

Human Actions: History, Progress, Open problems

Ivan Laptev

ivan.laptev@inria.fr

INRIA, WILLOW, ENS/INRIA/CNRS UMR 8548 Laboratoire d'Informatique, Ecole Normale Supérieure, Paris

Human Actions: Why do we care?

Motivation I: Artistic Representation

Early studies were motivated by human representations in Arts

Da Vinci:

"it is indispensable for a painter, to become totally familiar with the anatomy of nerves, bones, muscles, and sinews, such that he understands for their various motions and stresses, which sinews or which muscle causes a particular motion"

"I ask for the weight [pressure] of this man for every segment of motion when climbing those stairs, and for the weight he places on *b* and on *c*. Note the vertical line below the center of mass of this man."

Leonardo da Vinci (1452–1519): A man going upstairs, or up a ladder.

Motivation II: Biomechanics

• The emergence of *biomechanics*

- Borelli applied to biology the analytical and geometrical methods, developed by Galileo Galilei
- He was the first to understand that bones serve as levers and muscles function according to mathematical principles
- His physiological studies included muscle analysis and a mathematical discussion of movements, such as running or jumping

Giovanni Alfonso Borelli (1608–1679)

Motivation III: Motion perception

Etienne-Jules Marey: (1830–1904) made Chronophotographic experiments influential for the emerging field of cinematography

Eadweard Muybridge (1830–1904) invented a machine for displaying the recorded series of images. He pioneered motion pictures and applied his technique to movement studies

Motivation III: Motion perception

- Gunnar Johansson [1971] pioneered studies on the use of image
- sequences for a programmed human motion analysis
 - "Moving Light Displays" (LED) enable identification of familiar people
- and the gender and inspired many works in computer vision.

Gunnar Johansson, Perception and Psychophysics, 1973

A HOUGHTON-MIFFLIN PRODUCTION

Copyright © 1971 by Houghton Millin Company

A Teaching Resource At the Frontiers of Psychological Inquiry

Human actions: Historic overview

15th century studies of anatomy

17th century emergence of biomechanics

19th century emergence of cinematography

1971 studies of human motion perception

Modern computer vision

Modern applications: Motion capture and animation

Modern applications: Motion capture and animation

Leonardo da Vinci (1452–1519)

Avatar (2009)

Modern applications: Video editing

Space-Time Video Completion
Y. Wexler, E. Shechtman and M. Irani, CVPR 2004

Modern applications: Video editing

Recognizing Action at a Distance
Alexei A. Efros, Alexander C. Berg, Greg Mori, Jitendra Malik, ICCV 2003

Modern applications: Video editing

Recognizing Action at a Distance
Alexei A. Efros, Alexander C. Berg, Greg Mori, Jitendra Malik, ICCV 2003

Technology: Access to lots of data

Huge amount of video is available and growing

B B C Motion Gallery

TV-channels recorded since 60's

>34K hours of video uploads every day

~30M surveillance cameras in US => ~700K video hours/day

Applications

 Video indexing and search is useful for TV production, entertainment, education, social studies, security, special effects...

TV & Web: e.g. "Fight in a parlament"

Home videos: e.g. "My daughter climbing"

Sociology research:

Manually analyzed smoking actions in 900 movies

Surveillance

suspicious behavior detection

Graphics: motion capture and animation

How many person pixels are in video?

Movies TV

YouTube

How many person pixels are in video?

Movies

YouTube

Why action recognition is difficult?

Much diversity in the data (view-points, appearance, motion, lighting...)

Drinking

Smoking

Many classes and concepts

How to recognize actions: History

A HOUGHTON MIFFLIN PRODUCTION

Copyright © 1971 by Houghton Millin Company

A Teaching Resource
At the Frontiers of Psychological Inquiry

Human pose estimation (1990-2000)

Finding People by Sampling loffe & Forsyth, ICCV 1999

Pictorial Structure Models for Object Recognition Felzenszwalb & Huttenlocher, 2000

Learning to Parse Pictures of People Ronfard, Schmid & Triggs, ECCV 2002

Human pose estimation (2000-2010)

D. Ramanan. Learning to parse images of articulated bodies. NIPS, 2007

Learn image and person-specific unary terms

- initial iteration → edges
- following iterations → edges & colour

V. Ferrari, M. Marin-Jimenez, and A. Zisserman. Progressive search space reduction for human pose estimation. In Proc. CVPR, 2008/2009

(Almost) unconstrained images

Person detector & foreground highlighting

VP. Buehler, M. Everingham and A. Zisserman. Learning sign language by watching TV. In Proc. CVPR 2009

Learns with weak textual annotation

Multiple instance learning

Human pose estimation (2011)

J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio, R. Moore, A. Kipman and A. Blake. Real-Time Human Pose Recognition in Parts from Single Depth Images. **Best paper award at CVPR 2011**

Exploits lots of synthesized depth images for training

Human pose estimation (2011)

Y. Yang and D. Ramanan. Articulated pose estimation with flexible mixtures-of-parts. In Proc. **CVPR 2011**Extension of LSVM model of Felzenszwalb et al.

Y. Wang, D. Tran and Z. Liao. Learning Hierarchical Poselets for Human Parsing. In Proc. **CVPR 2011**.

Builds on Poslets idea of Bourdev et al.

S. Johnson and M. Everingham. Learning Effective Human Pose Estimation from Inaccurate Annotation. In Proc. **CVPR 2011**.

Learns from lots of noisy annotations

B. Sapp, D.Weiss and B. Taskar. Parsing Human Motion with Stretchable Models. In Proc. **CVPR 2011**.

Explores temporal continuity

Modelling person-object-pose interactions

W. Yang, Y. Wang and Greg Mori. Recognizing Human Actions from Still Images with Latent Poses. In Proc. CVPR 2010.

Some limbs may not be important for recognizing a particular action (e.g. sitting)

B. Yao and L. Fei-Fei. Modeling Mutual Context of Object and Human Pose in Human-Object Interaction Activities. In Proc. CVPR 2010.

Pose estimation helps object detection and vice versa

Pose estimation is still a hard problem

Issues: • occlusions

clothing and pose variations

PASCAL VOC Action classification

Phoning

Playing Instrument

Reading

Riding Bike

Riding Horse

Running

Taking Photo

Using Computer

Walking

Appearance-based methods: background subtraction

$$D(x, y, t)$$
 $t = 1, ..., T$

Idea: summarize motion in video in a *Motion History Image (MHI)*:

$$H_{\tau}(x, y, t) = \begin{cases} \tau & \text{if } D(x, y, t) = 1\\ \max (0, H_{\tau}(x, y, t - 1) - 1)\\ \text{otherwise} \end{cases}$$

Descriptor: Hu moments of different orders

$$m_{pq} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x^p y^q \rho(x, y) dx dy$$

Aerobics dataset

Nearest Neighbor classifier: 66% accuracy

Temporal Templates: Summary

Pros:

- + Simple and fast
- + Works in controlled settings

Not all shapes are valid

Restrict the space
of admissible silhouettes

Cons:

Prone to errors of background subtraction

Variations in light, shadows, clothing...

What is the background here?

 Does not capture interior motion and shape

Silhouette tells little about actions

Point Distribution Model

 Represent the shape of samples by a set of corresponding points or *landmarks*

$$\mathbf{x} = (x_1, \dots, x_n, y_1, \dots, y_n)^T$$

 Assume each shape can be represented by the linear combination of basis shapes

$$\mathbf{\Phi} = (\phi_1 | \phi_2 | \dots | \phi_t)$$

such that
$$\mathbf{x} pprox \bar{\mathbf{x}} + \mathbf{\Phi} \mathbf{b}$$

for mean shape
$$\bar{\mathbf{x}} = \frac{1}{s} \sum_{i=1}^{s} \mathbf{x}_i$$

and some parameters b

 Basis shapes can be found as the main modes of variation of in the training data.

(each point can be thought as a shape in N-Dim space)

Principle Component Analysis (PCA):

Covariance matrix
$$\mathbf{S} = \frac{1}{s-1} \sum_{i=1}^s (\mathbf{x}_i - \bar{\mathbf{x}}) (\mathbf{x}_i - \bar{\mathbf{x}})^T$$

Eigenvectors $\mathbf{\Phi} = (\phi_1 | \phi_2 | \dots | \phi_t)$ eigenvalues $\lambda_1, \dots, \lambda_t$

- Back-project from shape-space ${}^{}_{}b$ to image space ${}_{}x=ar{x}+\Phi b$
 - Three main modes of lips-shape variation:

Distribution of eigenvalues: $\lambda_1, \lambda_2, \lambda_3, ...$

A small fraction of basis shapes (eigenvecors) accounts for the most of shape variation (=> landmarks are redundant)

- ullet Φ is orthonormal basis, therefore $\Phi^{-1}=\Phi^{ op}$
 - \implies Given estimate of x we can recover shape parameters b

$$\mathbf{b} = \mathbf{\Phi}^{\top} (\mathbf{x} - \bar{\mathbf{x}})$$

Projection onto the shape-space serves as a regularization

$$\mathbf{x} \implies \mathbf{b} = \mathbf{\Phi}^{\top}(\mathbf{x} - \bar{\mathbf{x}}) \implies \mathbf{x}_{reg} = \bar{\mathbf{x}} + \mathbf{\Phi}\mathbf{b}$$

Constrains shape deformation in PCA-projected space

Example: face alignment

Illustration of face shape space

Appearance-based methods: shape tracking

Shape priors & Tracking:

Pros:

- + more accurate tracking using specific shape and motion models
- + Simultaneous tracking and motion recognition with discrete state dynamical models

Cons:

- Local minima is still an issue
- Re-initialization is still an issue

Shape and Appearance vs. Motion

• Shape and appearance in images depends on many factors: clothing, illumination contrast, image resolution, etc...

 Estimated motion field is invariant to shape (in theory) and can be used directly to describe human actions

Motion estimation: Optical Flow

- Classic problem of computer vision [Gibson 1955]
- Goal: estimate motion field

How? We only have access to image pixels

Estimate pixel-wise correspondence between frames = Optical Flow

- Breaks at occlusions and illumination changes
- Physical and visual motion may be different

Generic Optical Flow

Brightness Change Constraint Equation (BCCE)

$$(\nabla I)^{\top} \mathbf{v} + I_t = 0$$
 $\mathbf{v} = (v_x, v_y)^{\top}$ Optical flow $\nabla I = (I_x, I_y)^{\top}$ Image gradient

One equation, two unknowns => cannot be solved directly

Integrate several measurements in the local neighborhood and obtain a *Least Squares Solution* [Lucas & Kanade 1981]

$$<\nabla I(\nabla I)^{\top}>\mathrm{v}=-<\nabla II_{t}>$$

Second-moment matrix, the same one used to compute Harris interest points!

$$\begin{pmatrix} \langle I_x^2 \rangle & \langle I_x I_y \rangle \\ \langle I_x I_y \rangle & \langle I_y^2 \rangle \end{pmatrix} \mathbf{v} = - \begin{pmatrix} \langle I_x I_t \rangle \\ \langle I_y I_t \rangle \end{pmatrix}$$

< · > Denotes integration over a spatial (or spatio-temporal) neighborhood of a point

Generic Optical Flow

- The solution of $\langle \nabla I(\nabla I)^{\top} \rangle$ v = $-\langle \nabla II_t \rangle$ assumes
 - 1. Brightness change constraint holds in $<\cdot>$
 - 2. Sufficient variation of image gradient in $<\cdot>$
 - 3. Approximately constant motion in $<\cdot>$

Motion estimation becomes *inaccurate* if any of assumptions 1-3 is violated.

Solutions:

(2) Insufficient gradient variation known as *aperture problem*

Parameterized Optical Flow

- Another extension of the constant motion model is to compute PCA basis flow fields from training examples
 - 1. Compute standard Optical Flow for many examples
 - 2. Put velocity components into one vector

$$\mathbf{w} = (v_x^1, v_y^1, v_x^2, v_y^2, ..., v_x^n, v_y^n)^{\top}$$

3. Do PCA on w and obtain most informative PCA flow basis vectors

Training samples PCA flow bases 1 2 3 4

Learning Parameterized Models of Image Motion
M.J. Black, Y. Yacoob, A.D. Jepson and D.J. Fleet, **CVPR 1997**

Parameterized Optical Flow

 Estimated coefficients of PCA flow bases can be used as action descriptors

Optical flow seems to be an interesting descriptor for motion/action recognition

Spatial Motion Descriptor

[Efros, Berg, Mori and Malik, ICCV 2003]

Spatio-Temporal Motion Descriptor

Football Actions: matching

Input Sequence

Matched Frames

Goal: Interpret complex dynamic scenes

Common methods:

- Segmentation using background model -> hard
- Tracking using appearance model ->hard

Common problems:

- Complex & changing BG
 - Changing appearance

⇒ Global assumptions about the scene are unreliable

Space-time

No global assumptions ⇒ Consider local spatio-temporal neighborhoods

hand waving

boxing

Actions == Space-time objects?

Space-time local features

Local approach: Bag of Visual Words

Airplanes	
Motorbikes	
Faces	
Wild Cats	
Leaves	
People	
Bikes	

Space-Time Interest Points: Detection

What neighborhoods to consider?

Definitions:

$$f\colon\mathbb{R}^2 imes\mathbb{R} o\mathbb{R}$$
 Original image sequence $g(x,y,t;\Sigma)$ Space-time Gaussian with covariance $\Sigma\in \mathsf{SPSD}(3)$ $L_\xi(\cdot;\Sigma)=f(\cdot)*g_\xi(\cdot;\Sigma)$ Gaussian derivative of f $\nabla L=(L_x,L_y,L_t)^T$ Space-time gradient $\mu(\cdot;\Sigma)=\nabla L(\cdot;\Sigma)(\nabla L(\cdot;\Sigma))^T*g(\cdot;s\Sigma)=\begin{pmatrix} \mu_{xx}&\mu_{xy}&\mu_{xt}\\\mu_{xy}&\mu_{yy}&\mu_{yt}\\\mu_{xt}&\mu_{yt}&\mu_{tt} \end{pmatrix}$ Second-moment matrix

Space-Time Interest Points: Detection

Properties of $\mu(\cdot; \Sigma)$

 $\mu(\cdot; \Sigma)$ defines second order approximation for the local distribution of ∇L within neighborhood Σ

$${\sf rank}(\mu)=1 \qquad \Rightarrow \ \ {\sf 1D} \ {\sf space-time} \ {\sf variation} \ {\sf of} \ \ f \ {\sf e.g.} \ {\sf moving} \ {\sf bar}$$

$${\sf rank}(\mu)=2$$
 \implies 2D space-time variation of f e.g. moving ball

$${\rm rank}(\mu)=3$$
 \Rightarrow 3D space-time variation of f e.g. jumping ball

Large eigenvalues of μ can be detected by the local maxima of H over (x,y,t):

$$H(p; \Sigma) = \det(\mu(p; \Sigma)) + k \operatorname{trace}^{3}(\mu(p; \Sigma))$$

= $\lambda_{1}\lambda_{2}\lambda_{3} - k(\lambda_{1} + \lambda_{2} + \lambda_{3})^{3}$

(similar to Harris operator [Harris and Stephens, 1988])

Local features for human actions

Local features for human actions

Local space-time descriptor: HOG/HOF

Multi-scale space-time patches

Public code available at www.irisa.fr/vista/actions

3x3x2x4bins **HOG** descriptor

3x3x2x5bins **HOF** descriptor

Local Space-time features: Matching

Find similar events in pairs of video sequences

Bag-of-Features action recognition

[Laptev, Marszałek, Schmid, Rozenfeld 2008]

Action classification (CVPR08)

Test episodes from movies "The Graduate", "It's a Wonderful Life", "Indiana Jones and the Last Crusade"

Evaluation of local feature detectors and descriptors

Four types of detectors:

Harris3D [Laptev 2003]

Cuboids [Dollar et al. 2005]

Hessian [Willems et al. 2008]

Regular dense sampling

Four types of descriptors:

HoG/HoF [Laptev et al. 2008]

Cuboids [Dollar et al. 2005]

HoG3D [Kläser et al. 2008]

Extended SURF [Willems'et al. 2008]

Three human actions datasets:

KTH actions [Schuldt et al. 2004]

• UCF Sports [Rodriguez et al. 2008]

Hollywood 2 [Marszałek et al. 2009]

Space-time feature detectors

Harris3D

Hessian

Cuboids

Dense

Results on KTH Actions

6 action classes, 4 scenarios, staged

Detectors

	Harris3D	Cuboids	Hessian	Dense
HOG3D	89.0%	90.0%	84.6%	85.3%
HOG/HOF	91.8%	88.7%	88.7%	86.1%
HOG	80.9%	82.3%	77.7%	79.0%
HOF	92.1%	88.2%	88.6%	88.0%
Cuboids	-	89.1%	-	-
E-SURF	-	-	81.4%	-

(Average accuracy scores)

- Best results for sparse Harris3D + HOF
- Dense features perform relatively poor compared to sparse features

[Wang, Ullah, Kläser, Laptev, Schmid, 2009]

Descriptors

Results on UCF Sports

10 action classes, videos from TV broadcasts

Detectors

	Harris3D	Cuboids	Hessian	Dense
HOG3D	79.7%	82.9%	79.0%	85.6%
HOG/HOF	78.1%	77.7%	79.3%	81.6%
HOG	71.4%	72.7%	66.0%	77.4%
HOF	75.4%	76.7%	75.3%	82.6%
Cuboids	-	76.6%	-	-
E-SURF	-	-	77.3%	-

(Average precision scores)

Best results for dense + HOG3D

Descriptors

Results on Hollywood-2

12 action classes collected from 69 movies

Detectors

	Harris3D	Cuboids	Hessian	Dense
HOG3D	43.7%	45.7%	41.3%	45.3%
HOG/HOF	45.2%	46.2%	46.0%	47.4%
HOG	32.8%	39.4%	36.2%	39.4%
HOF	43.3%	42.9%	43.0%	45.5%
Cuboids	-	45.0%	-	-
E-SURF	-	-	38.2%	-

(Average precision scores)

Best results for dense + HOG/HOF

Descriptors

Other recent local representations

 Y. and L. Wolf, "Local Trinary Patterns for Human Action Recognition ", ICCV 2009

 P. Matikainen, R. Sukthankar and M. Hebert "Trajectons: Action Recognition Through the Motion Analysis of Tracked Features" ICCV VOEC Workshop 2009,

H. Wang, A. Klaser, C. Schmid, C.-L. Liu,
 "Action Recognition by Dense Trajectories",
 CVPR 2011

Dense trajectory descriptors

[Wang et al. CVPR'11]

Dense trajectory descriptors

[Wang et al. CVPR'11]

	KTH		YouTube		Hollywood2		UCF sports	
	KLT	Dense trajectories	KLT	Dense trajectories	KLT	Dense trajectories	KLT	Dense trajectories
Trajectory	88.4%	90.2%	58.2%	67.2%	46.2%	47.7%	72.8%	75.2%
HOG	84.0%	86.5%	71.0%	74.5%	41.0%	41.5%	80.2%	83.8%
HOF	92.4%	93.2%	64.1%	72.8%	48.4%	50.8%	72.7%	77.6%
MBH	93.4%	95.0%	72.9%	83.9%	48.6%	54.2%	78.4%	84.8%
Combined	93.4%	94.2%	79.9%	84.2%	54.6%	58.3 %	82.1%	88.2%

KTH		YouTube		Hollywood2		UCF sports	
Laptev et al. [14]	91.8%	Liu <i>et al</i> . [16]	71.2%	Wang et al. [32]	47.7%	Wang et al. [32]	85.6%
Yuan et al. [35]	93.3%	Ikizler-Cinbis et al. [9]	75.21%	Gilbert et al. [8]	50.9%	Kovashka et al. [12]	87.27%
Gilbert et al. [8]	94.5%			Ullah <i>et al</i> . [31]	53.2%	Kläser et al. [10]	86.7%
Kovashka et al. [12]	94.53%			Taylor et al. [29]	46.6%		
[Wang et al.]	94.2%	[Wang et al.]	84.2%	[Wang et al.]	58.3%	[Wang et al.]	88.2%

Where to get training data?

Action recognition datasets

KTH Actions, 6 classes,
 2391 video samples
 [Schuldt et al. 2004]

Weizman, 10 classes,92 video samples,[Blank et al. 2005]

- UCF YouTube, 11 classes, 1168 samples, [Liu et al. 2009]
- Hollywood-2, 12 classes, 1707 samples, [Marszałek et al. 2009]
- UCF Sports, 10 classes, 150 samples, [Rodriguez et al. 2008]
- Olympic Sports, 16 classes, 783 samples, [Niebles et al. 2010]
- HMDB, 51 classes, ~7000 samples, [Kuehne et al. 2011]
- PASCAL VOC 2011 Action Classification Challenge, 10 classes, 3375 image samples

Script-based video annotation

- Scripts available for >500 movies (no time synchronization) www.dailyscript.com, www.movie-page.com, www.weeklyscript.com ...
- Subtitles (with time info.) are available for the most of movies
- Can transfer time to scripts by text alignment

Script alignment: Evaluation

- Annotate action samples in text
- Do automatic script-to-video alignment
- Check the correspondence of actions in scripts and movies

Evaluation of retrieved actions on visual ground truth

a: quality of subtitle-script matching

Example of a "visual false positive"

A black car pulls up, two army officers get out.

Text-based action retrieval

Large variation of action expressions in text:

GetOutCar action:

"... Will gets out of the Chevrolet. ..."

"... Erin exits her new truck..."

Potential false positives:

"...About to sit down, he freezes..."

=> Supervised text classification approach

[Laptev, Marszałek, Schmid, Rozenfeld 2008]

Hollywood-2 actions dataset

Actions								
	Training subset (clean)	Training subset (automatic)	Test subset (clean)					
AnswerPhone	66	59	64					
DriveCar	85	90	102					
Eat	40	44	33					
FightPerson	54	33	70					
GetOutCar	51	40	57					
HandShake	32	38	45					
HugPerson	64	27	66					
Kiss	114	125	103					
Run	135	187	141					
SitDown	104	87	108					
SitUp	24	26	37					
StandUp	132	133	146					
All Samples	823	810	884					

Training and test samples are obtained from 33 and 36 distinct movies respectively.

Hollywood-2
dataset is on-line:
http://www.irisa.fr/vista
/actions/hollywood2

[Laptev, Marszałek, Schmid, Rozenfeld 2008]

Action classification results

	Clean			Automatic		
	hoghof			hoghof		Chance
Channel	bof	flat		bof	flat	
mAP	47.9	50.3		31.9	36.0	9.2
AnswerPhone	15.7	20.9	\prod	18.2	19.1	7.2
DriveCar	86.6	84.6		78.2	80.1	11.5
Eat	59.5	67.0		13.0	22.3	3.7
FightPerson	71.1	69.8		52.9	57.6	7.9
GetOutCar	29.3	45.7		13.8	27.7	6.4
HandShake	21.2	27.8		12.8	18.9	5.1
HugPerson	35.8	43.2		15.2	20.4	7.5
Kiss	51.5	52.5		43.2	48.6	11.7
Run	69.1	67.8		54.2	49.1	16.0
SitDown	58.2	57.6		28.6	34.1	12.2
SitUp	17.5	17.2		11.8	10.8	4.2
StandUp	51.7	54.3		40.5	43.6	16.5

Average precision (AP) for Hollywood-2 dataset

Actions in Context

Human actions are frequently correlated with particular scene classes
 Reasons: physical properties and particular purposes of scenes

Eating -- kitchen

Running -- road

Eating -- cafe

Running -- street

Mining scene captions

ILSA

01:22:00 01:22:03 I wish I didn't love you so much.

She snuggles closer to Rick.

CHT TO:

EXT. RICK'S CAFE - NIGHT

Laszlo and Carl make their way through the darkness toward a side entrance of Rick's. They run inside the entryway.

The headlights of a speeding police car sweep toward them.

They flatten themselves against a wall to avoid detection.

The lights move past them.

CARL

I think we lost them.

..

01:22:15 01:22:17

Co-occurrence of actions and scenes in scripts

Results: actions and scenes (jointly)

Actions in the context of Scenes

Scenes in the context of Actions

[Marszałek, Laptev, Schmid, 2009]

Handling temporal uncertainty

Handling temporal uncertainty

Input:

- Action type, e.g.
 Person Opens Door
- Videos + aligned scripts

Automatic collection of training clips

... **Jane** jumps up and **opens** the **door** ...

- ... Carolyn opens the front door ...
- ... Jane opens her bedroom door ...

Output:

Slidingwindow-style temporal action localization

Training classifier

Clustering of positive segments

[Duchenne, Laptev, Sivic, Bach, Ponce, 2009]

Discriminative action clustering

Feature space

Video space

Negative samples

Random video samples: lots of them, very low chance to be positives

[Duchenne, Laptev, Sivic, Bach, Ponce, 2009]

Action detection: Sliding time window

"Sit Down" and "Open Door" actions in ~5 hours of movies

Open Door

Temporal detection of "Sit Down" and "Open Door" actions in movies: The Graduate, The Crying Game, Living in Oblivion [Duchenne et al. 09]

What we have seen so far

Actions understanding in realistic settings:

Action classification

Is classification the final answer?

How to recognize this as <u>unusual</u>?

How to recognize this as dangerous?

Is action vocabulary well-defined?

Examples of an action "Open"

Is action vocabulary well-defined?

Source: http://www.youtube.com/watch?v=eYdUZdan5i8

Do we want to learn person-throws-cat-into-trash-bin classifier?

Scene semantics from long-term observation of people

ECCV 2012

V. Delaitre, D. F. Fouhey, I. Laptev, J. Sivic, A. Gupta, A. Efros

Motivation

• Exploit the link between human pose, action and object function.

 Use human actors as active sensors to reason about the surrounding scene.

Goal

Recognize objects by the way people interact with them.

Time-lapse "Party & Cleaning" videos

Lots of person-object interactions, many scenes on YouTube

Semantic object segmentation

New "Party & Cleaning" dataset

Goal

Recognize objects by the way people interact with them.

Time-lapse "Party & Cleaning" videos

Semantic object segmentation

Lots of person-object interactions, many scenes on YouTube

Tree

Wall

Table

Pose vocabulary

Pose histogram

Some qualitative results

Using our model as pose prior

Given a bounding box and the ground truth segmentation, we fit the pose clusters in the box and score them by summing the joint's weight of the underlying objects.

Input image

Conclusions

- BOF methods give encouraging results for action recognition in realistic data. But better models are needed
- Large-scale readily available annotation provides reach source of supervision for action recognition.
- Action vocabulary is not well-defined. Classifying videos to N labels is not the end of the story.
 Recognizing object function and human actions should be addressed jointly

