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Preface

This talk will contain a mix of “standard” tutorial
material and “speculative’ opinions

Please interrupt with questions!
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Pattern classification versus visual understanding

Yes/no
scanning window
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Pattern classification versus visual understanding

Yes/no
scanning window

VS

“In-the-wild”
pose estimation
Multiple bodies

Heavy occlusion
3D viewpoint
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Pattern classification versus visual understanding

Yes/no
scanning window

use tools
from here

“In-the-wild”
pose estimation
Multiple bodies

Heavy occlusion
3D viewpoint
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Why 1s finding people difficult?

>
el

variation in illumination

occlusion & clutter

Classic “nuisance factors”™ for general object recognition
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Appearance Templates

Rigid Templates Quasi-rigid templates

Felzenswzalb, Girshick, McAllester, & Ramanan
PAMI 10
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Why do parts help?
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Star-models capture local affine (stretch,rotate,shear) deformations of template
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Are quasi-rigid templates enough?
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Deformable shape
bbbl

Factored models of elastic geometry + appearance
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Successful in graphics, but why not vision?

Too complex: inference 1s hard
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Trifecta of shape

Flexible
models

tractable models

of shape
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Quasi-rigid Structureless
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Tractable shape
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Star Chain Tree

Increasingly flexible
Thursday, July 12,2012
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Overview

Background: part models

Articulation

Occlusion
3D viewpoint

Extensions
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Old 1dea: part models

Model encodes local appearance + pairwise geometry
40 year history 1n vision

Pictorial Structures (Fischler & Elschlager 73, Felzenswalb and Huttenlocher 00)
Cardboard People (Yu et al 96)
Body Plans (Forsyth & Fleck 97)
Active Appearance Models (Cootes & Taylor 98)
Constellation Models (Burl et all 98, Fergus et al 03)

Thursday, July 12, 2012




Background: deformable part models
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X = 1mage
pi = (Xi,yi)
p=1{z1,22...}
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Background: deformable part models
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X = 1mage
pi = (Xi,yi)
p=1{z1,22...}

part template
scores
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Background: deformable part models

X = 1mage
pi = (Xi,yi)
p=1{z1,22...}

part template spring deformation
SCores model

W(pi,p;) = [dz da? dy dy?]’

E = relational graph
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Shape term

Star Chain Tree

Can make pairwise term image-independant (0 ($ y Piy pj)

Sapp et al ECCV,CVPR,NIPS 2010
Tran & Forsyth ECCV 10
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Shape term

where (i, A) are functions/reparameterizations of {wi;}

and A 1s the block-sparse inverse of a shape “covariance” matrix
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Shape term

where (i, A) are functions/reparameterizations of {wi;}

and A 1s the block-sparse inverse of a shape “covariance” matrix

,,,,,

Lesson: stars don’t deform that much, but trees do!
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Shape term (derivation)

Z aijda:2 F szdx -+ Cijdy -+ dijdy2 =
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Inference: mgx S(X,p)

Felzenszwalb & Huttenlocher IJCV 05
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N candidate locations, K parts

e Dynamic programming reduces search
from O(NK) to O(KN?) for trees inhe

*For each candidate head, independently 7= = ’ .
estimate best left and right arm -

*In practice, no more expensive than
scoring each part independently
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Inference: mgtx S(X,p)

iy
LR
. ShiE
Pixel vt
locations 1) Initialize nodes with match score

2) Initialize edges with spring score

3) Find best path from left to right

In practice, (1) is bottleneck

head torso leg
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Background: linearly-parameterized deformable part models

X = 1mage
pi = (Xi,yi)
p=1{z1,22...}

part template spring deformation
SCores model

Score 1s linear in local templates w; and spring parameters w;;
S(:C,p) = w- CID(x,p)
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Learning linear parameters

pos &%
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Train ‘w’ with linear classifier (perceptron, SVM, regression, ...)
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Learning linear parameters

min HwHQ
w

Vi € pos,w - x; > 1

Vi € neg,w - x; <1
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Large-scale learning

Our test set distribution 1s highly imbalanced; so should be the training set

(hundreds of positives, hundreds of millions of negatives)

SVMs are attractive because they generate sparse learning problems

(One can solve problems that are too big to fit in memory)
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Learning structured linear parameters
S(z,p) = w - ®(z, p)

(Apply same sparse learning tricks to
deal with exponential set of negatives!)
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Learning structured linear parameters

pos

neg
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(Apply same sparse learning tricks to
deal with exponential set of negatives!)



Perhaps we don’t even need SVMs?
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Gaussian model

w= X" — o)

Learn templates with simple statistical Gaussian models

Hartharan, Malik, Ramanan ECCV 12
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Datasets

- o - .I':n \l..».-m.-, "’ ;. . e
Bufty Oxford
Leeds Sports dataset PASCAL Stickman
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PASCAL Layout Competition

(the forgotten challenge)

(sole entry
OXFORD_RANK_SLACK RBF 729 269 781 1n 2011)

Makes use of DPM to detect candidate parts & reranks with SVM
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Overview

Background: part models

Representations

Occlusion

3D variation

Extensions
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What’s wrong with part models?

(Flawed) assumption: local appearance and global geometry are independent

(e.g., head looks the same no matter the geometry of the rest of the body)
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When does this fail?

Thursday, July 12, 2012



What’s wrong with part models?

(Flawed) assumption: local appearance and global geometry are independent

(e.g., head looks the same no matter the geometry of the rest of the body)

| 9|

When does this fail?

1'7'_' J{.—
!:,';\-&.
J 32“

§ i \
Articulation 3D viewpoint Occlusion
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Modeling articulation

Enlarge state space of part location to include
orientation and foreshortening

(Xi,yi) => (Xi,Yi,0i,81)

Problem: rather expensive and doesn’t work well
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One solution: local mixtures of small patches
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Any smooth spatial
transformation 1s locally rigid
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Local mixtures of parts

Each part has a Score local Score deformation with one of T? springs
position ‘p’ and model with one (interdependence of geometry + appearance)
mixture type ‘t’ of T templates

Thursday, July 12, 2012




Local mixtures of parts

Each part has a Score local Score deformation with one of T? springs
position ‘p’ and model with one (interdependence of geometry + appearance)
mixture type ‘t’ of T templates
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Appearance relations

Spring co-occurrence prior
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Supervised learning
S(z,p,t) =w-P(x,p,t)

Given {Xn,pn,ta}, tune ‘w’ such that S(x,p,t)
scores high on people and low on backgrounds

(structured prediction)
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Inference

Consider “joint” domain of part location and mixture type: 2; — (pi, ti)

Z¢z z) + Yy (2, 25)

NISED)
(31mple discrete tree-MRF)

Pixel locations
and mixture types

head torso leg
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Exponential number of global mixtures

o~
v
}
s
X o
o .
e T | N - e L
-~ (T e A <33 .
it % L ) ~y e
- 9! Ro6 ¥
M = el
[ y
7l T T N . - = N . | N S S |2 =
---------- i
Advner BN 35 =
7y ]
A i s
| B4
PR
[ et
—_— B x .~
5 \ ’v
! (4 B EERE IR B Pl T esiPSRST B pese]
» .
Ereend Y
----- ey 19 . i ) L i % Jod Ay 3 i
\\\\\ e S | -0 | 3 b sy
\\\\\ - 4
— == R

K parts, M local mixtures => KM unique global mixtures

Not all combinations are equally likely;
“prior”’ given by co-occurrence model
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Qualitative Results

Y1 & Ramanan CVPRI11
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Search over representations

Performance vs # of parts (K) and mixtures (T)

7 8 9
Number of mixtures (T)
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Denser parts and more local mixtures help (up to a point)
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Quantitative evaluation

% of correctly localized limbs

Image Parse Testset

Upper Tegs

|
|

On-par with or outperforms previous work while being orders of magnitude faster

(few seconds vs few minutes)

All previous work use explicitly articulated models
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Model affine warps of templates with
mixtures of pictorial structures

Faster run-time
(small templates + dynamic programming)
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What makes 1t work better?
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Why does joint training help?

We need compete only against joint configurations
of negatives that score above margin
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Why are parts not orientation-invariant?

Joint Indep Indep+Invar
67.4 51.3 33.8
{ = g

!Eff i

[1lumination (world 1s lit from above)
Occlusions (torsos tend to be upright)
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Overview

Background: part models

Articulation

Occlusion

3D variation

Extensions
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Representations for human pose

Patches Skeleton Poselets
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Representations for human pose

Skeleton Poselets
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Global representations

Skeleton Poselets Exemplars Visual Phrases
loffe & Forsyth Bourdev & Malik Malisiewicz et al Sadeghi and Fahardi
zenswalb & Huttenlocher Maji et al. Mori & Malik
'ohnson & Everingham Yang & Mori ~ Shaknarovich & Darrell
Andruikula et al. Wang & Yang  Johnson & Everingham

Ferrari et al.
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http://www.cs.cmu.edu/~tmalisie/
http://www.cs.cmu.edu/~tmalisie/

Global representations

Skeleton Poselets Exemplars Visual Phrases

Insight from such global approaches (an opinion):

large composite templates better model occlusions and interactions
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How to encode complex interactions?
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Visual Phrases
Sadeghi and Fahardi, CVPR 11
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Person on Person on horse Person standing
jumping horse next to horse

One may need lots of large composite templates
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How to encode complex interactions?

Poselets
Bourdev & Malik ICCV09

One may need lots of large composite templates
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One take: visual “phraselets”
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Person on Person standing
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Break up visual composite into smaller
patches and reason about appearance relations
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%29

One take: visual “phraselets

Hand looks different due to interactions with global geometry

We’ll encode such visual differences as local part mixtures
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Learning phraselets

Define phraselets as commonly-occuring geometric configurations

“Poselet-like clusters”
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Given labelled training data, find clusters of
keypoint configurations relative to each joint
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Model occlusions with separate clusters

Visible left elbow Occluded left elbow

Mixture label corresponds to visible/occlusion state
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Local mixtures of phraselets

visible occluded

Relational model encodes that one (but not both) the
left & right leg 1s occluded when they are nearby
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Relational phraselets

Report back human+object part locations and mixture label

occluded
mixture

Desal and Ramanan ECCV 12
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RGN IR

Person+phone
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RGN IR

Detecting person-object interactions

2011 Val: takingphoto 2011 Val: phoning 2011 Val: ridinghorse

— Us: 60.780
— VP: 46.660

Red line: Our compositional phraselet model
Blue line: DPM trained on persontobject (visual phrase)
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Top false positives

(penalized detections)

Using computer
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Action classification

 [Run|R. Bike|R. horse|Phoning|TakingPhoto| UsingComp [Walk.
Poscleis[88.1] 700 | 87.6 | 450 | 262 | 119 | 66.6

For action classification (given known
bounding box), method near state-of-art
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Person-person composites
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Yang et al. “Recognizing Proxemics in Personal Photo Collections” CVPR12
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Proxemic analysis

Edward Hall “A system for the notation of proxemic behavior”
American Anthropologist 1963

Touching body parts
Relative body orientation (heads, elbows, hands)
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Number of People
Eichner & Ferrari. “We are Family: Joint Pose Estimation” ECCV 2010

Yang et al. “Recognizing Proxemics in Personal Photo Collections” CVPR12
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Dataset statistics

(a) Image Statistics

No. People Pairs
1207 1332

(b) Touch Code Statistics
 Han-elbow| Elbov-shor

—

(¢c) Co-occurrence Statistics
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Quantitative results
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M Visual Phrase

Average Precision

Sequential approach: (1) Estimate pose with single-body model
(2) Classify touch-code based on estimate pose

Yang et al. “Recognizing Proxemics in Personal Photo Collections” CVPR12
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Quantitative results

Removing key spring (yellow) drops performance from 52% to 33%

Correct spatial structure 1s crucial
(e.g., difficult to reason about with a star model)
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Overview

Background: part models

Occlusion reasoning

Extensions
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View-based models of faces

loffe & Forsyth, 2001

ham, S

, 2006

1c, & Zisserman
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View-based models of faces

loffe & Forsyth, 2001

ham, S

, 2006
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View-based models
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Learning

Fully-supervised dataset (CMU MultiPIE)

Chow-Liu algorithm
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(Global models of detormation
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Learned appearance & deformation
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Viewpoint variation
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Global mixtures capture large viewpoint changes

Elastic springs capture small viewpoint changes

... all without explicit 3D reasoning
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Evaluation on Flickr images
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Qualitative results

Model simultaneously addresses face detection, pose estimation, and landmark localization
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Detection results
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Detection results
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Detection results
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Felzenszwalb et al. 2010

C
Le)
n
‘s 0.6
@
-
a

o
S

—DPM, voc—re4 Multiview
Multiview HoG O
® Google Picasa

face.com
® 2-view Viola Jones | | | |

01 02 03 04 05 06 0.7 0.8
recall

-~
~

Thursday, July 12, 2012



Detection results

o
o

0.7

Def. Parts
Felzenszwalb et al. 2010
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Detection results
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[Landmark localization
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Our model is learned with
only hundreds of faces
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[Landmark localization
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Baselines are initialized with ground truth detection on test images.

Our model naturally produces state-of-the-art pose and landmark estimates
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A look back: why do part models help?
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Mixtures of rigid templates Part model

Consider a K-part model, with L discrete part locations

At run-time, part model = exponentially-large O(LX) mixture of rigid templates
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A look back: why do part models help?
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Mixtures of rigid templates Part model

Consider a K-part model, with L discrete part locations

At run-time, part model = exponentially-large O(LX) mixture of rigid templates

Compared to a mixture of exemplars (Malisiewicz et al), part models...

1) Share parameters across mixtures

2) “Synthesize” new rigid templates not seen during training
3) Efficiently search over mixtures using dynamic programming
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A look back: why do part models help?
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Mixtures of rigid  Mixtures of rigid templates Part model
templates with tied parameters
(given by parts)

1) Share parameters across mixtures
2) “Synthesize” new rigid templates not seen during training

To examine (1) vs (2), lets define mixture of exemplars with sharing
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An analysis of part models
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An analysis of part models
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An analysis of part models
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An analysis of part models
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Overview

Background: part models
Occlusion reasoning

3D variation

Extensions
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Challenges 1n scalability:
Vocabularles of thousands of parts

e R e

' Is there a more efficient

representation?
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Steerable basis

1 set of templates

f basis templates
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Learning steerable part models

Learn vocabularies of thousands of parts

w,; — E Sijbj

J

W B S

Basis Steering
Coefficients

Learn rank-constrained linear classifiers with off-the-shelf structural SVM solvers
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Steerable (& separable)
part models

Pirsiavash & Ramanan CVPR12
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Models are 10-100X smaller & faster with near-equivalent performance

Share “soft” basis rather than fixed templates (across views/categories)

BN EE,

Philosophy: We should treat parameters w as spatial filters, not vectors
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Non-tree constraints: occlusion

How to handle “loopy” constraints that arise from occlusion
phenomena?

Sigal & Black CVPR 06
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Non-tree constraints: appearance

Pairwise consistency (symmetry in appearance)
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Tools for inference on non-trees

One approach: apply standard approximate inference algorithms for
Markov Random Feilds (MRFs)

Why is this hard?
1) Large discrete domains of variables (e.g., pixels in an image)

2) Continuous domains of variables (e.g., color and appearance)
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Tools for inference on non-trees

One successful approach: use tree-like inference algorithms

Mixtures of trees (condition on mixture variable)
Ioffe & Forsyth, Johnson & Everginham, Lan & Huttenlocher, Wang & Mori

Loopy Belief Propagation (iteratively apply tree-based messages)
Sigal and Black

Dual Decomposition (break problem up into trees ensuring agreement)
Sapp et al, Kumar et al

Branch & Bound (use trees to generate strong lower bounds)

Tian and Scarloff, Nevatia

(importance sample from tree)
Felzenszwalb & Huttenlocher, Beuhler et al
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N-best decoding

Generate N high-scoring candidates with simple (tree) model, and
evaluate with complex (loopy) model

Popular in speech, but why not vision?
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N-best decoding

Generate N high-scoring candidates with simple (tree) model, and
evaluate with complex (loopy) model

Popular in speech, but why not vision?
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N-best maximal decoding

Use max-marginals + NMS to compute the “next-best non-overlapping pose™

Park and Ramanan, ICCV11
Yadollahpour et al. ECCV12
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N-best maximal decoding

Intuition: backtrack from all parts, not just root

(can we done without any noticeable increase in computation)

Park and Ramanan, ICCV 2011
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N-best maximal decoding

Philosophy: Delay hard decisions as much as possible

Candidate interest:points
Candidate paris

Candidate poses
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Maximal poses from a single frame

Correct one picked out by temporal context (tracker)
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Evaluation

ntage of correct frames
Algorithms \ walking | pitching | lolal |
noNMS | 0.825
rootNMS | 0.815

partNMS | 0.825

+

MMsmpl | 0.930
Nbest(all) 0.940
Nbest(limb) | 0.950

Outperforms standard approaches by 20%
Just as fast as finding single-best configuration
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A look back
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3D aspect

Visual composites

Articulation

Underlying theme: tractable, joint representations of shape and appearance
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Thank you!
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