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Aggregating local descriptors

• Set of n local descriptors � 1 vector

• Popular approach: bag of features, often with SIFT features

• Recently improved aggregation schemes• Recently improved aggregation schemes
– Fisher vector [Perronnin & Dance ‘07]

– VLAD descriptor [Jegou, Douze, Schmid, Perez ‘10]

– Supervector [Zhou et al. ‘10]

– Sparse coding [Wang et al. ’10, Boureau et al.’10]

• Use in very large-scale retrieval and classification



Towards large-scale image search
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• Each image is represented by one vector 
– Bag-of-features, Fisher vector, GIST

• Vector compression to reduce storage 
requirement and search time



Aggregation of local descriptors

� Most popular approach: BoF representation [Sivic & Zisserman 03]

► sparse vector
► highly dimensional

→ significant dimensionality reduction introduces loss

� Vector of locally aggregated descriptors (VLAD) [Jegou et al. 10]

► non sparse vector► non sparse vector
► fast to compute 
► excellent results with a small vector dimensionality

� Fisher vector [Perronnin & Dance 07]

► probabilistic version of VLAD
► initially used for image classification
► comparable or improved performance over VLAD for image retrieval



VLAD : vector of locally aggregated descriptors

� Learn a vector quantifier (k-means): c1,…,ci,…ck, with ci centroid of dim. d

� For a given image 
► assign each descriptor to closest center ci

► accumulate (sum) descriptors per cell
vi := vi + (xj- ci) 

measure repartition of vectors within a cell 

� VLAD of dimension D = k x d    
(k typically between 16 and 256) 

� The vector is square-root + L2-normalized

ci

1x

2x

[Jegou, Douze, Schmid, Perez, CVPR’10]



Fisher vector

� Use a Gaussian Mixture Model as vocabulary 
� Statistical measure of the descriptors of the image w.r.t the GMM
� Derivative of likelihood w.r.t. GMM parameters

GMM parameters:

weight

Translated cluster → 
large derivative on        for this 

component

mean

co-variance (diagonal)

[Perronnin & Dance 07]



Fisher vector

For image retrieval in our experiments:
- only deviation wrt mean, dim: K*D [K number of Gaussians, D dim of descriptor] 

- variance does not improve for comparable vector length



� We compare Fisher, VLAD and BoF on INRIA Holidays Dataset (mAP %)

� Holidays Dataset
► 500 query images + 991 annotated true positives
► most images are holiday photos of friends and family 
► 1 million & 10 million distractor images from Flickr
► Vocabulary construction on a different Flickr set 
► Evaluation metric: mean average precision (in [0,1], bigger = better)

VLAD/Fisher/BOF performance and dimensionality redu ction

► Evaluation metric: mean average precision (in [0,1], bigger = better)

Query Database images

Query Database images



VLAD/Fisher/BOF performance and dimensionality redu ction

� We compare Fisher, VLAD and BoF on INRIA Holidays Dataset (mAP %)
� Dimension is reduced to D’ dimensions with PCA

� Observations:
► Fisher, VLAD better than BoF for a given descriptor size
► Choose a small D if output dimension D’ is small
► Performance of GIST not competitive 

[Jegou, Perronnin, Douze, Sanchez, Perez, Schmid, P AMI’12]

GIST                             960        36.5



Compact image representation

� Aim: improving the tradeoff between
► search speed
► memory usage
► search quality

� Approach: joint optimization of three stages
► local descriptor aggregation
► dimension reduction► dimension reduction
► indexing algorithm

Image representation
VLAD / Fisher

PCA + 
PQ codes

(Non) – exhaustive 
search



� Vector split into m subvectors:

� Subvectors are quantized separately by quantizers
where each     is learned by k-means with a limited number of centroids

� Example: y = 128-dim vector split in 8 subvectors of dimension 16
► each subvector is quantized with 256 centroids  -> 8 bit 
► very large codebook 256^8 ~ 1.8x10^19

Product quantization for nearest neighbor search

► very large codebook 256^8 ~ 1.8x10^19

8 bits

16 components

⇒ 8 subvectors x 8 bits = 64-bit quantization index

y1 y2 y3 y4 y5 y6 y7 y8

q1 q2 q3 q4 q5 q6 q7 q8

q1(y1) q2(y2) q3(y3) q4(y4) q5(y5) q6(y6) q7(y7) q8(y8)

256

centroids

[Jegou, Douze, Schmid, PAMI’11]



Optimizing the dimension reduction and quantization  together

� Fisher vectors undergoes two approximations
► mean square error from PCA projection
► mean square error from quantization

� Given k and bytes/image, choose D’ minimizing their sum

Results on Holidays dataset:
- there exists an optimal D’
- 16 byte best results for k=64
- 320 byte best results for k=256



Joint optimization of  Fisher and dimension reduction-indexing 

� For Fisher
► The larger k, the better the raw search performance
► But large k produce large vectors, that are harder to index

� Optimization of the vocabulary size
► Fixed output size (in bytes)
► D’ computed from k via the joint optimization of reduction/indexing
► Only k has to be set► Only k has to be set

� end-to-end parameter optimization



Results on the Holidays dataset with various quantization parameters 



Comparison to the state of the art

Datasets:
� INRIA Holidays dataset,  score: mAP (%)

� University of Kentucky benchmark (UKB)
� 10200 images, 4 images per objects 
� score: number of relevant images retrieved in the first 4 positions, max 4 



Comparison to the state of the art



Large scale experiments (10 million images)

� With the product quantizer
► Exhaustive search with ADC: 0.29s

► Non-exhaustive search with IVFADC: 0.014s

IVFADC  -- Combination with an inverted file 



Large scale experiments (10 million images)

Timings

IVFADC: 0.02s

Timings



Conclusion 

� Competitive search accuracy with a few dozen bytes per indexed image

� Tested on 220 million video frames
► extrapolation for 1 billion images: 20GB RAM, query < 1s on 8 cores

� Code on-line available Software for Fisher computation and PQ-codes

► http://lear.inrialpes.fr/software



• Image classification: assigning a class label to the image

Image classification

Car: present

Cow: present

Bike: not present

Horse: not presentHorse: not present

…



• Image classification: assigning a class label to the image

Tasks

Car: present

Cow: present

Bike: not present

Horse: not present

Image classification

Horse: not present

…

• Object localization: define the location and the category

Car Cow
Location

Category



Difficulties: within object variations

Variability: Camera position, Illumination,Internal parameters

Within-object variations



Difficulties: within class variations



Image classification

• Given 
Positive training images containing an object class

?

Negative training images that don’t

A test image as to whether it contains the object class or not
• Classify  



Bag-of-features – Origin: texture recognition

• Texture is characterized by the repetition of basic elements 
or textons

Julesz, 1981; Cula & Dana, 2001; Leung & Malik 2001; Mori, Belongie & Malik, 2001;
Schmid 2001; Varma & Zisserman, 2002, 2003; Lazebnik, Schmid & Ponce, 2003



Universal texton dictionary

histogram

Bag-of-features – Origin: texture recognition

Julesz, 1981; Cula & Dana, 2001; Leung & Malik 2001; Mori, Belongie & Malik, 2001; 
Schmid 2001; Varma & Zisserman, 2002, 2003; Lazebnik, Schmid & Ponce, 2003



Bag-of-features – Origin: bag-of-words (text)

• Orderless document representation: frequencies of words 
from a dictionary

• Classification to determine document categories

Common
People 

Sculpture
… 

2
3 
0

… 

0
0 
1

… 

1
0
3

… 

3
2
0

… 

Bag-of-words



Bag-of-features for image classification

SVM

Classification

SVM

Extract regions Compute 
descriptors

Find clusters 
and frequencies

Compute distance 
matrix

[Csurka et al., ECCV Workshop’04], [Nowak,Jurie&Triggs,ECCV’06],  
[Zhang,Marszalek,Lazebnik&Schmid,IJCV’07]



Bag-of-features for image classification

SVM

Classification

SVM

Extract regions Compute 
descriptors

Find clusters 
and frequencies

Compute distance 
matrix

Step 1 Step 2 Step 3



Step 1: feature extraction

• Scale-invariant image regions + SIFT (see previous lecture)
– Affine invariant regions give “too” much invariance
– Rotation invariance for many realistic collections “too” much 

invariance

• Dense descriptors 
– Improve results in the context of categories (for most categories)
– Interest points do not necessarily capture “all” features

• Color-based descriptors

• Shape-based descriptors 



Dense features 

- Multi-scale dense grid: extraction of small overlapping patches at multiple scales
-Computation of  the SIFT descriptor  for each grid cells
-Exp.: Horizontal/vertical step size 3-6 pixel, scaling factor of 1.2 per level



Bag-of-features for image classification

SVM

Classification

SVM

Extract regions Compute 
descriptors

Find clusters 
and frequencies

Compute distance 
matrix

Step 1 Step 2 Step 3



Step 2: Quantization

Visual vocabulary

Clustering



Examples for visual words

Airplanes

Motorbikes

Faces

Wild Cats

Leaves

People

Bikes



Step 2: Quantization

• Cluster descriptors
– K-means 
– Gaussian mixture model

• Assign each visual word to a cluster• Assign each visual word to a cluster
– Hard or soft assignment 

• Build frequency histogram



Image representationImage representation
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codewords

• each image is represented by a vector, typically 1000-4000 dimension,                                                          
normalization with L1/L2 norm
• fine grained – represent model instances
• coarse grained – represent object categories



Bag-of-features for image classification

SVM

Classification

SVM

Extract regions Compute 
descriptors

Find clusters 
and frequencies

Compute distance 
matrix

Step 1 Step 2 Step 3



Step 3: Classification

• Learn a decision rule (classifier) assigning bag-of-
features representations of images to different classes

Zebra

Non-zebra

Decision
boundary

Non-zebra



positive negative

Vectors are histograms, one from each training image

Training data

Train classifier,e.g.SVM



Kernels for bags of features

• Histogram intersection kernel:

• Generalized Gaussian kernel:
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Combining features

•SVM with multi-channel chi-square kernel 

● Channel c is a combination of detector, descriptor

is the chi-square distance between histograms),( HHD● is the chi-square distance between histograms

● is the mean value of the distances between all training sample

● Extension: learning of the weights, for example with Multiple 
Kernel Learning (MKL)
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J. Zhang, M. Marszalek, S. Lazebnik and C. Schmid. Local features and kernels for 
classification of texture and object categories: a comprehensive study, IJCV 2007. 



Multi-class SVMs

• Various direct formulations exist, but they are not widely 
used in practice. It is more common to obtain multi-class 
SVMs by combining two-class SVMs in various ways. 

• One versus all:  • One versus all:  
– Training: learn an SVM for each class versus the others 
– Testing:  apply each SVM to test example and assign to it the 

class of the SVM that returns the highest decision value

• One versus one:
– Training: learn an SVM for each pair of classes 
– Testing: each learned SVM “votes”  for a class to assign to the test 

example 



Why does SVM learning work?

• Learns foreground and background visual words

foreground words – high weightforeground words – high weight

background words – low weight



Localization according to visual word probability
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Illustration

A linear SVM trained from positive and negative window descriptors 

A few of the highest weighted descriptor vector dimensions (= 'PAS + tile')

+  lie on object boundary (= local shape structures common to many training exemplars)



Bag-of-features for image classification

• Excellent results in the presence of background clutter

bikes books building cars people phones trees



Books- misclassified into faces, faces, buildings

Examples for misclassified images

Buildings- misclassified into faces, trees, trees

Cars- misclassified into buildings, phones, phones



Bag of visual words summary 

• Advantages:
– largely unaffected by position and orientation of object in image
– fixed length vector irrespective of number of detections
– very successful in classifying images according to the objects they – very successful in classifying images according to the objects they 

contain

• Disadvantages:
– no explicit use of configuration of visual word positions
– poor at localizing objects within an image



Evaluation of image classification

• PASCAL VOC  [05-10] datasets

• PASCAL VOC 2007
– Training and test dataset available
– Used to report state-of-the-art results – Used to report state-of-the-art results 
– Collected January 2007 from Flickr
– 500 000 images downloaded and random subset selected
– 20 classes
– Class labels per image + bounding boxes
– 5011 training images, 4952 test images 

• Evaluation measure: average precision 



PASCAL 2007 dataset



PASCAL 2007 dataset



Evaluation



Results for PASCAL 2007

• Winner of PASCAL 2007 [Marszalek et al.] : mAP 59.4
– Combination of several different channels (dense + interest points, 

SIFT + color descriptors, spatial grids)
– Non-linear SVM with Gaussian kernel 

• Multiple kernel learning [Yang et al. 2009] : mAP 62.2• Multiple kernel learning [Yang et al. 2009] : mAP 62.2
– Combination of several features
– Group-based MKL approach

• Combining object localization and classification [Harzallah 
et al.’09] : mAP 63.5
– Use detection results to improve classification

• …..



Spatial pyramid matching

• Add spatial information to the bag-of-features

• Perform matching in 2D image space

[Lazebnik, Schmid & Ponce, CVPR 2006]



Related work 

GistSIFT

Similar approaches:
Subblock description [Szummer & Picard, 1997]
SIFT [Lowe, 1999]
GIST [Torralba et al., 2003]

Szummer & Picard (1997) Lowe (1999, 2004) Torralba et al. (2003)

GistSIFT



Locally orderless 
representation at 
several levels of 
spatial resolution

Spatial pyramid representation

level 0



Spatial pyramid representation

Locally orderless 
representation at 
several levels of 
spatial resolution

level 0 level 1



Spatial pyramid representation

Locally orderless 
representation at 
several levels of 
spatial resolution

level 0 level 1 level 2



Spatial pyramid matching

• Combination of spatial levels with pyramid match kernel 
[Grauman & Darell’05]

• Intersect histograms, more weight to finer grids



Scene dataset [Labzenik et al.’06]

Suburb Bedroom Kitchen Living room Office

Coast Forest MountainOpen country Highway Inside city Tall building Street

Suburb Bedroom Kitchen Living room Office

Store Industrial

4385 images

15 categories



Scene classification

L Single-level Pyramid

0(1x1) 72.2±0.6

1(2x2) 77.9±0.6 79.0 ±0.5

2(4x4) 79.4±0.3 81.1 ±0.3

3(8x8) 77.2±0.4 80.7 ±0.3



Retrieval examples



Category classification – CalTech101

L Single-level Pyramid

0(1x1) 41.2±1.2

1(2x2) 55.9±0.9 57.0 ±0.8

2(4x4) 63.6±0.9 64.6 ±0.8

3(8x8) 60.3±0.9 64.6 ±0.7



Discussion

• Summary
– Spatial pyramid representation: appearance of local 

image patches + coarse global position information
– Substantial improvement over bag of features
– Depends on the similarity of  image layout– Depends on the similarity of  image layout

• Extensions
– Flexible, object-centered grid



Large-scale image classification

• Image classification: assigning a class label to the image

Car: present

Cow: present

Bike: not present

Horse: not presentHorse: not present

…

• What makes it large-scale?
– number of images
– number of classes
– dimensionality of descriptor

has 14M images from 22k classes



Large-scale image classification

• Image descriptors
– Fisher vector (high dimensional)
– Normalization: square-rooting or latent MOG+ L2 normalization

[Image categorization using Fisher kernels of non-iid image 
models, Cinbis, Verbeek, Schmid, CVPR’12]  [Perronnin’10]

• Classification approach
– Linear classifiers 
– One versus rest classifier
– Stochastic gradient descent optimization

[Towards good practice in large-scale learning for image 
classification, Perronnin, Akata, Harchaoui, Schmid, CVPR’12] 



Evaluation image description

• Comparing on PASCAL VOC’07 linear classifiers with
– Fisher vector 
– Sqrt transformation of Fisher vector
– Latent GMM of Fisher vector

• Sqrt transform + latent MOG 
models lead to improvement

• State-of-the-art performance 
obtained with linear classifier



Evaluation image description 

Fisher versus BOF vector + linear classifier on Pascal Voc’07 

•Fisher improves over BOF
•Fisher comparable to BOF +•Fisher comparable to BOF +

non-linear classifier
•Limited gain due to SPM 
on PASCAL

•Sqrt helps for Fisher and BOF
•[Chatfield et al. 2011] 



Large-scale image classification

• Classification approach
– One-versus-rest classifiers
– stochastic gradient descent  (SGD)
– At each step choose a sample at random and update the 

parameters using a sample-wise estimate of the regularized risk

• Data reweighting
– When some classes are significantly more populated than others, 

rebalancing positive and negative examples
– Empirical risk with reweighting 

Natural rebalancing, same weight to positive and negatives



Experimental results

• Datasets
– ImageNet Large Scale Visual Recognition Challenge 2010 (ILSVRC)

• 1000 classes and 1.4M images

– ImageNet10K dataset
• 10184 classes and ~ 9 M images



Experimental results

• Features: dense SIFT, reduced to 64 dim with PCA

• Fisher vectors
– 256 Gaussians, using mean and variance 
– Spatial pyramid with 4 regions– Spatial pyramid with 4 regions
– Approx. 130K dimensions (4x [2x64x256])
– Normalization: square-rooting and L2 norm

• BOF: dim 1024 + R=4
– 4960 dimensions  
– Normalization: square-rooting and L2 norm



Importance of re-weighting

• Plain lines correspond to w-OVR, 
dashed one to u-OVR

• ß is number of negatives samples 
for each positive, β=1 natural 

• Significant impact on accuracy
• For very high dimensions little impact

for each positive, β=1 natural 
rebalancing

• Results for ILSVRC 2010



One-versus-rest works

• Different classification methods
• 256 Gaussian Fisher vector + SP with R=4 (dim 130k) 
• BOF dim=1024 + SP with R=4 (dim 4000)
• Results for ILSVRC 2010



Impact of the image signature size

• Fisher vector (no SP) for varying number of Gaussians + 
different classification methods, ILSVRC 2010

• Performance improves for higher dimensional vectors



Large-scale experiment on ImageNet10k

16.7

• Significant gain by data re-weighting, even for high-
dimensional Fisher vectors 

• w-OVR > u-OVR 
• Improves over state of the art: 6.4% [Deng et. al] and 

WAR [Weston et al.] 



Large-scale experiment on ImageNet10k

• Illustration of results obtained with w-OVR and 130K-dim 
Fisher vectors, ImageNet10K top-1 accuracy  



Conclusion

• Stochastic training: learning with SGD is well-suited for 
large-scale datasets 

• One-versus-rest: a flexible option for large-scale image 
classificationclassification

• Class imbalance: optimize the imbalance parameter in 
one-versus-rest strategy is a must for competitive 
performance



Conclusion

• State-of-the-art performance for large-scale image 
classification

• Code on-line available at http://lear.inrialpes.fr/software• Code on-line available at http://lear.inrialpes.fr/software

• Future work
– Beyond a single representation of the entire image
– Take into account the hierarchical structure


