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Aggregating local descriptors

Set of n local descriptors - 1 vector

Popular approach: bag of features, often with SIFT features

Recently improved aggregation schemes
— Fisher vector [Perronnin & Dance ‘07]

— VLAD descriptor [Jegou, Douze, Schmid, Perez ‘10]
— Supervector [zhou et al. ‘10]

— Sparse coding [Wang et al. ’10, Boureau et al.’10]

Use in very large-scale retrieval and classification



Towards large-scale image search
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Aggregation of local descriptors

e Most popular approach: BoF representation [Sivic & Zisserman 03]
sparse vector
highly dimensional

— significant dimensionality reduction introduces loss

e Vector of locally aggregated descriptors (VLAD) [Jegou et al. 10]
non sparse vector
fast to compute
excellent results with a small vector dimensionality

e Fisher vector [Perronnin & Dance 07]
probabilistic version of VLAD
initially used for image classification
comparable or improved performance over VLAD for image retrieval



VLAD : vector of locally aggregated descriptors

e Learn a vector quantifier (k-means): c,...,C;,...c, with ¢; centroid of dim. d

e For a given image
» assign each descriptor to closest center c;
» accumulate (sum) descriptors per cell
Vi =Vt (X C)
measure repartition of vectors within a cell

e VLAD of dimension D =k x d
(k typically between 16 and 256)

e The vector is square-root + L2-normalized

o

[Jegou, Douze, Schmid, Perez, CVPR’10]



Fisher vector

e Use a Gaussian Mixture Model as vocabulary
e Statistical measure of the descriptors of the image w.r.t the GMM
e Derivative of likelihood w.r.t. GMM parameters

o r GMM parameters:
w; weight
fi mean

0; co-variance (diagonal)

Translated cluster
large derivative o (t;  for this
component

[Perronnin & Dance 07]



Fisher vector

FV formulas:
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1t(1) = soft-assignment of patch #; to Gaussian i
Fisher Vector = concatenation of per-Gaussian gradient vectors

For image retrieval in our experiments:
- only deviation wrt mean, dim: K*D [K number of Gaussians, D dim of descriptor]
- variance does not improve for comparable vector length



VLAD/Fisher/BOF performance and dimensionality redu ction

e We compare Fisher, VLAD and BoF on INRIA Holidays Dataset (mAP %)

e Holidays Dataset
» 500 query images + 991 annotated true positives
» most images are holiday photos of friends and family
» 1 million & 10 million distractor images from Flickr
» Vocabulary construction on a different Flickr set
» Evaluation metric: mean average precision (in [0,1], bigger = better)

g A

Query Database images



VLAD/Fisher/BOF performance and dimensionality redu  ction

e We compare Fisher, VLAD and BoF on INRIA Holidays Dataset (mMAP %)
e Dimension is reduced to D’ dimensions with PCA

Descriptor K D Holidays (mAP)
D=0 —»B=20048 -D=512 —50F=128 -—»0=64 -3 D'=32
BOW 1000 1000 40.1 43.5 44.4 434 40.8
20000 20000 43.7 41.8 44.9 45.2 444 41.8
Fisher (p) 16 1024 54.0 54.6 32.3 499 46.6
64 4096 9.5 60.7 61.0 56.5 52.0 48.0
256 16384 62.5 62.6 57.0 53.8 50.6 48.6
VLAD 16 1024 52.0 52.7 52.6 505 47.7
64 4096 55.6 57.6 59.8 55.7 523 48.4
256 16384 58.7 62.1 56.7 54.2 51.3 48.1
GIST 960 36.5

e Observations:
» Fisher, VLAD better than BoF for a given descriptor size
» Choose a small D if output dimension D’ is small
» Performance of GIST not competitive

[Jegou, Perronnin, Douze, Sanchez, Perez, Schmid, P AMI'12]



Compact image representation

e Aim: improving the tradeoff between
» search speed
» memory usage
» search quality

e Approach: joint optimization of three stages
» local descriptor aggregation
» dimension reduction
» Indexing algorithm

Image repres_entation : PCA + (Non) — exhaustive
VLAD / Fisher PQ codes search




Product quantization for nearest neighbor search

e Vector split into m subvectors: vy — [y1| e !ym]

e Subvectors are quantized separately by quantizers ¢(y) = [q1(y1)] - - - [@m (Y )]
where each ¢; is learned by k-means with a limited number of centroids

e Example: y = 128-dim vector split in 8 subvectors of dimension 16
each subvector is quantized with 256 centroids -> 8 bit
very large codebook 25678 ~ 1.8x10"19

16 components

Y1 Yo Y3 Y4 Y5 Ys Y7 Ys
HOENOEEOBEOENOENOENOENO
centroids

da(Yy) 0(Y2) ds(Ya) Aa(Ya) Os(Ys) ds(Ye) a(Y7) ds(Ys)

8 bits
= 8 subvectors x 8 bits = 64-bit quantization index

[Jegou, Douze, Schmid, PAMI'11]



mAP

Optimizing the dimension reduction and gquantization
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Results on Holidays dataset:

- there exists an optimal D’

- 16 byte best results for k=64

- 320 byte best results for k=256



Joint optimization of Fisher and dimension reduttindexing

e For Fisher
» The larger k, the better the raw search performance
» But large k produce large vectors, that are harder to index

e Optimization of the vocabulary size
» Fixed output size (in bytes)
» D’ computed from k via the joint optimization of reduction/indexing
» Only k has to be set

—> end-to-end parameter optimization



Results on the Holidays dataset with various quahtan parameters

mARP

70

60

50

40

30

20

ADC parameters

4x8 8x8 16x8  32x10 128x10
| | | E— E— | |
I NN SN AU RN S5 SN O N _
TR
A
a 4
S SO SR e id -
‘I‘ i I : PO :
5 5 5 5 : o mIﬁIBDFSEI
I s S Rl S -G - MRIBOF 16 - - =
i E | | o thDFB ' 5
: : : ' mmBDFd
B - “Fisher K64 —+ 1 |
o Fisher K=256
| | ommeort] | minBOF[Z], o

4 8 16 32 64 128 256 512 1024
number of bytes



Comparison to the state of the art

Datasets
> INRIA Holidays dataset, score: mAP (%)

» University of Kentucky benchmark (UKB)
» 10200 images, 4 images per objects
» score: number of relevant images retrieved in the first 4 positicers 4




Comparison to the state of the art

Method bytes UKB  Holidays
BOW, K=20,000 10364 2.87 43.7
BOW, K=200,000 12 886 2.81 54.0
miniBOF [12] 20 2.07 23.5

80 D2 40.3

160 2.83 42.6
FV K=64, spectral hashing 128 bits 16 2.57 39.4
VLAD, K=16, ADC 16x8 [23] 16 2.88 46.0
VLAD, K=64, ADC 32x10 [23] 40 3.10 49.5
FV K=8, binarized [22] 63 2.79 46.0
FV K=64, binarized [22] 520 321 57.4
FV K=64, ADC 16x8 (D'=96) 16 3.10 50.6
FV K=256, ADC 256x10 (D'=2048) 320 3.47 63.4

[12] H. Jégou, M. Douze, and C. Schmmd, *Packing bag-of-features,” in
ICCV, September 2009,

[22] E. Perronnin, Y. Liu, J. Sanchez, and H. Poirier, “Large-scale image
retrieval with compressed Fisher vectors,” in CVPR, June 2010.

[23] H. Jegou, M. Douze, C. Schmid, and P. Pérez. “Aggregating local
descriptors into a compact image representation,” in CVPR, June 2010.



Large scale experiments (10 million images)

e With the product quantizer
» Exhaustive search with ADC: 0.29s
» Non-exhaustive search with IVFADC: 0.014s

IVFADC -- Combination with an inverted file

Inverted file structure

, Database indexing inverted list E‘i
: Y E
1 \-_j—"Jr L [ ]
: coarse lis :
quantizer ge Ist enlry
id i code
g Gely) =
: r
: compute Q—E /
residual >—< /
o © o 0 N N
' riy)
f append
product | ao(r(y)) to inverted list
quantizer gp




Large scale experiments (10 million images)

o
g e e Timings
HE"-\.._I ‘_""-.__ .;
e ¢ IVFADC: 0.02s
BOW, K=200k —+—
Fisher K=64, D=4096 ---x--- g
10 - Fisher K=64, PCA D'=96 ---&--- =" -

Fisher K=64, IVFADC 64/8192, 16x8 - -
Fisher K=256, IVFADC 64/8192, 256x10 4

1000 10k 100k 1M 10M
Database size




Conclusion

e Competitive search accuracy with a few dozen bytes per indexed image

e Tested on 220 million video frames
» extrapolation for 1 billion images: 20GB RAM, query < 1s on 8 cores

e Code on-line available Software for Fisher computation and PQ-codes
http://lear.inrialpes.fr/software



Image classification

* Image classification: assigning a class label to the image

Car: present

Cow: present
Bike: not present
Horse: not present




Image classification

* Image classification: assigning a class label to the image

Car: present

Cow: present
Bike: not present
Horse: not present

* Object localization: define the location and the category

Location

Category




Difficulties: within object variations

Variability; Camera position, lllumination,Internal parameters

:> Within-object variations



Difficulties: within class variations




Image classification

e Given
Positive training images containing an object class

o Classify

A test image as to whether it contains the object class or not




Bag-of-features — Origin: texture recognition

e Texture is characterized by the repetition of basic elements
or textons
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Bag-of-features — Origin: texture recognition

histogram
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Bag-of-features — Origin: bag-of-words (text)

e Orderless document representation: frequencies of words

from a dictionary
« Classification to determine document categories

Bag-of-words

Common
People
Sculpture

d2 d3 d4
common
common people | sculpture common
sculpture
sculpture common
people people

common sculpture people
people common




Bag-of-features for image classification

m Il UID } a(s,. 8)

SIGISICT 1T
SH‘
[HDDDUII\
O@Q.OO SISISIC] 161 |
Extract regions Compute Find clusters Compute distance Classification

descriptors and frequencies matrix

[Csurka et al., ECCV Workshop’04], [Nowak,Jurie&Triggs,ECCV’06],
[Zhang,Marszalek,Lazebnik&Schmid,|JCV’07]



Bag-of-features for image classification

Bamssss .
B eeccoOO |m DDDDDH d(S,. 8)
0000020 >
Ce0Ceed SIGISICT 1T
SH‘
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SISISIC] 161 |
Extract regions Compute Find clusters Compute distance Classification
descriptors and frequencies matrix

Step 1 Step 2 Step 3



Step 1: feature extraction

Scale-invariant image regions + SIFT (see previous lecture)
— Affine invariant regions give “too” much invariance

— Rotation invariance for many realistic collections “too” much
Invariance

Dense descriptors
— Improve results in the context of categories (for most categories)
— Interest points do not necessarily capture “all” features

Color-based descriptors

Shape-based descriptors



Dense features
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Bag-of-features for image classification

Extract regions

Step 1
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Find clusters
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Step 2

d(s,. )

= |SVM

Compute distance Classification
matrix

Step 3



Step 2: Quantization

Visual vocabulary

°* Clustering




Examples for visual words

Airplanes

Motorbikes | &

Faces

Wild Cats

L eaves

People

Bikes




Step 2: Quantization

e Cluster descriptors
— K-means
— Gaussian mixture model

« Assign each visual word to a cluster
— Hard or soft assignment

« Build frequency histogram



Image representation

frequency

| i H i

PLONERLS B

codewords

v

» each image is represented by a vector, typically 1000-4000 dimension,
normalization with L1/L2 norm

* fine grained — represent model instances
 coarse grained — represent object categories



Bag-of-features for image classification

Extract regions

Step 1
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Step 3: Classification

* Learn a decision rule (classifier) assigning bag-of-
features representations of images to different classes
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Training data

Vectors are histograms, one from each training image

positive negative
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Train classifier,e.g.SVM



Kernels for bags of features

N

Histogram intersection kernel: 1 (h,h,) => min(h,(i), h,(i))
=1

Generalized Gaussian kernel:

K (h,,h,) = exr{—% D(h, wj

D can be Euclidean distance - RBF kernel

D can be y?distance D(h,,h,) = Z (r;lll((ll) )__Fhéz(g))

Earth mover’s distance



Combining features

«SVM with multi-channel chi-square kernel

1
K(Hi H) =exp (=Y o De(Hi Hp)
C

ce(C

. Channel c is a combination of detector, descriptor

D.(H,H,) is the chi-square distance between histograms
1l <—m
D.(H,,H,) = EZizl[(hu - hzi)z/(hn +h,)]
. A is the mean value of the distances between all training sample

. Extension: learning of the weights, for example with Multiple
Kernel Learning (MKL)

J. Zhang, M. Marszalek, S. Lazebnik and C. Schmid. Local features and kernels for
classification of texture and object categories: a comprehensive study, IJCV 2007.



Multi-class SVMs

Various direct formulations exist, but they are not widely
used in practice. It is more common to obtain multi-class
SVMs by combining two-class SVMs in various ways.

One versus all:

— Training: learn an SVM for each class versus the others

— Testing: apply each SVM to test example and assign to it the
class of the SVM that returns the highest decision value

One versus one:
— Training: learn an SVM for each pair of classes

— Testing: each learned SVM “votes” for a class to assign to the test
example



Why does SVM learning work?

® | earns foreground and background visual words

0~
:f: > foreground words — high weight
,E. \

:;: ~ background words — low weight



lllustration

Localization according to visual word probability

20 20

40 40

60 60

80 80

100 100

120 120
5IO 160 10 | 200 50 100 150 200
O foreground word more probable

O background word more probable



lllustration

A linear SVM trained from positive and negative window descriptors

A few of the highest weighted descriptor vector dimensions (= 'PAS + tile")
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Bag-of-features for image classification

« Excellent results in the presence of background clutter
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Examples for misclassified images

Cars- misclassified iwn buildings, phones, phones



Bag of visual words summary

e Advantages:
— largely unaffected by position and orientation of object in image
— fixed length vector irrespective of number of detections

— very successful in classifying images according to the objects they
contain

 Disadvantages:
— no explicit use of configuration of visual word positions
— poor at localizing objects within an image



Evaluation of image classification

« PASCAL VOC [05-10] datasets

« PASCAL VOC 2007

— Training and test dataset available

— Used to report state-of-the-art results

— Collected January 2007 from Flickr

— 500 000 images downloaded and random subset selected
— 20 classes

— Class labels per image + bounding boxes

— 5011 training images, 4952 test images

o Evaluation measure: average precision



PASCAL 2007 dataset

Aeroplane Bicycle i Bottle




PASCAL 2007 dataset

Motorbike




Evaluation

" Average Precision [TREC] averages precision over
the entire range of recall

Curve interpolated to reduce influence of “outliers”

A good score requires
both high recall and high
precision

Application-independent

precision

" Penalizes methods giving
high precision but low
recall

0 0.2 0.4 0.6 0.8 1
recall



Results for PASCAL 2007

Winner of PASCAL 2007 [Marszalek et al.] : mAP 59.4

— Combination of several different channels (dense + interest points,
SIFT + color descriptors, spatial grids)

— Non-linear SVM with Gaussian kernel

Multiple kernel learning [Yang et al. 2009] : mAP 62.2

— Combination of several features
— Group-based MKL approach

Combining object localization and classification [Harzallah
et al.’09] : mAP 63.5

— Use detection results to improve classification



Spatial pyramid matching

e Add spatial information to the bag-of-features

* Perform matching in 2D image space

gl _cpfiliosifede. oo _
it BLR Y s

[Lazebnik, Schmid & Ponce, CVPR 2006]



Related work

Similar approaches:
Subblock description [Szummer & Picard, 1997]
SIFT [Lowe, 1999]
GIST [Torralba et al., 2003]

SIFT Gist

ik NAN . i
S R ZIAN
Texture ‘N b )k A% *

Szummer & Picard (1997) Lowe (1999, 2004) Torralba et al. (2003)



Spatial pyramid representation

level O

Locally orderless
representation at
several levels of
spatial resolution



Spatial pyramid representation
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Spatial pyramid representation

level O
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Spatial pyramid matching

« Combination of spatial levels with pyramid match kernel
[Grauman & Darell'05]

* Intersect histograms, more weight to finer grids
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Scene dataset [Labzenik et al.’'06]

Inside city Tall
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Scene classification

livi mg room
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L Single-level Pyramid
0(1x1) 72.240.6
1(2x2) 77.9+0.6 79.0 +0.5
2(4x4) 79.4+0.3 81.1 0.3
3(8x8) 77.2+0.4 80.7 +0.3




Retrieval examples

N

living room  living room  living room living room  living room  living room

1
;

mountain mountain

() inside city tall bldg



Category classification — CalTech101

L Single-level Pyramid

0(1x1) 41.2+1.2

1(2x2) 55.9+0.9 57.0 0.8

2(4x4) 63.610.9 64.6 0.8

3(8x8) 60.3+0.9 64.6 +0.7




Discussion

e Summary

— Spatial pyramid representation: appearance of |local
Image patches + coarse global position information

— Substantial improvement over bag of features
— Depends on the similarity of image layout

e EXxtensions
— Flexible, object-centered grid



Large-scale image classification

* Image classification: assigning a class label to the image

Car: present

Cow: present
Bike: not present
Horse: not present

 What makes it large-scale?
— number of images
— number of classes
— dimensionality of descriptor

IMAGENET bhas 14Mimages from 22k classes



Large-scale image classification

* Image descriptors
— Fisher vector (high dimensional)
— Normalization: square-rooting or latent MOG+ L2 normalization

[Image categorization using Fisher kernels of non-iid image
models, Cinbis, Verbeek, Schmid, CVPR’12] [Perronnin’10]

« Classification approach
— Linear classifiers
— One versus rest classifier
— Stochastic gradient descent optimization

[Towards good practice in large-scale learning for image
classification, Perronnin, Akata, Harchaoui, Schmid, CVPR’12]



Evaluation image description

 Comparing on PASCAL VOC’07 linear classifiers with

— Fisher vector

— Sqrt transformation of Fisher vector

— Latent GMM of Fisher vector

o Sqrt transform + latent MOG
models lead to improvement

« State-of-the-art performance
obtained with linear classifier

mAP

& |
S i Sl ===~ ==1""| == SqrtMoG
o1 | A p LatMoG
| | | = SPM+MoG
D = e e * = | ——SPM+SqrtMoG |
: : : —SPM+LatMoG
32 64 128 256 512 1024

Vocabulary Size



Evaluation image description

Fisher versus BOF vector + linear classifier on Pascal Voc’07

SPM Method 64 128 256 512 1024

No BoW 20.1 290 | 36.2 | 409 44.1

No SqrtBoW 21.0 | 295 | 374 | 413 46.1

No LatBoW 229 | 30.1 38.9 | 41.2 445

Yes BoW 37.1 40.1 424 | 464 48.9

Yes SqriBoW 378 | 412 | 46 | 478 51.6

Yes LatBoW 39.3 | 41.7 | 453 | 487 52.2
SPM Method 32 64 128 256 512 1024
No MoG 49.2 | 51.5 | 53.0 | 544 | 55.0 55.9
No SqrtMoG 519 | 547 | 56.2 | 58.2 | 58.8 60.2
No LatMoG 52.3 | 553 | 56.5 | 58.6 | 39.5 60.3
Yes MoG 532 | 554 | 562 | 57.0 | 573 31.6
Yes SqrtMoG 56.1 517 | 589 | 604 | 60.5 60.8
Yes LatMoG 57.3 | 588 | 594 | 604 | 60.6 60.7

*Fisher improves over BOF
*Fisher comparable to BOF +
non-linear classifier
sLimited gain due to SPM
on PASCAL
«Sqgrt helps for Fisher and BOF
o[Chatfield et al. 2011]



Large-scale image classification

« Classification approach
— One-versus-rest classifiers
— stochastic gradient descent (SGD)

— At each step choose a sample at random and update the
parameters using a sample-wise estimate of the regularized risk

e Data reweighting
— When some classes are significantly more populated than others,
rebalancing positive and negative examples

— Empirical risk with reweighting

l —p
—_ Z Lovr(X;. yi: W { Z Lovr (X, yi: W)

T ?EI+ iel_
p = lf 2 Natural rebalancing, same weight to positive and negatives



Experimental results

e Datasets
— ImageNet Large Scale Visual Recognition Challenge 2010 (ILSVRC)
e 1000 classes and 1.4M images

— ImageNet10K dataset
» 10184 classes and ~ 9 M images
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Experimental results

Features: dense SIFT, reduced to 64 dim with PCA

Fisher vectors

— 256 Gaussians, using mean and variance
— Spatial pyramid with 4 regions

— Approx. 130K dimensions (4x [2x64x256])
— Normalization: square-rooting and L2 norm

BOF: dim 1024 + R=4
— 4960 dimensions
— Normalization: square-rooting and L2 norm



Importance of re-weighting
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« Significant impact on accuracy

Plain lines correspond to w-OVR,
dashed one to u-OVR

[3 is number of negatives samples
for each positive, =1 natural
rebalancing

Results for ILSVRC 2010

* For very high dimensions little impact



One-versus-rest works

Different classification methods

256 Gaussian Fisher vector + SP with R=4 (dim 130Kk)
BOF dim=1024 + SP with R=4 (dim 4000)

Results for ILSVRC 2010

w-OVR
| | BOV] 264
P py 457




Impact of the image signature size

* Fisher vector (no SP) for varying number of Gaussians +
different classification methods, ILSVRC 2010

Top-1 Accuracy (in %)

e LI L
RNK
g AR

| 1 |
16 iz 64 128 256
Mumber of Gaussians M

« Performance improves for higher dimensional vectors



Large-scale experiment on ImageNet10k

u-OVR | w-OVR

BOV 4K-dim 3.8 7.5
FV 130K-dim 16.7 19.1

« Significant gain by data re-weighting, even for high-
dimensional Fisher vectors

e W-OVR > u-OVR

* Improves over state of the art: 6.4% [Deng et. al] and
WAR [Weston et al.]



Large-scale experiment on ImageNet10k

 lllustration of results obtained with w-OVR and 130K-dim
Fisher vectors, ImageNet10K top-1 accuracy
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Conclusion

« Stochastic training: learning with SGD is well-suited for
large-scale datasets

* One-versus-rest: a flexible option for large-scale image
classification

« Class imbalance: optimize the imbalance parameter in
one-versus-rest strategy is a must for competitive
performance



Conclusion

State-of-the-art performance for large-scale image
classification

Code on-line available at http://lear.inrialpes.fr/software

Future work
— Beyond a single representation of the entire image
— Take into account the hierarchical structure



