Overview

- Local invariant features (C. Schmid)
- Matching and recognition with local features (J. Sivic)
- Efficient visual search (J. Sivic)
- Very large scale search (C. Schmid)
- Practical session

Image search system for large datasets

- **Issues** for very large databases
 - to reduce the query time
 - to reduce the storage requirements
 - with minimal loss in retrieval accuracy

Large scale object/scene recognition

- Each image described by approximately 2000 descriptors
 - 2 * 10⁹ descriptors to index for one million images!
- Database representation in RAM:
 - Size of descriptors: 1 TB, search+memory intractable

Bag-of-words [Sivic & Zisserman'03]

Approximate nearest neighbour (ANN) evaluation of bag-offeatures

20K visual word: false matchs

200K visual word: good matches missed

Problem with bag-of-features

- The intrinsic matching scheme performed by BOF is weak
 - for a "small" visual dictionary: too many false matches
 - for a "large" visual dictionary: many true matches are missed
- No good trade-off between "small" and "large"!
 - either the Voronoi cells are too big
 - or these cells can't absorb the descriptor noise
 - → intrinsic approximate nearest neighbor search of BOF is not sufficient
 - Possible solutions
 - Soft assignment [Philbin et al. CVPR'08]
 - ➤ Additional short codes [Jegou et al. ECCV'08]

Hamming Embedding

- Representation of a descriptor x
 - Vector-quantized to q(x) as in standard BOF
 - + short binary vector b(x) for an additional localization in the Voronoi cell
- Two descriptors x and y match iif

$$q(x) = q(y)$$
 and $h(b(x), b(y)) \le h_t$
where $h(a,b)$ is the Hamming distance

- Nearest neighbors for Hamming distance ≈ the ones for Euclidean distance
- Efficiency
 - Hamming distance = very few operations
 - Fewer random memory accesses: 3×faster that BOF with same dictionary size!

Hamming Embedding

- Off-line (given a quantizer)
 - draw an orthogonal projection matrix P of size $d_b \times d$
 - → this defines d_b random projection directions
 - for each Voronoi cell and projection direction, compute the median value from a learning set
- On-line: compute the binary signature b(x) of a given descriptor
 - project x onto the projection directions as $z(x) = (z_1,...z_{db})$
 - $b_i(x) = 1$ if $z_i(x)$ is above the learned median value, otherwise 0

[H. Jegou et al., Improving bag of features for large scale image search, ICJV'10]

Hamming and Euclidean neighborhood

- trade-off between memory usage and accuracy
- → more bits yield higher accuracy

In practice 64 bits (8 bytes)

ANN evaluation of Hamming Embedding

compared to BOW: at least 10 times less points in the short-list for the same level of accuracy

Hamming Embedding provides a much better trade-off between recall and ambiguity removal

Matching points - 20k word vocabulary

201 matches 240 matches

Many matches with the non-corresponding image!

Matching points - 200k word vocabulary

69 matches 35 matches

Still many matches with the non-corresponding one

Matching points - 20k word vocabulary + HE

83 matches 8 matches

10x more matches with the corresponding image!

Bag-of-features [Sivic&Zisserman'03]

Geometric verification

Use the **position** and **shape** of the underlying features to improve retrieval quality

Both images have many matches – which is correct?

Geometric verification

We can measure **spatial consistency** between the query and each result to improve retrieval quality

Many spatially consistent matches – **correct result**

Few spatially consistent matches – **incorrect result**

Geometric verification

Gives localization of the object

Re-ranking based on geometric verification

- works very well
- but performed on a short-list only (typically, 1000 images)
 - → for very large datasets, the number of distracting images is so high that relevant images are not even short-listed!
 - → Weak geometry

Weak geometry consistency

- Weak geometric information used for all images (not only the short-list)
- Each invariant interest region detection has a scale and rotation angle associated, here characteristic scale and dominant gradient orientation

Scale change 2 Rotation angle ca. 20 degrees

- Each matching pair results in a scale and angle difference
- For the global image scale and rotation changes are roughly consistent

WGC: orientation consistency

Max = rotation angle between images

WGC: scale consistency

Weak geometry consistency

- Integration of the geometric verification into the BOF
 - votes for an image in two quantized subspaces, i.e. for angle & scale
 - these subspace are show to be roughly independent
 - final score: filtering for each parameter (angle and scale)
- Only matches that do agree with the main difference of orientation and scale will be taken into account in the final score
- Re-ranking using full geometric transformation still adds information in a final stage

Experimental results

- Evaluation for the INRIA holidays dataset, 1491 images
 - 500 query images + 991 annotated true positives
 - Most images are holiday photos of friends and family
- 1 million & 10 million distractor images from Flickr
- Vocabulary construction on a different Flickr set
- Almost real-time search speed
- Evaluation metric: mean average precision (in [0,1], bigger = better)
 - Average over precision/recall curve

Holiday dataset – example queries

Dataset: Venice Channel

Dataset : San Marco square

Example distractors - Flickr

Experimental evaluation

- Evaluation on our holidays dataset, 500 query images, 1 million distracter images
- Metric: mean average precision (in [0,1], bigger = better)

Average query time (4 CPU cores)			
Compute descriptors	880 ms		
Quantization	600 ms		
Search – baseline	620 ms		
Search – WGC	2110 ms		
Search – HE	200 ms		
Search - HE+WGC	650 ms		

Results – Venice Channel

Comparison with the state of the art: Oxford dataset [Philbin et al. CVPR'07]

Evaluation measure: Mean average precision (mAP)

Comparison with the state of the art: Kentucky dataset [Nister et al. CVPR'06]

4 images per object

Evaluation measure: among the 4 best retrieval results how many are correct (ranges from 1 to 4)

Comparison with the state of the art

dataset	Oxford		Kentucky	
distractors	0	100K	0	1M
soft assignment [14]	0.493	0.343		
ours	0.615	0.516		
soft + geometrical re-ranking [14]	0.598	0.480		
ours + geometrical re-ranking	0.667	0.591		
soft + query expansion [14]	0.718	0.605		
ours + query expansion	0.747	0.687		
hierarchical vocabulary [6]			3.19	
CDM [11]			3.61	2.93
ours			3.42	3.10
ours + geometrical re-ranking			3.55	3.40

Demo at http://bigimbaz.inrialpes.fr

Towards large-scale image search

- BOF+inverted file can handle up to ~10 millions images
 - with a limited number of descriptors per image → RAM: 40GB
 - search: 2 seconds
- Web-scale = billions of images
 - with 100 M per machine → search: 20 seconds, RAM: 400 GB
 - not tractable
- Solution: represent each image by one compressed vector

Very large scale image search

Related work on very large scale image search

- Min-hash and geometrical min-hash [Chum et al. 07-09]
- Compressing the BoF representation (miniBof) [Jegou et al. 09]
 - → require hundreds of bytes to obtain a "reasonable quality"
- GIST descriptors with Spectral Hashing [Weiss et al.'08]
 - → very limited invariance to scale/rotation/crop

Global scene context – GIST descriptor + spectral hashing

The "gist" of a scene: Oliva & Torralba (2001)

- 5 frequency bands and 6 orientations for each image location
- Tiling of the image (windowing)
- ~ 900 dimensions
- Spectral hashing produces binary codes similar to spectral clustering

Related work on very large scale image search

- Min-hash and geometrical min-hash [Chum et al. 07-09]
- Compressing the BoF representation (miniBof) [Jegou et al. 09]
 - → require hundreds of bytes to obtain a "reasonable quality"

- GIST descriptors with Spectral Hashing [Weiss et al.'08]
 - → very limited invariance to scale/rotation/crop

- Efficient object category recognition using classemes [Torresani et al.'10]
- Aggregating local descriptors into a compact image representation [Jegou&al.'10,'12]