 2 joints: (noisy) 2D dataset in ambient dimension 12.
- 1 from the MNIST OCR dataset; 20×20 B&W images, i.e. points in ambient dimension 400.
Empirical results: local covariance dimension estimation

▶ Conventions: bold lines: estimate $d(r)$; dashed lines: std dev; numbers: ave. num of samples in balls of the given radius

▶ Observations:

▶ Swiss roll (ambient space dim is 3): failure at small (noise dominates) and large scales (sheets get blended).

▶ Teapot: clear small dimensional structure at low scale, but rather 3-4 than 1.

Empirical results: performance for NN searches

Searching $p(1)$: performance is the order of the NN found / dataset size

- tree depth: if one stops the recursion at a given depth
- numbers indicate ratio $\|q - nn(q)\| / \|q - p(1)\|$

Observations:

- quality index deteriorates with depth (separation does occur)
- 2M and PD (i.e. PCA trees) consistently yield better nearest neighbors: better adaptation to the intrinsic dimension

Empirical results: regression

Regression:
- one predicts the rotation angle (response variable)
- performance is l_2 error on the response variable
- theory says that best results are expected for data structure adapting to the intrinsic dimension

Observations:
- Best results for 2M trees, PD (i.e., PCA) trees, and RP trees.

Diameter reduction again: the revenge of kd-trees

▷ Diameter reduction property: holds for kd-trees on randomly rotated data

▷ Rmk: one random ration suffices

References

Nearest Neighbors Algorithms in Euclidean and Metric Spaces

Introduction

kd-trees and basic search algorithms

kd-trees and random projection trees: improved search algorithms

kd-trees and random projection trees: diameter reduction

Metric trees and variants

Distance concentration phenomena: an introduction

A metric from optimal transportation: the earth mover distance
Metric spaces

Definition 14. A *metric space* is a pair \((M, d)\), with \(d : M \times M \to \mathbb{R}^+\), such that:

- (1) Positivity: \(d(x, y) \geq 0\)
- (1a) Self-distance: \(d(x, x) = 0\)
- (1b) Isolation: \(x \neq y \Rightarrow d(x, y) > 0\)
- (2) Symmetry: \(d(x, y) = d(y, x)\)
- (3) Triangle inequality: \(d(x, y) \leq d(x, z) + d(y, z)\)

Product metric. Assume that for some \(k > 1\):

\[M = M_1 \times \cdots \times M_k. \]

(14)

and that each \((M_i, d_i)\) is a metric space. For \(p \geq 1\), the *product metric* is:

\[d(x, y) = \left(\sum_{k=1}^{k} d_i(x_i, y_i)^p \right)^{1/p} \]

(15)

Some particular cases are:

- \((M_i = \mathbb{R}, d_i = | \cdot |)\): \(L_p\) metrics.
- \(p = 1, d_i =\) uniform metric: Hamming distance.
A geometric distance: the Hausdorff distance

- **Hausdorff distance.** Consider a metric space \((M, d)\). The *Hausdorff distance* of two non-empty subsets \(X\) and \(Y\) is defined by

\[
d_H(X, Y) = \max(H(X, Y), H(Y, X)), \text{ with } H(X, Y) = \sup_{x \in X} \inf_{y \in Y} d(x, y). \tag{16}
\]

Note that the one-sided distance is not symmetric, as seen on Fig. 1.

- **Rmk.** For closed set, the min distance is realized: \(\inf\) becomes \(\min\); \(\sup\) becomes \(\max\).

![Figure: The one-sided Hausdorff distance is not symmetric](image_url)
A geometric distance for two ordered point clouds:

the least Root Mean Square Deviation: \(\text{lRMSD} \)

▷ Data: two point sets \(A = \{ a_i \}_{i=1,...,n}, \) \(B = \{ b_i \}_{i=1,...,n}, \) with a 1-1 correspondence \(a_i \leftrightarrow b_i \)

▷ Root Mean Square Deviation:

\[
\text{RMSD}(A, B) = \sqrt{\frac{1}{n} \sum_{i=1}^{n} \| a_i - b_i \|^2}
\] (17)

▷ least Root Mean Square Deviation:

\[
\text{IRM}SD(A, B) = \min_{g \in SE(3)} \text{RMSD}(A, g \cdot B).
\] (18)

▷ Ref: Umeyama, IEEE PAMI 1991
▷ Ref: Steipe, Acta Crystallographica Section A, 2002
Using the triangle inequality

Lemma 15. For any three points \(p, q, s \in M \), for any \(r > 0 \), and for any point set \(P \subset M \), one has:

\[
|d(q, p) - d(p, s)| \leq d(q, s) \leq d(q, p) + d(p, s) \tag{19}
\]

\[
d(q, s) \geq d_P(q, s) := \max_{p \in P} |d(q, p) - d(p, s)| \tag{20}
\]

\[
\begin{cases}
 d(p, s) > d(p, q) + r \Rightarrow d(q, s) > r,
 d(p, s) < d(p, q) - r \Rightarrow d(q, s) > r.
\end{cases} \tag{21}
\]

Figure: Lower bound from the triangle inequality, see Lemma 15
Metric tree: definition

Definition:

- A binary tree
- Any internal node implements a spherical cut defined by the distance μ to a pivot v
 - right subtree: points p such that $d(pivot, p) \geq \mu$
 - left subtree: points p such that $d(pivot, p) < \mu$

Figure: Metric tree for a square domain (A) One step (B) Full tree
Metric tree: construction

- Recursively construction:
 - Choose a pivot, ideally inducing a partition into subsets of the same size
 - Assign points to subtrees and recurse
 - Complexity under the balanced subtrees assumption: $O(n \log n)$.

Algorithm 1 Algorithm build_MetricTree(S)

```
{build_MetricTree(S)}
if $S = \emptyset$ then
  return NIL

$n \leftarrow newNode$

Draw at random $Q \subset S$ and $v \in Q$

$n.pivot \leftarrow v$

$\mu \leftarrow \text{median}\left\{d(v, p), p \in Q\setminus\{p\}\right\}$

{The pivot splits points into two subsets}
$L \leftarrow \{s \in S\setminus\{p\} | d(s, v) < \mu\}$
$R \leftarrow \{s \in S\setminus\{p\} | d(s, v) \geq \mu\}$

{For each subtree: min/max distances to points in that subtree}
$n.(d_1, d_2) \leftarrow (\text{min}, \text{max})$ of distances $d(v, p), p \in L$
$n.(d_3, d_4) \leftarrow (\text{min}, \text{max})$ of distances $d(v, p), p \in R$

{Recursion}
$n.L \leftarrow \text{build}_\text{MetricTree}(L)$
$n.R \leftarrow \text{build}_\text{MetricTree}(R)$
```
Searching a metric tree: algorithm

Algorithm 2 Algorithm
search_MetricTree(T, q)

{Note of T is denoted n}
nn(q) ← ∅
τ ← ∞
if n = NIL then
 return

{Check whether the pivot is the nn}
l ← d(q, n.pivot)
if l < τ then
 nn(q) ← n.pivot
 τ ← l

{Dilate the distance intervals for left and right subtrees}

if l ∈ l_L then
 search_MetricTree(n.L, q)
if l ∈ l_R then
 search_MetricTree(n.R, q)
Lemma 16. Consider the intervals associated with a node, as defined in
Algorithm 1, that is $I_l \leftarrow [n.d_1 - \tau, n.d_2 + \tau]$ $I_r \leftarrow [n.d_3 - \tau, n.d_4 + \tau]$. Then:
(1) If $l \notin I_l$, the left subtree can be pruned.
(2) If $l \notin I_r$, the left subtree can be pruned.

Proof.
We prove (1), as condition (2) is equivalent. Let us denote $I_L = [d_1, d_2]$. Since
$l = d(v, q) \notin I_l$, we have $d(v, q) < d_1 - \tau$ and $d(v, q) > d_2 + \tau$. We analyze
these two conditions in turn.

▷ Condition on the right hand side. By definition of d_2, we have:

$$\forall p \in L : d(v, q) > d(v, p) + \tau.$$

Using the triangle inequality for $d(v, q)$ yields

$$d(v, p) + d(p, q) \geq d(v, q) > d(v, p) + \tau \Rightarrow d(q, p) > \tau.$$

▷ Mutatis mutandis. \[\square\]
Metric tree: choosing the pivot

- By the pruning lemma: for small τ and if q is picked uniformly at random, the measure of the boundary of the spheres of radius d_1, \ldots, d_4 determines the probability that no pruning takes place.
 \Rightarrow pick the pivot so as to minimize this measure.

- Example in 2D: 3 choices for the pivot, so as to split the unit square (mass: 1) into two regions of equal size (mass: 1/2)

- Choice of pivots (illustrated using μ (rather than the d_is):
 - Best pivot: p_c
 - Worst pivot: p_m

Figure: Metric trees: minimizing the measure of boundaries.
From metric trees to metric forests

- Compromising speed versus accuracy
 - The exact search may be replaced by the defeatist search: visit one subtree only, instead of using the pruning lemma.
 - Then, using a forest of trees rescues erroneous branching decisions in the course of the search.

Figure: Metric forest
References

Nearest Neighbors Algorithms in Euclidean and Metric Spaces

Introduction

kd-trees and basic search algorithms

kd-trees and random projection trees: improved search algorithms

kd-trees and random projection trees: diameter reduction

Metric trees and variants

Distance concentration phenomena: an introduction

A metric from optimal transportation: the earth mover distance
p-norms and Unit Balls

Notations:
- \(d \): the dimension of the space
- \(\mathcal{F} \): a 1d distribution
- \(X = (X_1, \ldots, X_d) \) a random vector such that \(X_i \sim \mathcal{F} \)
- \(P = \{p^{(j)}\} \): a collection on \(n \) iid realizations of \(X \)

Generalizations of \(L_p \) norms, \(p > 0 \):

\[
\| \cdot \|_p = \left(\sum_i |X_i|^p \right)^{1/p} \tag{22}
\]

Unit balls: see plots

Cases of interest in the sequel:
- Minkowski norms: \(p \), an integer \(p \geq 1 \):
- fractional p-norms: \(0 < p < 1 \). NB: triangle inequality not respected; NB: balls not convex for \(p < 1 \). sometimes called pre-norms.
Concentration of the Euclidean Norm: Observations

- Plotting the variation of the following for random points in \([0, 1]^d\):

\[
\min \|\cdot\|_2, \ E[\|\cdot\|_2] - \sigma[\|\cdot\|_2], \ E[\|\cdot\|_2] + \sigma[\|\cdot\|_2], \ \max \|\cdot\|_2, \ M = \sqrt{d}
\]

(23)

Observation:

- The average value increases with the dimension \(d\)
- The standard deviation seems to be constant
- For \(d \leq 10\) i.e. \(d\) small: the min and max values are close to the bounds: lower bound is 0, upper bound is \(M = \sqrt{d}\)
- For \(d\) large say \(d \geq 10\), the norm concentrates within a small portion of the domain; the gap wrt the bounds widens when \(d\) increases.
Concentration of the Euclidean Norm: Theorem

Theorem 17. Let $X \in \mathbb{R}^d$ be a random vector with iid components $X_i \sim \mathcal{F}$. There exist constants a and b that do not depend on the dimension (they depend on \mathcal{F}), such that:

\[
\mathbb{E} \left[\|X\|_2 \right] = \sqrt{ad} - b + O(1/d)
\]

\[
\text{Var} \left[\|X\|_2 \right] = b + O(1/\sqrt{d}).
\]

Remarks:

- The variance is small wrt the expectation, see plot.
- The error made in using $\mathbb{E} \left[\|X\|_2 \right]$ instead of $\|X\|_2$ becomes negligible: it looks like points are on a sphere of radius $\mathbb{E} \left[\|X\|_2 \right]$.
- The results generalize even if the X_i are not independent; then, d gets replaced by the number of degrees of freedom.
Contrast and Relative Contrast: Definition

Contrast and relative contrast of n iid random draws from X. The annulus centered at the origin and containing the points is characterized by:

$$\text{Contrast}_a := D_{\text{max}} - D_{\text{min}} = \max_j \| p^{(j)} \|_p - \min_j \| p^{(j)} \|_p.$$ \hfill (26)

and the relative contrast is defined by:

$$\text{Contrast}_r = \frac{D_{\text{max}} - D_{\text{min}}}{D_{\text{min}}}.$$ \hfill (27)

Variation of the contrast $|D_{\text{max}} - D_{\text{min}}|$ for various p and increasing d:

![Graphs showing variation of contrast](image1)

Fig. 1. $|D_{\text{max}} - D_{\text{min}}|$ depending on d for different metrics (uniform data)
Theorem 18. Consider n points which are iid realization of X. There exists a constant C_p such that the absolute contrast of a Minkowski norm satisfies:

$$C_p \leq \lim_{d \to \infty} \mathbb{E} \left[\frac{D_{\text{max}} - D_{\text{min}}}{d^{1/p-1/2}} \right] \leq (n-1)C_p.$$ \hspace{1cm} (28)

Observations:

- The contrast grows as $d^{1/p-1/2}$

<table>
<thead>
<tr>
<th>Metric</th>
<th>Contrast $D_{\text{max}} - D_{\text{min}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>L_1</td>
<td>$C_1 \sqrt{d}$</td>
</tr>
<tr>
<td>L_2</td>
<td>C_2</td>
</tr>
<tr>
<td>L_3</td>
<td>0</td>
</tr>
</tbody>
</table>

- The Manhattan metric: only one for which the contrast grows with d.
- For the Euclidean metric, the contrast converge to a constant.
- For $p \geq 3$, the contrast converges to zero: the distance does not discriminate between the notions of close and far.
- NB: the bounds depend on n; it makes sense to try to exploit the particular coordinates at hand (cf later).

NB: Thm also exist for the relative contract and other p-norms.
Practical Implications for Exact NN Queries

- **Curse of dimensionality**: the concentration of distance can be such that a method with expected logarithmic cost performs no better than a linear scan. Recall the non defeatist search strategies in kd-tree and metric trees: if all distances are comparable, a linear number of nodes gets visited.

- **Use less concentrated metrics, with more discriminative power.**

- **Sanity check**: in running a NN query, make sure that distances are meaningful: bi-modality of the distribution of distance is a good sanity check.

- **Example**: selected features yield two modes rather than a continuum of distances:

- ![Histograms](image)

 (a) all rel. Dim.

 (b) one non-rel. Dim.

 (c) two non-rel. Dim.

Figure 7: Distance Distribution of Data
A wise use of distances

- **Distance filtering:**

- **Feature selection:**
References

Nearest Neighbors Algorithms in Euclidean and Metric Spaces

Introduction

kd-trees and basic search algorithms

kd-trees and random projection trees: improved search algorithms

kd-trees and random projection trees: diameter reduction

Metric trees and variants

Distance concentration phenomena: an introduction

A metric from optimal transportation: the earth mover distance
Comparing Histograms

- Bin-to-bin methods:
 \[d(H, K) = \sum_i |h_k - k_k| \]
 \[(29) \]
 → overestimates the distance since neighboring bins are not considered.

- Mixing (e.g. quadratic) methods:
 \[d^2(H, K) = (h - k)^t A (h - k) \]
 \[(30) \]
 → underestimates distances: tends to accentuate the similarity of color distributions without a pronounced mode.

- Illustrations:

 (A) (B) (C) (D)
Transport Plan Between Two Weighted Point Sets

- **Weighted point sets:**
 \[P = \{(p_1, w_{p_1}), \ldots, (p_m, w_{p_m})\} \text{ and } Q = \{(q_1, w_{q_1}), \ldots, (q_n, w_{q_n})\}. \] (31)

NB: nodes from \(P \) (resp. \(Q \)): production (resp. demand) nodes
Shorthand for the sum of masses: \(W_P = \sum_i w_{p_i}, \; W_Q = \sum_j w_{q_j}. \)

- A metric \(d(\cdot, \cdot) \): distance between two points \(d_{ij} = d(p_i, q_j). \)
- A **transport plan**: is a set of non-negative flows \(f_{ij} \) circulating on the edges of the bipartite graph \(P \times Q. \)

Figure: Transport plan between two weighted point sets
The Earth Mover Distance

- **Optimization problem:**

 Minimize: $C_{EMD-LP} = \sum_{ij} f_{ij} d_{ij}$ under the constraints:

 $\begin{cases}
 (C1) f_{ij} \geq 0 \\
 (C2) \sum_j f_{ij} \leq w_{pi}, \forall i \\
 (C3) \sum_i f_{ij} \leq w_{qj}, \forall j \\
 (C4) \sum_i \sum_j f_{ij} = \min(W_P, W_Q).
 \end{cases}$

 These constraints read as follows:

 - (C1) Flows are positive
 - (C2,C3) A node cannot export (resp. receive) more than its weight.
 - (C4) The total flow neither exceeds the production nor the demand.

- **Earth mover distance:** defined from the cost by

 $$d_{EMD-LP} = \frac{C_{EMD-LP}}{\sum_{ij} f_{ij}} = \frac{C_{EMD-LP}}{\min(W_P, W_Q)}$$

- **Advantages:**

 - Applies to signatures in general, the histograms being a particular case.
 - Embeds the notion of nearness, via the metric in the ground space.
 - Allows for partial matches. See however, the comment in section ??.
 - Easy to compute: linear program.

- **Ref:** Rubner, Tomasi, Guibas, IJCV, 2000
Application to image retrieval

- Image coding, two options:
 - convert image to histogram using a fixed binning of the color space; mass of bin: num. of pixel within it.
 - cluster pixels (say with k-means): mass of cluster is the fraction of pixels assigned to it

- Search on DB of 20,000 images: (a) L_1 (d) Quadratic form (e) EMD
Mallow’s Distance: Definition

- Consider: two RV in \mathbb{R}^d: $X \sim P$, $Y \sim Q$.
- Mallows distance between X and Y: minimum of expected difference between X and Y over all joint distributions F for (X, Y), such that the marginal of X is P and that of Y is Q:

$$M_p(X, Y) = \min_{F \in \mathcal{F}} (E_F \|X - Y\|^p)^{1/p} : (X, Y) \sim F, X \sim P, Y \sim Q \}.$$ \hspace{1cm} (35)

- Discrete setting: P and Q

$$P = \{(x_1, w_{p_1}), \ldots, (x_m, w_{p_m})\} \hspace{1cm} (36)$$

$$Q = \{(y_1, w_{q_1}), \ldots, (y_n, w_{q_n})\} \hspace{1cm} (37)$$

- Joint distribution is specified by probabilities on all pairs i.e. $F = \{f_{ij}\}$, and the fact that it respects the marginals yields:

$$\sum_j f_{ij} = p_i, \quad \sum_i f_{ij} = q_j, \quad \sum_{ij} f_{ij} = 1.$$ \hspace{1cm} (38)

- Functional to be minimized becomes:

$$E_F \|X - Y\|^p = \sum_{ij} f_{ij} \|x_i - y_j\|^p.$$ \hspace{1cm} (39)
Mallow’s Distance versus EMD

- Mallows’ distance \((W_P = W_Q = 1)\):
 \[
 M_p = \frac{1}{4} \times 0 + \frac{1}{4} \times 1 + \frac{1}{4} \times 1 + \frac{1}{4} \times 0
 \]

- EMD, assuming uniform weights on all points, i.e. \(W_P = 2\) and \(W_Q = 4\): EMD = 0 since a flow of 2 units satisfies all constraints.

Figure: Mallows’s distance
References

LB01 Elizaveta Levina and Peter Bickel. The earth mover’s distance is the
mallows distance: Some insights from statistics. In Computer Vision,

RTG00 Y. Rubner, C. Tomasi, and L. J. Guibas. The earth mover’s distance as a
metric for image retrieval. International Journal of Computer Vision,

ZLZ05 Ding Zhou, Jia Li, and Hongyuan Zha. A new mallows distance based
metric for comparing clusterings. In Proceedings of the 22nd international

CM14 F. Cazals and D. Mazauric. Mass transportation problems with
connectivity constraints, with applications to energy landscape