The Promise and Peril of

CMU (school-year), INRIA (summer)



It’s hard to be a computer...




How the computer sees the world:

| The Guitar Player
| Pablo Picasso (1911)




Some early work...

“Data, Data, Data... Watson, | need Data!”
[Sherlock Holmes, 1886]



But If you want to publish a NIPS paper...

Features




Face Detection: Big Success Story

* Rowley, Baluja, and Kanade, 1998

e Schniderman & Kanade, 1999
e Viola & Jones, 2001



Modern Recognition is
largely Data-Driven

In non-linear SVMs:

In ML, people report ~10%
of data are support vectors

In recognition, up to 2/3 of
data are support vectors!!!

In linear SVMs:

Typical setup: 4000 dim.
HOG, only 300 “chair”
examples
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Figuré that Francis Bach hates



Recognition Learning Spectrum

Extrapolation problem Interpolation problem
Generalization Correspondence
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Slide bv Antonio Torralba



Everything else beir

. the visual world Is just muc
MNIST Digits

10 digits *

~1,000 variations = 10,000

English words

g equal...

N richer!

MNIST:
60,000 examples

~100,000 words * Topic Models (Blei):

~5 variations = 500,000

Visual world
~100,000 objects *
~10,000 variations (pose, scale, lighting

= 1,000,000,000 (1 billion!)

11M examples

, Intra-category)



Yet, we train on 15 examples?!

Caltech 101



If you want to start a company...

Features

Amnon Shashua



To make research progress...




Big Message...

Keep the data --
you never know when you will
need It!



Texture

o Texture depicts spatially repeating patterns
e Many natural phenomena are textures




Texture Synthesis




Classical Texture Synthesis

Novel texture

Synthesis

Parametric
Texture
Model

~——— This Is hard!

Analysis

Sample texture



Throwing away too much too soon?

Input texture synthe3|zed texture



Non-parametric Approach

Novel texture

Synthesis

Analysis

Sample texture



Motivation from Language

* [Shannon,’48] proposed a way to generate
English-looking text using N-grams:
— Assume a generalized Markov model

— Use a large text to compute prob. distributions of
each letter given N-1 previous letters

— Starting from a seed repeatedly sample this Markov
chain to generate new letters

— Also works for whole words

WE NEED TO EAT CAKE



Mark V. Shaney (Bell Labs)

e Results (using alt.singles corpus):

— “As I've commented before, really relating to
someone involves standing next to impossible.”

— ““One morning | shot an elephant in my arms and
kissed him.”

— ““I spent an interesting evening recently with a
grain of salt”

e Notice how well local structure Is
preserved!

— Now, Instead of letters let’s try pixels...



[Efros & Leung, '99]

non-parametric

sampling

<)

Input image




Texture Growing
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Homage to Shannon
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Wei & Levoy Our algorithm



Two Kinds of Things in the World

Navier-Stokes Equation + weather
9 | + location
(- V)ut oViu— —Vp+f e * +
ot d T



Lots of data available

i " Signed in as swatjarial @
f I ICkr ‘frn'r.Y&I'IC?QI ~r
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“Unreasonable Effectiveness of Data”

[Halevy, Norvig, Pereira 2009]

Parts of our world can be explained by
elegant mathematics:

physics, chemistry, astronomy, etc.

But much cannot:

psychology, genetics, economics, etc.

Enter: The Magic of Big Data

Great advances in several fields:

e.g. speech recognition, machine translation, Google



00gle

* A.l. for the postmodern world:

— all questions have already been
answered...many times, In many ways

— Google 1s dumb, the “intelligence” is In the data

¥ Google Search: clime stairs - Netscape -10| x|
Fil= Edit Vie

-

-% Google Search: clime punishment - Netscape
...:::;r File Edit Wiew Go Communicator Help

bt @J Calendar @J z

Advanced Search  Freferences Languadge Tools  Search Tips

C(-CO* J(_g le

Web
Searche ages | Groups | Directory | News
=earched the web for clime punishment. Results 1 - 10 of about 4,280, Search took 0.06 second

Did you
' g| Did you mean: crime punishment



http://www.google.com/logos/Logo_60blk.gif

The Good News

Really stupid algorithms + Lots of Data

= “Unreasonable Effectiveness”



The Bad News

Visual Data i1s much more difficult

text:

clean, segmented, compact, 1D

Visual data:
Noisy, unsegmented, high entropy, 2D/3D



Distance Metrics

CLIME - CRIME

hamming distance of 1 letter

X - x = Euclidian distance of 5 units

- = Grayvalue distance of 50 values

S ERTY [ \
)i =7?
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L2 norm says these are not similar




Make them tiny!




Lots of Tiny Images

80 million tiny images: a large dataset for non-
parametric object and scene recognition
Antonio Torralba, Rob Fergus and William T.
Freeman. PAMI 2008.
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c) Segmentation of 32x32 images




Human Scene Recognition
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A. Torralba, R. Fergus, W.T.Freeman. PAMI| 2008



A. Torralba, R. Fergus, W.T.Freeman. PAMI| 2008



Target

790,000

79,000,000




Automatic Colorization

Grayscale input High resolution

Colorization of input using average

s e

A. Torralba, R. Fergus, W.T.Freeman. 2008



Not a pixel lover? No problem!

Let’'s match gradients




[Hays and Efros. Scene Completion Using Millions of Photographs.
SIGGRAPH 2007 and CACM October 2008.]






Efros and Leung result






Scene Matching for
Image Completion




Scene Completion Result



The Algorithm




Scene Matching




Scene Descriptor
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Scene Descriptor

..‘ihn e
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YE:"EE: low

edge

Edge Orlentatlon

Frequency

Scene Gist Descriptor
(Oliva and Torralba 2001)



Scene Descriptor

..‘ihn e
‘:E:Eﬁ:
n
Iow
edge

Edge Orlentatlon

Frequency

Igh -<

Scene Gist Descriptor
(Oliva and Torralba 2001)



Scene Descriptor
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... 200 total



Context Matchin
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... 200 scene matches
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Why does it work?






Nearest neighbors from a
collection of 20 thousand images



Nearest neighbors from a
collection of 2 million images



Scene matching with camera
transformations

Query image GIST Best match Top matches

e ﬁ g i i ﬂ HERE
Al &l il o
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o

Query image

Sivic, Kaneva, Torralba, Avidan, Freeman, Internet Vision Workshop, 2008
updated version to appear in Proceedings of the IEEE (2010)



Creating and exploring
a large, photorealistic
virtual space

Josef Sivic (INRIA/ENS), Biliana Kaneva (MIT),
Antonio Torralba (MIT), Shal Avidan (Adobe) and
Bill Freeman (MIT)

IEEE Workshop on Internet Vision, 2008




Cross-Domain Matching

“Local — bao

Global — good!”
(after Orwell)



Medici Fountain, Paris

79



GO /8[(’:

Images

Search by image

Drop image here

[= Move |
Watch a short video to learn more.




GO _ 8[@ 8B medici_summer.jpg % luxembourg gardens

Search

Y5 Image size:
1024 x 829

Everything
I e No other sizes of this image found.
Maps
Videos
News

Shopping

Mare




Medici Fountain, Paris (winter)

82



u medici_winter.png luxembourg gardens

Google
Search

Image size:

Ewverything 713 = 600

I Images No other sizes of this image found.
Maps

Videos

News
Shopping

More
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GO 8[6 Qpainting.png describe image here
Search

Image size:

Everything 319 x 482

Images : W
I = Mo other sizes of this image found.

Maps
Videos
News
Shopping

Mare
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Google

Search

Evenything
Images
Maps
Videos
News
Shopping

More

&' medici_sketch.bmp % descril

Image size:
443 x 482

Mo other sizes of this image found.

[11]




OUR GOAL [SIGGRAPH AsIA’11]

88



WHY IS THIS SO HARD?

89



EXAMPLE: SIFT MATCHING

[SIFT: Lowe, 2004]



Example: SIFT Matching

[SIFT: Lowe, 2004]
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Input Query

_-"
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Wy | gt

Top Matches

93



Input Query

Top Matches
94



Input Query

Top Matches

95



IMPORTANT PARTS?

Input Query Important Parts

96



Top Matches

Input Query

97









Possible Explanation

 If the space of images was uniform,
nearest neighbor would work perfectly

well

e But the space is very non-linear, non-
Eucledian

 The Exemplar-SVM is trying to make a
small, linear rescaling of visual space,
near the query point

e |.e. capturing the natural image statistics
near the exemplar

 Or maybe global is good enough (see Deva)



FEATURE REPRESENTATION
HISTOGRAM OF ORIENTED GRADIENTS (HOG)
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[Dalal and Triggs, CVPR, 2005]
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Learnt Weights Top Match
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SEARCH USING IMAGES

Input Query

'pr Matches 103



SEARCH USING IMAGES

Input Query

Top Matches | 104



SEARCH USING IMAGES

Input Query

Top Matches | 105



SEARCH USING PAINTINGS




SEARCH USING PAINTINGS

Input Painting | | Top Matches

107



SEARCH USING PAINTINGS

e T

e
iy
-

[ )

-
o |
o)

uajre

LT s

Input Painting
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SEARCH USING SKETCHES




SEARCH USING SKETCHES
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SALIENCY

111

[Yarbus, 1962]



PROXY FOR SALIENCY?

112



PREDICTING SALIENCY

SALIENCY DATASET [Judd et al., 2009]

0.916 Humans (0.916)

Our Approach (with Center Prior) (0.8185) _2

Our Approach (0.7304)

[Judd et al. 2009] (0.838)

¥ [Judd et al. 2009] (without Center Prior) (0.78)

| = [Itti and Koch 2000] (0.62)

Center Prior (0.797)
® Chance (0.5)

0 0.2 0.4 0.6 0.8 1
Area under ROC Curve

113



WHERE DOES IT FAIL?

114



APPLICATIONS

115



WHERE WAS THE PAINTER STANDING?

116



PAINTING2GPS

Input Painting

Retrieval set
10,000 Geo-tagged Flickr Images

100 top matches used to estimation

117



PAINTING2GPS

Input Painting | | Estlmated Geo Iocatlon

Estimated using 100 top matches

118



PAINTING2GPS

Input Painting

Sydney Opera House



VISUAL SCENE EXPLORATION

120



VISUAL SCENE EXPLORATION
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Organizing Visual “Garbage Heap”

“It Irritated him that the “dog” of 3:14 In the afternoon,
seen In profile, should be indicated by the same
noun as the dog of 3:15, seen frontally...”

“My memory, sir, Is like a garbage heap.”
-- Jorge Luis Borges, Funes the Memorious



PHOTOSYNTH

[Snavely et al., 2006]

ah K ".," (=1%o =

amm () AF7Ea

Synth 1 Synth 2 Synth 3

Dataset size: 136 photos (from flickr)
# of discovered synths: 14

82 photos not part of any synth 123



FINDING SIMILAR IMAGES

Query imag




PAIRWISE SIMILARITY MATRIX

125



TRAVERSING THE GRAPH

126






Ways to use Big Data

1. See what different subsets 2. Use kNN to make a
of data think of you smaller, cozier sub-problem

3. Visual Data Mining: find 4. Ditch Categories - keep all
needles in a haystack Instances and connect them



Priors for Large Photo Collections
&

What they Reveal about Cameras

Sujit Kuthirummal Columbia University
Aseem Agarwala Adobe Systems, Inc.
Dan B Goldman Adobe Systems, Inc.

Shree K. Nayar Columbia University



One Camera’s Distortion

Compute

— Aggregate —>
Statistic
Independent of
Scenes, Photographers
& Cameras
Recover

Camera Properties

A

Compute
— Aggregate —>
Statistic
Independent of
Scenes & Photographers

Dependent on
Camera


http://flickr.com/photos/ancama_99/614067352/
http://flickr.com/photos/11717181@N02/1170861540/
http://flickr.com/photos/carlos-diaz/541751514/
http://flickr.com/photos/jbonnain/523672080/
http://flickr.com/photos/photosbycat/2124970877/
http://flickr.com/photos/lothiriel/2229089014/
http://flickr.com/photos/paren/698032564/
http://flickr.com/photos/kale2006/1988158562/

Ways to use Big Data

1. See what different subsets 2. Use kNN to make a
of data think of you smaller, cozier sub-problem

3. Visual Data Mining: find 4. Ditch Categories - keep all
needles in a haystack Instances and connect them



1. kNN + Label Transfer

Sky, Water, Hills, Bech,
Sunny, mid-day




80 Million Tiny Images [PAMI’08]
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Torralba, Fergus, Freeman, PAMI 2008



Non-parametric Scene Parsing
[CVPR’09]

(b) (c)

Liu, Yuen, Torralba, CVPR 2009



Im2gps [CVPR’'08]

-
Query Photograph

Hays & Efros, CVPR 2008



Ways to use Big Data

1. See what different subsets 2. Use kNN to make a
of data think of you smaller, cozier sub-problem

3. Visual Data Mining: find 4. Ditch Categories - keep all
needles in a haystack Instances and connect them



Visual Words or Letters?




Spectrum of Visual Features

Low-Level High-Level

Parts,

Pixel Filter-Banks Sparse-SIFT
Segments

Objects Image

J

|
Visual Words

\

|
Our Approach




Discriminative Patches

Two key requirements
1. Need to occur frequently (representative)

2. ...but not too frequently

Discriminative: Need to be different enough from the rest
of the visual world.




First some examples




Finding needles 1n a haystack




K-Means Clusters







Discriminative K-means




Discriminative Clustering+




Discriminative Clustering+

Initial




Discriminative Clustering++

KMeans




Discriminative Clustering++




More Discovered Patches
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What makes Paris look like Paris?

Carl Doersch, Saurabh Singh, Abhinav Gupta,
Josef Sivic and Alexel Efros, [SIGGRAPH '12]



How well can people do?


http://baikal.graphics.cs.cmu.edu/cdoersch/im2gps2/corr/test2.html
http://baikal.graphics.cs.cmu.edu/cdoersch/im2gps2/corr/test2.html

How well can people do?

. Mean performance = 79%
« Subjects who have been to Paris
(up to 90% Iif allowed to scrutinize the images)


http://baikal.graphics.cs.cmu.edu/cdoersch/im2gps2/corr/test2.html
http://baikal.graphics.cs.cmu.edu/cdoersch/im2gps2/corr/test2.html

What makes Paris look like Paris?




What makes Paris look like Paris?




Goal

To automatically discover geo-informative visual
elements, that (hopefully) capture the “look and
feel” of a place




Goal

To automatically discover geo-informative visual elements,
that are:

 Representative: frequently occur in Paris.

« Discriminative: occur in Paris but not at other places.



Need both conditions

Discriminative only:




Need both conditions

Frequently occurring only:
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Extracted Visual Elements from Prague Extracted Elements from London



Extracted Elements from Barcelona
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Extracted Elements from Boston

Extracted Elements from SF
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Many Elements Capture Context
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Mapping architectural features

=Place des
‘Vosges
N <

..-r""'

,» St. Germain
s . market

Bdscsols i BEENEEE HIEEMEE

Figure 6: Examples of geographic patterns in Paris (shown as red dots on the maps) for three discovered visual elements (shown below each
map). Balconies with cast-iron railings are concentrated on the main boulevards (left). Windows with railings mostly occur on smaller streets
(middle). Arch supporting columns are concentrated on Place des Vosges and the St. Germain market (right).
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Ways to use Big Data

1. See what different subsets 2. Use kNN to make a
of data think of you smaller, cozier sub-problem

3. Visual Data Mining: find 4. Ditch Categories - keep all
needles in a haystack Instances and connect them



Down with Categories!!!

| | Alexel (Alyosha) Efros
Joint work with CMU

Tomasz Malisiewicz
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Understanding an Image
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http://people.w3.org/rishida/photos/html/slides/0311-beijing1_031111_035240+8_beijing_e031124.jpg.html

Object naming -> Object categorization
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http://people.w3.org/rishida/photos/html/slides/0311-beijing1_031111_035240+8_beijing_e031124.jpg.html

Object categorization

sky
building
anner
bus bus




1. Knowledge Transfer
2. Communication



Classical View of Categories

e Dates back to Plato &

Aristotle

1. Categories are defined by a
list of properties shared by all
elements in a category

2. Category membership Is
binary

3. Every member in the category
IS equal




Problems with Classical View

e Humans don’t do this!

— People don’t rely on abstract definitions / lists of
shared properties (Wittgenstein 1953, Rosch 1973)
 e.g. define the properties shared by all “games”
e €.g. are curtains furniture? Are olives fruit?
— Typicality
e e.g. Chicken -> bird, but bird -> eagle, pigeon, etc.
— Language-dependent

e e.g. “Women, Fire, and Dangerous Things” category is
Australian aboriginal language (Lakoff 1987)

— Doesn’'t work even in human-defined domains
 e.¢g. Is Pluto a planet?



Problems with Visual Categories

* A lot of categories are Chair

functional

e World Is too varied

AEEECTETET iR

P ategories are 3D, but
Images are 2D




Typical HOG car detector

Felzenszwalb et al, PASCAL 2
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Why not?




Solution: hierarchy?

Ontologies, hierarchies, levels of
categories (Rosch), etc.

WordNet, ImageNet, etc etc




Still Problematic!

— Intransitivity
e e.g. car seat is chair, chair is furniture, but ...

— Multiple category membership
e i's not a tree, Iit's a forest!

Clay Shirky, “Ontologies are Overrated”



Fundamental Problem with
Categorlzatlon

Making decisions too early!

We should only categorize at run-time, once
we know the task!



The Dictatorship of Librarians
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categories are losing...

. Google



On-the-fly
Categorization?

1. Knowledge Transfer
2. ‘Communteatien




Association instead of
categorization

Ask not “what iIs this?”, ask “what Is this like”
— Moshe Bar

 Exemplar Theory (Medin & Schaffer 1978,
Nosofsky 1986, Krushke 1992)

—categories represented in terms of remembered objects
(exemplars)

—Similarity iIs measured between input and all exemplars
—think non-parametric density estimation

e Vanevar Bush (1945), Memex (MEMory
EXtender)

—Inspired hypertext, WWW, Google...




Bush’'s Memex (1945)

Store publications, correspondence, personal work, on
microfilm

Items retrieved rapidly using index codes

— Builds on “rapid selector”

Can annotate text with margin notes, comments
Can construct a trail through the material and save it
— Roots of hypertext
Acts as an external memory




Visual Memex, a proposal

[Malisiewicz & Efros]
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Object Detection
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Ensemble of Exemplar-SVMs

Exemplar-SVM 1 Exemplar-SVM 2 Exemplar-SVM N
e




“What Is this?”

Input Image

i
a 4

B - T
=W Carm/NCarma
Car 2 ~

He 2004, Tu 2004, Shotton 2006, Galleguillos 2008,
Fei-Feil 2009, Gould 2009, etc.



“What Is this like?”

Malisiewicz & Efros, CVPR’08



Image Parsing with Context

Input Image Visual Memex

. » Context Edge
m—— Similarity Edga

Figure 1: The Visual Memex graph encodes object similarity (solid black edge) and spatial context
(dotted red edge) between pairs of object exemplars. A spatial context feature is stored for each
context edge. The Memex graph can be used to interpret a new image (left) by associating image
segments with exemplars in the graph (orange edges) and propagating the information.



Torralba’s Context Challenge



Torralba’s Context Challenge

Slide by Antonio Torralba



Torralba’s Context Challenge

Slide by Antonio Torralba



Our Challenge Setup

associations
0

T N

Figure 2: Torralba’s Context Challenge: “How far can you go without running a local object de-
tector?” The task is to reason about the identity of the hidden object (denoted by a *?”") without
local information. In our category-free Visual Memex model, object predictions are generated in the
form of exemplar associations for the hidden object. In a category-based model, the category of the

hidden object is directly estimated.

window

Malisiewicz & Efros, NIPS’'09

Category
Estimation




3 models

Visual Memex: exemplars, non-parametric

object-object relationships
Recurse through the graph

Baseline: CoLA: categories, parametric object-
object relationships

Reduced Memex: categories, non-parametric
relationships



Qual. results

Input Image + Hidden Region Visual Memex Exemplar Predictions Categorization Results
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Quant. results

Visual Memex CoLA Gontext Challangs Pradicilon Confidence
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Figure 3: a.) Context Challenge confusion matrices for the 3 methods: Visual Memex, KDE, and
CoLA. b.) Recognition Precision versus Recall when thresholding output based on confidence. c)
Side by side comparison of the 3 methods™ accuracies for 30 categories.



will Big Data solve all your
problems?



1. Data Is Blased

Internet Is a tremendous repository of visual
data (Flickr, YouTube, Picassa, etc)

But it’'s not random samples of visual world



Flickr Paris




StreetView
Paris

nopp, Sivic, Pajdla, ECCV 2010






Real Notre Dame




Sampling Bias

* People like to take pictures on vacation




Photographer Bias

* People want their pictures to be recognizable
and/or interesting

VS.




Social Bias

[ittle: Leaguss Kids with Santa

The Graduate

Newlyweds

“*100 Special Moments” by Jason Salavon



Socilal Bias

Probability of Birth Year
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Gallagher et al CVPR 2008



Socilal Bias
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Simon
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Gallagher et al CVPR 2008

Gallagher et al, CVPR 2009



2. We will never have enough data
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Long Tails -- Unfamiliar is Common

Object frequency

e 4 o ST ¥ [ H

Object rank




Dealing with sparse data (rare scenes)

Quick Fixes:

better alignment
e e.g. reduce resolution, sifting, warping, etc.

Understand the simple stuff first



Recognize when it's easy!

People take on a variety of poses, aspects, scales

self-occlusion rare pose motion blur

non-distinctive pose too small justright
detect this

Ramanan, Forsyth, Zisserman, 2004



“Poping out” foreground objects

Hoiem et al, ICCV 2007
2

Figure 10. Object popout. We show five out of the fifteen most “solid™ regions in the Geometric Context dataset. Our algorithm often finds
foreground objects, which would be helpful for unsupervised object discovery [ 1].



Guess structure
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David C. Lee, Martial Hebert, Takeo Kanade, CVPR’09




Guess structure

/ 7 ~_ AN

David C. Lee, Martial Hebert, Takeo Kanade, CVPR’09




Subtracting away structure

Structure Objects

Wall appearance modeling

David C. Lee, Martial Hebert, Takeo Kanade, CVPR’09



Dealing with sparse data (rare scenes)

Long-term Fixes:

segment into chunks
e e.g. segmentation for recognition approaches

Attributes — densifying the labels

From categorization to association
e Ask not “what is this?”, ask “what is this like?”



Conclusion...

“If you torture data long enough,

It might confess”
- Ronald Coase
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