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Human Actions:
Why do we care?



Motivation I: Artistic Representation

Early studies were motivated by human representations in Arts

Da Vinci:  «t is indispensable for a painter, to become totally familiar with the
anatomy of nerves, bones, muscles, and sinews, such that he understands
for their various motions and stresses, which sinews or which muscle
causes a particular motion”

“l ask for the weight [pressure] of this man for every segment of motion
when climbing those stairs, and for the weight he places on b and on c.
Note the vertical line below the center of mass of this man.”

| ...;“l'ii".ﬁ%'ﬁﬁ f

r!mr

; : :é“ : I.. l'.. :._ E .I'f_ ar ;
Leonardo da V|nC| (1452-1519): A man going upstalrs or up a ladder.



Motivation Il: Biomechanics

e Ihe emergence of biomechanics

e Borelli applied to biology the
analytical and geometrical methods,
developed by Galileo Galilei

e He was the first to understand that
bones serve as levers and muscles
function according to mathematical
principles

e His physiological studies included
muscle analysis and a mathematical
discussion of movements, such as
running or jumping

Giovanni Alfonso Borelli (1608-1679)



Motivation Ill: Motion perception

Etienne-Jules Marey:
(1830-1904) made - .,.,-....,—....-.....-...-.-..q..“1
Chronophotographic

experiments influential \ LA \\}m
for the emerging field of & |

cinematography
%

Eadweard Muybridge
(1830-1904) invented a
machine for displaying
the recorded series of
iImages. He pioneered
motion pictures and
applied his technique to
movement studies




Motivation lll: Motion perception

Gunnar Johansson [1971] pioneered studies on the use of image
sequences for a programmed human motion analysis

“Moving Light Displays” (LED) enable identification of familiar people
and the gender and inspired many works in computer vision.

Gunnar Johansson, Perception and Psychophysics, 1973
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Human actions: Historic overview

15" century ¢
studies of
anatomy

!t 17t century
emergence of
biomechanics

19" century ¢
emergence of
cinematography
1 1971
studies of human
motion perception

Modern computer vision

v




Modern applications: Motion capture
and animation

Avatar (2009)



Modern applications: Motion capture
and animation

Leonardo da Vinci (1452-1519) Avatar (2009)



Modern applications: Video editing

QuiputfSequence

Space-Time Video Completion
Y. Wexler, E. Shechtman and M. Irani, CVPR 2004




Modern applications: Video editing

il ¥ .

Recognizing Action at a Distance
Alexei A. Efros, Alexander C. Berg, Greg Mori, Jitendra Malik, ICCV 2003




Recognizing Action at a Distance
Alexei A. Efros, Alexander C. Berg, Greg Mori, Jitendra Malik, ICCV 2003




Technology: Access to lots of data

e Huge amount of video is available and growing

:11:1[® Motion Gallery

TV-channels recorded
since 60’'s

>34K hours of video
You __ uploads every day

CCTV SURVEILLANCE CAMERA

FREE NATIONWIDE DELIVERY

. € ;__._}__

~30M surveillance cameras in US
=> ~700K video hours/day

O0hand

i o ranson.
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Applications

* Video indexing and search is useful for TV production, entertainment,
education, social studies, security, special effects...

Home

videos: e.g.
TV & Web: My
Fgitina daughier

climbing”
parlament”

Surveillance

E
gﬂna;; uzlelél suspicious
Smoiin behavior
i 9 detection
actions in

900 movies




How many person pixels are in video?

Movies TV

YouTube



How many person pixels are in video?

Movies TV

YouTube



Why action recognition is difficult?



Why action recognition is difficult?

= Much diversity in the data (view-points, appearance, motion, lighting...)

AN

rinking

= Many classes and concepts




How to recognize actions:
History



AH

At ihe Fromltiers

uaiTON HiFFLIN

RODUC'HQN

Wk’ﬂi oo

IR . :

1) _"'-ﬁuncu
sychelogical Inqulry



Human pose estimation (1990-2000)

e

Finding People by Sampling
loffe & Forsyth, ICCV 1999

Pictorial Structure Models for Object Recognition
Felzenszwalb & Huttenlocher, 2000

Learning to Parse Pictures of People
Ronfard, Schmid & Triggs, ECCV 2002




Human pose estimation (2000-2010)

D. Ramanan. Learning to parse images of articulated
bodies. NIPS, 2007

Learn image and person-specific unary terms
e Initial iteration - edges
« following iterations - edges & colour

V. Ferrari, M. Marin-Jimenez, and A. Zisserman.
Progressive search space reduction for human pose
estimation. In Proc. CVPR, 2008/2009

(Almost) unconstrained images
 Person detector & foreground highlighting

VP. Buehler, M. Everingham and A. Zisserman.
Learning sign language by watching TV. In Proc.
CVPR 2009

Learns with weak textual annotation
Multiple instance learning

| |
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Human pose estimation (2011)

synthetic (train & test)
-
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J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio, R. Moore, A.
Kipman and A. Blake. Real-Time Human Pose Recognition in Parts from
Single Depth Images. Best paper award at CVPR 2011

L y L
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real (test)

Exploits lots of synthesized depth images for training




Human pose estimation (2011)

Y. Yang and D. Ramanan. Articulated pose estimation
with flexible mixtures-of-parts. In Proc. CVPR 2011
Extension of LSVM model of Felzenszwalb et al.

Y. Wang, D. Tran and Z. Liao. Learning
Hierarchical Poselets for Human
Parsing. In Proc. CVPR 2011.

Builds on Poslets idea of Bourdev et al.

S. Johnson and M. Everingham. Learning
Effective Human Pose Estimation from
Inaccurate Annotation. In Proc. CVPR 2011.

Learns from lots of noisy annotations

;%H N E.,‘H.E,r B. Sapp, D.Weiss and B. Taskar. Parsing
s . Human Motion with Stretchable Models.
“4=9=I1T7 + 7115+ InProc. CVPR 2011.

e fe ¥ ¥

s18% t _ﬁj Explores temporal continuity




Modelling person-object-pose interactions

W. Yang, Y. Wang and Greg Mori. Recognizing
Wilking | Human Actions from Still Images with Latent
Poses. In Proc. CVPR 2010.

Some limbs may
Playing .
Golf not be important
for recognizing a
particular action

(e.g. sitting)

B. Yao and L. Fei-Fei. Modeling Mutual
Context of Object and Human Pose in Human-
Obiject Interaction Activities. In Proc. CVPR
2010.

Pose estimation helps object detection and
vice versa




Pose estimation iIs still a hard problem

e

Issues: e« occlusions
« clothing and pose variations



PASCAL VOC Action classification

Phoning Playing Instrument Reading Riding Bike Riding Horse

LE TR A TS ) R,
S
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Appearance-based methods:
background subtraction

ldea; summarize motion in video in a
Motion History Image (MHI):

r if D(z,y,t) =1
HT(x,yjt):{ max (0, H,(x,y,t— 1) — 1)

otherw1se

Descriptor: Hu moments of different orders

Mpg = / / 2Pylp(x, y)drdy

[A.F. Bobick and J.W. Davis, PAMI 2001]



Aerobics dataset

'1’1"

4
18

1
10

Nearest Neighbor classifier: 66% accuracy

14



Temporal Templates: Summary

Pros:
+ Simple and fast

+ Works in controlled settings

Not all shapes are valid
=) Restrict the space
of admissible silhouettes

Cons:
- Prone to errors of background sub

- Does not capture interior
motion and shape

Silhouette
tells little
about actions




Active Shape Models of Cootes et al.

Point Distribution Model

e Represent the shape of samples by a set
of corresponding points or landmarks

X = (1.0 T Yleee s Yn)

Assume each shape can be represented
by the linear combination of basis shapes

P = (1|2 ... |P1)

suchthat x ~ x + ®b

1 S
for mean shape X = o E Xi
7 =1

and some parameters'b



Active Shape Models of Cootes et al.

e Basis shapes can be found as the main modes of variation of
In the training data.

2D
Example:

(each point can be
thought as a
shape in N-Dim
space)

Principle Component Analysis (PCA):

. i | Z(Xi - x)(x; —x)"

1—1

Covariance matrix § —

Eigenvectors ® = (|| ... |¢p;) eigenvalues Aq, ..., ¢



Active Shape Models of Cootes et al.

e Back-project from shape-space 'b toimage space x = X + ®b

=) Three main modes of lips-shape variation:

b= (pA1,0,0,..)7 b = (0, MAQ,O 0,. ) b = (0,0,uX3,0,0,..)"

e ' — ' ' T e /-ﬂa'-‘i'?“h-—-\
—_— \ §
\05 — gﬂ "

= _3,1. 5 o 1. 5.3

Distribution of eigenvalues: A1, X2, A3, ...

A small fraction of basis
shapes (eigenvecors)

1 accounts for the most of shape
I variation (=> landmarks are
..

redundant)

L T S —



Active Shape Models of Cootes et al.

e & is orthonormal basis, therefore $—1 —= $ T

==) Given estimate of X we can recover shape parameters b
b=&'(x-X)
e Projection onto the shape-space serves as a regularization

X =) b=2'(x-%) =) Xreg =X+ Pb




Active Shape Models [Cootes et al.]

¢ Constrains shape deformation in PCA-projected space

Example: face alignment lllustration of face shape space

== T o

Mode 1 I@/ |§j %ﬁ
| ‘“* @

Mode 2 % j |u |

@ @, I @ d:b-

Mode 3 llﬂuj | / k/

[Cootes, Taylor, Cooper, and Graham, CVIU 1995]



Appearance-based methods:
shape tracking

[Baumberg and Hogg, ECCV 1994]



Shape priors & Tracking:

Pros:
+ more accurate tracking using specific shape and motion models
+ Simultaneous tracking and motion recognition with
discrete state dynamical models

Cons:
- Local minima is still an issue

- Re-initialization is still an issue



Shape and Appearance vs. Motion

e Shape and appearance in images depends on many factors:
clothing, illumination contrast, image resolution, etc...

—

Efros et al. 2003



Motion estimation: Optical Flow

e Classic problem of computer vision [Gibson 1955]
e Goal: estimate motion field

How? We only have access to image pixels

— Estimate pixel-wise correspondence
between frames = Optical Flow

® Brightness Change assumption: corresponding pixels
preserve their intensity (color)

s Useful assumption in many cases

3-D scene | - 3-D scene

+» Breaks at occlusions and
illumination changes

+» Physical and visual
motion may be different

optical flow field

optical flow field




Generic Optical Flow

e Brightness Change Constraint Equation (BCCE)

v — (%Uy)T Optical flow

D'v+n=0
(VD) v+ I VI = (I, I,)" Image gradient

One eguation, two unknowns => cannot be solved directly

Integrate several measurements in the local neighborhood
and obtain a Least Squares Solution [Lucas & Kanade 1981]

<VI(VD'" >v=—< VI >
Second-moment < Il > < Ig > < Iyl >

matrix, the same

one used to . : . :
compute Harris < - > Denotes integration over a spatial (or spatio-temporal)

interest points! neighborhood of a point



Generic Optical Flow

e The solution of <« vI(VID)' > v =— < VII; > assumes
1. Brightness change constraint holdsin < . >
2. Sufficient variation of image gradientin < - >

3. Approximately constant motion in < - >

Motion estimation becomes inaccurate if any of assumptions
1-3 is violated.

e Solutions:

(2) Insufficient gradient variation
known as aperture problem

== Increase integration neighborhood

(3) Non-constant motionin < - >

==> Use more sophisticated motion model




Parameterized Optical Flow

¢ Another extension of the constant motion model is to compute
PCA basis flow fields from training examples

1. Compute standard Optical Flow for many examples
2. Put velocity components into one vector

w = (vl, ’U;', v2, ’U%, ey U ’UEZJ)T

3. Do PCA on w and obtain most informative PCA flow basis vectors

Training samples PCA flow bases

-----------
LN B T T
P = -
DR R B T T
P I .

F P oy oy

- R gy

Learning Parameterized Models of Image Motion
M.J. Black, Y. Yacoob, A.D. Jepson and D.J. Fleet, CVPR 1997



Parameterized Optical Flow

e Estimated coefficients of PCA flow bases can be used as action
descriptors

speech coefficient al speech ceefficient ad speech coefficent a5 speech coefficient ad
200 4 0 - *"Tﬁ""'“ﬂ‘_ 40— A T
e N 7 2oL i

100 : \‘%3& *{}&ﬁ; vl AN N VoS
o '7/ : e —— = “-—r" "l;:‘/' ;ﬂ- Wi PR e
- K\__‘_‘iﬁ-"’f 'i; :- .-r.- -ﬁ:_. P - 40

15 frama

Frame numbers

==)> Optical flow seems to be an interesting descriptor for
motion/action recognition



Spatial Motion Descriptor

Optical flow FX y

4

Fo FSLF L F)

[Efros, Berg, Mori and Malik, ICCV 2003]

-

-

blurred F | F ', F Fy+



Spatio-Temporal Motion Descriptor

Temporal extent E
| |

Sequence A

| Sequence B

| matrix

E ;\\

frame-to-fram motion-to-motion
similarity matrix blurry | similarity matrix




Football Actions: matching

Input
Sequence
Matched ,"
Frames - ;
=
By

input matched




Goal:

Interpret complex
dynamic scenes

Common methods:

Common problems:

« Segmentation using
background model -> hard

« Tracking using » Changing appearance
appearance model ->hard

= Global assumptions about the scene are unreliable

<« * Complex & changing BG




Space-time

No global assumptions =
Consider local spatio-temporal neighborhoods

}'i hand waving

-

boxing




Actions == Space-time objects?




Space-time local features




Local approach Bag of Visual Words

Airplanes

Motorbikes |§%

Faces

Wild Cats

Leaves

People

Bikes




Space-Time Interest Points: Detection

What neighborhoods to consider?

Distincti High image Look at the
e |rs]b|ncr:h|ved = variation in space = distribution of the
€1ghborhoods and time gradient
Definitions:
f: RQ xR —=R Original image sequence
g(gj’ Y, t; Z) Space-time Gaussian with covariance > € SPSD(3)

Le(; ) = f(-) xge(+; ) Gaussian derivative of f

Hxy Hyy Hyt
Mzt Myt Wit

u(; ) = VL(; Z)(VLG; D) xg( s2) =

VL = (Lg, Ly, L)'  space-time gradient (
Second-moment matrix

Hxx Hzy Umct)

[Laptev 2005]



Space-Time Interest Points: Detection

Properties of (-, 2)

,u,(-; Z) defines second order approximation for the local
distribution of YV L within neighborhood >_

rank(p) =1 — 1D space-time variation of f e.g. moving bar
rank(pu) = 2 —> 2D space-time variation of f e.g. moving ball
rank(pu) = 3 —> 3D space-time variation of f e.g. jumping ball

Large eigenvalues of u can be detected by the
local maxima of H over (X,y,t):

H(p; ¥) = det(u(p; X)) + ktrace3(u(p; X))
= AA2A3 — k(A1 + Ao+ A3)°

(similar to Harris operator [Harris and Stephens, 1988])

[Laptev 2005]



Local features for human actions

[Laptev 2005]



Local features for human actions

hand waving

[Laptev 2005]



Local space-time descriptor: HOG/HOF

Multi-scale space-time patches

- A
e
v
v
Histogram of Histogram t
oriented spatial 7?: of optical [«|[«|[—
grad. (HOG) flow (HOF) ;

Public code available at

www.irisa.fr/vista/actions |||I III||| I | |

3x3x2x4bins HOG 3x3x2x5bins HOF
descriptor descriptor




Local Space-time features: Matching

= Find similar events in pairs of video sequences




Bag-of-Features action recognition

space-time patches

Extraction of
Local features

ime

K-means ﬂ

Occurrence histogram cLu_sLtlering %
of visual words (k=4000) Feature
T —— @ description
SVM with 2 |<= (== Feature %
kernel L WS 1 ~ Bt quantization

[Laptev, Marszatek, Schmid, Rozenfeld 2008]



Action classification (CVPRO08)

Test episodes from movies “The Graduate”, “It's a Wonderful Life”,
“Indiana Jones and the Last Crusade”



Evaluation of local feature
detectors and descriptors

Four types of detectors:

e Harris3D Laptev 2003]
e Cuboids Dollar et al. 2005]
 Hessian 'Willems et al. 2008]

* Regular dense sampling

Four types of descriptors:

« HoG/HoF Laptev et al. 2008]
e Cuboids Dollar et al. 2005]
« HoG3D Klaser et al. 2008]
 Extended SURF [Willems’et al. 2008]

Three human actions datasets:
 KTH actions Schuldt et al. 2004]

 UCF Sports [Rodriguez et al. 2008]
e Hollywood 2 Marszatek et al. 2009]




Space-time feature detectors

Harris3D Hessian

O

Adecca ASDA . sson

O

Adecco ASDA »ff ssort

|
i

|
]




Walking  Jogging  Running Boxing Waving  Clapping

Results on — —
KTH Actions ' | -

6 action classes, 4 scenarios, staged

Detectors

Harris3D Cuboids Hessian Dense

HOG3D 89.0% 90.0% 84.6% 85.3%

¥ HOG/HOF 91.8% 88.7% 88.7% 86.1%
_*Ez HOG 80.9% 82.3% 77.7% 79.0%
?, HOF 92.1% 88.2% 88.6% 88.0%
8 Cuboids - 89.1% - _
E-SURF - - 81.4% -

(Average accuracy scores)

 Best results for sparse Harris3D + HOF

 Dense features perform relatively poor compared to sparse

features [Wang, Ullah, Klaser, Laptev, Schmid, 2009]
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Results on - . P
UCF Sports — i

10 action classes, videos from TV broadcasts

Detectors

Harris3D Cuboids Hessian Dense

«n HOG3D 79.7% 82.9% 79.0% 85.6%
g HOG/HOF 78.1% 77.7% 79.3% 81.6%
o HOG 71.4% 72.7% 66.0% 77.4%
g HOF 75.4% 76.7% 75.3% 82.6%
Cuboids - 76.6% - -
E-SURF - - 77.3% -

(Average precision scores)
 Bestresults for dense + HOG3D
[Wang, Ullah, Klaser, Laptev, Schmid, 2009]



Results on
Hollywood-2

12 action classes coIIected from 69 movies

Detectors

Harris3D Cuboids Hessian Dense

n HOG3D 43.7% 45.7% 41.3% 45.3%
g HOG/HOF 45.2% 46.2% 46.0% 47 .4%
E HOG 32.8% 39.4% 36.2% 39.4%
8 HOF 43.3% 42.9% 43.0% 45.5%
Cuboids - 45.0% - -
E-SURF - - 38.2% -

(Average precision scores)
 Bestresults for dense + HOG/HOF
[Wang, Ullah, Klaser, Laptev, Schmid, 2009]



Other recent local representations

e Y. and L. Wolf, "Local Trinary Patterns for
Human Action Recognition ",
ICCV 2009

e P. Matikainen, R. Sukthankar and M. Hebert
"Trajectons: Action Recognition Through the
Motion Analysis of Tracked Features"

ICCV VOEC Workshop 2009,

e H. Wang, A. Klaser, C. Schmid, C.-L. Liu,
"Action Recognition by Dense Trajectories”,
CVPR 2011

ssp1

el

SSD2

- =

e : o A
t- At t+AL
Tracking in each spatial scale separately Trajectory description




Dense trajectory descriptors

[Wang et al. CVPR'11]

Dense sampling Tracking in each spatial scale separately Trajectory description
in each spatial scale
= o ‘r‘---".#}
A 7 2
L1 L Lk
o Riht :
VO HOG HOF MBH
Optical flow Motion boundaries on 1.

il

. - Gradient information Motion boundaries on /,,
- . /‘_ &~ "

< time



Dense trajectory descriptors
[Wang et al. CVPR'11]

KTH YouTube Hollywood2 UCEF sports
KLT  Dense trajectories KLT  Dense trajectories KLT  Dense trajectories | KLT  Dense trajectories
Trajectory || 88.4% 90.2% 58.2% 67.2% 46.2% 47.7% 72.8% 75.2%
HOG 84.0% 86.5% 71.0% 74.5% 41.0% 41.5% 80.2% 83.8%
HOF 92.4% 93.2% 64.1% 72.8% 48.4% 50.8% 72.7% 77.6%
MBH 93.4% 95.0% 72.9% 83.9% 48.6% 54.2% 78.4% 84.8%
Combined || 93.4% 94.2% 79.9% 84.2% 54.6% 58.3% 82.1% 88.2%
KTH YouTube Hollywood2 UCF sports
Laptev et al. [14] 91.8% Liu et al. [16] 71.2% | Wangetal [32] 47.7% Wang et al. [32] 85.6%
Yuan et al. [35] 93.3% | Ikizler-Cinbis et al. [9] 75.21% | Gilbertet al. [8] 50.9% | Kovashka et al. [12] 87.27%
Gilbert et al. [8] 94.5% Ullah et al. [31] 53.2% Kliser et al. [10] 86.7%
Kovashka et al. [12] 94.53% Taylor et al. [29] 46.6%
[Wang et al.] 94.2% [Wang et al.] 84.2% [Wang etal.] 58.3% [Wang et al.] 88.2%




Where to get training data?



Action recognition datasets

KTH Actions, 6 classes,
2391 video samples
[Schuldt et al. 2004]

® \Weizman, 10 classes,
92 video samples,
[Blank et al. 2005]

UCF YouTube, 11 classes,
1168 samples, [Liu et al.
2009]

Hollywood-2, 12 classes,
1707 samples, [Marszatek et
al. 2009]

UCF Sports, 10 classes,
150 samples, [Rodriguez et
al. 2008]

Olympic Sports, 16 classes,
783 samples, [Niebles et al.
2010]

springboard snatch clean-jerk

HMDB, 51 classes, ~7000
samples, [Kuehne et al. 2011]

PASCAL VOC 2011 Action
Classification Challenge, 10
classes, 3375 image samples




Script-based video annotation

®  Scripts available for >500 movies (no time synchronization)
www.dailyscript.com, www.movie-page.com, www.weeklyscript.com ...

° Subtitles (with time info.) are available for the most of movies
® Can transfer time to scripts by text alignment

subtitles movie script
1
RICK
Why weren't you honest with me? Why weren't you honest with me? Why
Why'd you keep your marriage a secret: did you keep your marriage a secret?

1 Py
_ Rick sits down with llsa.

It wasn't my secret, Richard. ILSA
Victor wanted it that way.

Oh, it wasn't my secret, Richard.
Victor wanted it that way. Not even
1174 ;
our closest friends knew about our
marriage.

Not even our closest friends
knew about our marriage.

[Laptev, Marszatek, Schmid, Rozenfeld 2008]



Evaluatio
1

precision

0.2

Script alignment: Evaluation

® Annotate action samples in text

® Do automatic script-to-video alignment
® Check the correspondence of actions in scripts and movies

........................

n of retrieved actions on visual ground truth

S0 100

150 200

250 300 350 400

number of samples

a: quality of subtitle-script matching

Example of a “visual false positive”

A black car pulls up, two army
officers get out.



Text-based action retrieval

® Large variation of action expressions in text:
GetOutCar “... Will gets out of the Chevrolet. ...”
action: “... Erin exits her new truck...”
Potential false . )
. ...About to sit down, he freezes...
positives:
® => Supervised text classification approach
Keywords action retrieval from scripts 1 Regularized Perceptron action retrieval from scripts
A§ 05k g:gg?gﬁtrggine>_ i X xx_ é ”-5‘§§gﬁ;gzgiswerphone> N
Bow| X Handshake> | ST g S B e |
o4 <Kil;gs>erson 2 04k {ﬁctionwgpersonb ......
<ACUONKISS>
| ¥ <S?tDown> X 02p <ActionSitDown> |
ol §<S'tUP> _ sl g<ActionSitUp> _____________
. I<StalndU[lJ> . ; ; . . : I<ActilonStalndUpl> | . : . .
o 01 0.2 03 0.4 re%sall 08 o7 08 08 1 0 0.1 0.2 0.3 0.4 reoéiall 0.6 0.7 0.8 0.9 1

[Laptev, Marszatek, Schmid, Rozenfeld 2008]



Hollywood-2 actions dataset

Training Training Test
subset subset subset L
(clean) (automatic) (clean) Tralnlng and test
AnswerPhone 66 55 64 samples are obtained
DriveCar 25 30 102 from 33 and 36 distinct
Eat a0 aa 33 movies respectively.
FightPerson 54 33 70
GetOutCar 51 40 57
HandShake 32 38 45
HugPerscn 64 27 66
Kiss 114 125 103 HO”yWO_Od'Z _
o 115 17 ™ dataset |s_qn-I|ne_.
_ http://www.irisa.fr/vista
SitDown 104 87 108 .
/actions/hollywood?2
SitUp 24 26 a7
StandUp 132 133 146
All samples 823 810 884

[Laptev, Marszatek, Schmid, Rozenfeld 2008]



Action classification results

Clean Automatic
hoghof hoghof Chance
Channel bof flat bof flat
mAP 47.9 | 50.3 31.9 | 36.0 9.2
AnswerPhone 15.7 | 20.9 18.2 | 19.1 7.2
DriveCar 86.6 | 84.6 78.2 | 80.1 11.5
Eat 59.5 | 67.0 13.0 | 22.3 3.7
FightPerson 71.1 | 69.8 529 | 576 7.9
GetOutCar 203 | 45,7 13.8 | 27.7 6.4
HandShake 21.2 | 27.8 12.8 | 18.9 5.1
HugPerson 35.8 | 43.2 15.2 | 204 7.5
Kiss 51.5 | 52.5 43.2 | 48.6 11.7
Run 69.1 | 67.8 34.2 | 49.1 16.0
SitDown 58.2 | 57.6 28.6 | 34.1 12.2
SitUp 17.5 | 17.2 11.8 | 10.8 4.2
StandUp 51.7 | 543 40.5 | 43.6 16.5

Average precision (AP) for Hollywood-2 dataset




Actions in Context

e Human actions are frequently correlated with particular scene classes

Reasons: physical properties and particular purposes of scenes

Running -- road RUhning -- Street



Mining scene captions

ILSA
| wish | didn't love you so much.
01:22:00
01:22:03 She snuggles closer to Rick.

Laszlo and Carl make their way through the darkness toward a
side entrance of Rick's. They run inside the entryway.

The headlights of a speeding police car sweep toward them.
They flatten themselves against a wall to avoid detection.
The lights move past them.

CARL

01:22:15 | think we lost them.
01:22:17



Co-occurrence of actions and scenes
In scripts

8(1267) | 147 | Relative Frequency: "Interior — office, business office”
0.14 T T T T T T T T T T T T
Dz i

0.1 -

[Marszatek, Laptev, Schmid, 2009]



Results: actions and scenes (jointly)

Actions
in the
context
of
Scenes

Scenes
in the
context
of
Actions

Gain in average precision (AP)

Gain in average precision (AP)

0.1

-0.1

0.1

-0.1

Vision-learned m—

Text-mined

1

(=) (2]
S, a0, s R g o":z. %y, Q,
o S iy, Ty R, e (oY
% o % o -
)

Vision-learned ——— -

Text-mined D -

Wﬁmlr

S U U U U M S U U A
% % o % o T B, S %
o Oy P R N

[Marszatek, Laptev, Schmid, 2009]



Handling temporal uncertainty

Subtitles Script E E

Speech = -

00:24:22 —é 00:24:25 ; T " | Monsieur Laszlo. Right this way. - .
— Yes, Monsieur Laszlo. \ Scene description 24:25 _E _
Right this way. As the headwaiter takes them to a =, - E
table they pass by the piano, and - - .

the woman looks at Sam. Sam, § - -

with a conscious effort, keeps his O =2 s

/ eves on the keyboard as they go O - -

. = I - -

past. The headwaiter seats llsa... ) i -

00:24:51 —; 00:24:53 Speech E E
Two Cointreaux, please. —+——— | Two cointreaux, please. 24:51 ¢ =

[Duchenne, Laptev, Sivic, Bach, Ponce, 2009]



Handling temporal uncertainty

Input:

« Action type, e.g.
Person Opens Door

—

* Videos + aligned scripts

Automatic collection of training clips

.. Jane jumps up and opens the door ...
.. Carolyn opens the front door ...
.. Jane opens her bedroom door ...

Clustering of positive segments

Output: Training classifier
Sliding- X —
window-style —_ =
temporal - _— o —
action — —
localization S -

[Duchenne, Laptev, Sivic, Bach, Ponce, 2009]



Discriminative action clustering

Feature space Video space

- 4 \ o
rE — ; :
v 4

Nearest neighbor Random video samples: lots of them,
solution: Wrong! very low chance to be positives

[Duchenne, Laptev, Sivic, Bach, Ponce, 2009]



Action detection: Sliding time window

“Sit Down” and “Open Door” actions in ~5 hours of movies

Sit Down Open Door

OB grrrrrrrmrranenenn EEERERETY e R EEEERERRES e DB g g g EEERERETY e

: ; ; ; —GT (AP:0.139) |- 5 : : : —GT (AP:0.144) |
045kt __________ __________ __________ .......... ——Cluster (AP:0.121)'§ oasFLAUL- __________ __________ __________ .......... ——Cluster (AP:0.141)'§

0.35F |

0311

precision
(=)
]

L L
0.3 0.35

recall



Temporal detection of “Sit Down” and “Open Door” actions in movies:
The Graduate, The Crying Game, Living in Oblivion [Duchenne et al. 09]



What we have seen so far

Actions understanding in realistic settings:

Action classification

Is classification the final answer?



How to recognize this as unusual?

et i "
|
(I




Is action vocabulary well-defined ?

Examples of an action “Open”




Is action vocabulary well-defined ?

Source: http://www.youtube.com/watch?v=eYdUZdan5i8

Do we want to learn person-throws-cat-into-trash-bin classifier?




Scene semantics from
long-term observation of people

ECCV 2012

V. Delaitre, D. k. Fouhey, |. Laptey,
J. Sivic, A. Gupta, A. Efros




Motivation

e Exploit the link between human pose, action and object function.

« Use human actors as active sensors to reason about the surrounding
scene.



Goal

Recognize objects by the way people interact with them.

Time-lapse “Party & Cleaning” videos Semantic object segmentation

Lots of person-object interactions,
many scenes on YouTube Bl sofa Shelf Floor
Table Tree M Wall







Goal

Recognize objects by the way people interact with them.

Time-lapse “Party & Cleaning” videos Semantic object segmentation

Lots of person-object interactions,
many scenes on YouTube Bl sofa Shelf Floor
Table Tree M Wall




Pose vocabulary
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Pose histogram
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Some qualitative results




Background Ground truth ‘A+P’” soft segm. ‘A+L’ soft segm. ‘A+P’ hard segm.

Bed

B Chair CoffeeTable Cupboard M SofaArmchair M Table [ Other



Using our model as pose prior

Given a bounding box and the ground truth segmentation, we fit the pose clusters in
the box and score them by summing the jo




&
&
:
=
=T
=




Conclusions

BOF methods give encouraging results for action
recognition in realistic data. But better models are
needed

Large-scale readily available annotation provides
reach source of supervision for action recognition.

Action vocabulary is not well-defined. Classifying
videos to N labels is not the end of the story.
Recognizing object function and human actions
should be addressed jointly
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