Management and control of the anisotropic unstructured meshes Applications in aerodynamics

Institute of Aerodynamics and FLow Technology

(DLR)

Youssef Mesri

INRIA, project-team Smash, 2004 Route des Lucioles, BP 93

06902 Sophia Antipolis Cedex, France

July 16th, 2007

CHE DUE QUE QUE

Table of content

Review of multigrid method convergence characteristics Mesh generation & mesh adaptation **Meshes and Metrics Applications Synthesis Design method** Mesh adaptation & Design Strong coupling: Design/Mesh adaptation **Results HISAC** test-case **Synthesis**

Overview

Overview

Review of multigrid method convergence characteristics

Mesh generation & mesh adaptation

Meshes and Metrics

Applications

Synthesis

Design method

Mesh adaptation & Design

Strong coupling: Design/Mesh adaptation

Results

HISAC test-case

Synthesis

Make a fast turbulent Navier-Stokes computations over Falcon7X mesh.

 \Downarrow

□ Multigrids.

Parallelism.

FIG. 1 – Falcon7X (Dassaut-

Aviation constructor)

Review of multigrid method convergence characteristics

Classical model BVP : Laplace's equation

Overview

Review of multigrid method convergence characteristics Classical model BVP: Laplace's equation Basic relaxation method: Jacobi iteration Nested Iteration, or progressive mesh enrichment Kronsjö-Dahlquist (1971). *BIT* 12, 1972.

Ideal Two-Grid Algorithm ... Multigrid Full Multigrid Method,

"FMG"

Mesh generation & mesh adaptation

Meshes and Metrics

Applications

Synthesis

Design method

Mesh adaptation & Design

Strong coupling: Design/Mesh adaptation

Results

HISAC test-case

$$\begin{array}{l} A\,u=-\Delta\,u=f \text{ in } [0,1]^d\subset \mathbb{R}^d \Longrightarrow \text{ (by usual 2nd-order F.D.)}\,A_h\,u_h=f_h\\ A_h=\frac{1}{h^2}\operatorname{Trid}_{\mathsf{x}}(-1,2,-1)\oplus\operatorname{Trid}_{\mathsf{y}}(-1,2,-1)\oplus\ldots\\ h=\frac{1}{N}\,,\quad \mathsf{N}=N^d \end{array}$$

Approximation error :

$$||u_h - u|| = O(h^2)$$

Modal analysis : eigensystem made of discrete Fourier modes; 1D :

$$s_i^{(m)} = \sqrt{2h} \sin i\alpha^{(m)}, \ \alpha^{(m)} = \frac{m\pi}{N} = m\pi h, \ \lambda^{(m)} = \frac{2 - 2\cos\alpha^{(m)}}{h^2}$$

Condition number

$$\kappa = \frac{\lambda_{\max}}{\lambda_{\min}} = \frac{4}{\tan^2 \frac{\pi}{2N}} = O(N^2)$$

Basic relaxation method : Jacobi iteration

Overview

Review of multigrid method convergence characteristics Classical model BVP: Laplace's equation Basic relaxation method: Jacobi iteration Nested Iteration, or progressive mesh enrichment Kronsjö-Dahlquist (1971). *BIT* 12, 1972. Ideal Two-Grid Algorithm ...

Multigrid Full Multigrid Method,

"FMG"

Mesh generation & mesh adaptation

Meshes and Metrics

Applications

Synthesis

Design method

Mesh adaptation & Design

Strong coupling: Design/Mesh adaptation

Results

HISAC test-case

$$u_h^{n+1} = u_h^n - \tau^* \left(A_h \, u_h^n - f_h \right) \,, \ \tau^* = \left(\frac{\lambda_{\max} + \lambda_{\min}}{2} \right)^{-1}$$

Approximation error : controlled by grid size *h* :

$$\|u_h - u\| \sim C_A \times h^2$$

Iterative error for Jacobi-type solution of the system, controlled by iteration count n; if $\kappa = \lambda_{\max}/\lambda_{\min}$ (condition number of matrix A_h):

$$|u_h^n - u_h|| \sim C_I \times \rho(h)^n$$
, $\rho(h) = \frac{\kappa - 1}{\kappa + 1} = 1 - \frac{2}{\kappa} + \dots = 1 - c h^2 + \dots$

Termination criterion and computation cost estimate :

- cost of one iteration (matrix-vector product) : N^d
- best attainable error $\mathcal{O}(h^2)$, no reason to iterate more :

$$\frac{\rho(h)^n \sim h^2 \Longrightarrow n \sim N^2 \log N \Longrightarrow}{\mathsf{COST}_{\mathsf{JACOBI}} \sim N^{d+2} \log N = \mathsf{N} \times N^2 \log N}$$

Nested Iteration, or progressive mesh enrichment

Kronsjö-Dahlquist (1971). BIT 12, 1972.

Overview Review of multigrid method convergence characteristics Classical model BVP: Laplace's equation Basic relaxation method: Jacobi iteration Nested Iteration, or progressive mesh	Fine : Medium : Coarse :	\mathcal{M}_h	7	$\mathcal{M}_{h/2}$	~	$\mathcal{M}_{h/4}$	
enrichment Kronsjö-Dahlquist (1971). <i>BIT</i> 12, 1972. Ideal Two-Grid Algorithm Multigrid Full Multigrid Method, "FMG" Mesh generation & mesh adaptation Meshes and Metrics Applications Synthesis Design method Mesh adaptation & Design Strong coupling: Design/Mesh adaptation	 Efficie – app – add – acd Cost regimes (i.e. nut) In non 	Solve ncy : dep propriate equate ite curate-en eduction umber of linear cor	Prolongate ends on the d smoothers, erative termina ough interpola : only by a fac levels) ntext : improve	Smooth esign of : ation criterio ation operat tor of $\log N$ ed robustnes	Prolongate on, and ors SS	Smooth	
Results HISAC test-case							

Ideal Two-Grid Algorithm ... Multigrid

Review of multigrid method convergence characteristics Classical model BVP: Laplace's equation Basic relaxation method: Jacobi iteration Nested Iteration, or progressive mesh enrichment Kronsjö-Dahlquist (1971). *BIT* **12**, 1972. Ideal Two-Grid Algorithm ...

Multigrid

Full Multigrid Method, "FMG"

Mesh generation & mesh adaptation

Meshes and Metrics

Applications

Synthesis

Design method

Mesh adaptation & Design

Strong coupling: Design/Mesh adaptation

Results

HISAC test-case

$${}^{\rho}_{\mathsf{MG}}^{n} \sim h^{2} \Longrightarrow n \sim \log N \Longrightarrow$$

$$\mathsf{COST}_{\mathsf{MG}} \sim \mathsf{N} \times \log N$$

Full Multigrid Method, "FMG"

Overview Review of multigrid method convergence characteristics Classical model BVP: Laplace's equation Basic relaxation method: Jacobi iteration Nested Iteration, or	Combin Fine : Medium :	es Nested	Iteration with	MG-cycle : $\mathcal{M}_{h/2} \ \downarrow \uparrow$	7	$\mathcal{M}_{h/4} \ \downarrow^\uparrow \ \mathcal{M}_{h/2} \ \downarrow^\uparrow$	
enrichment Kronsjö-Dahlquist	Coarse :	\mathcal{M}_h		\mathcal{M}_h		\mathcal{M}_h	
(1971). <i>BIT</i> 12, 1972. Ideal Two-Grid Algorithm Multigrid Full Multigrid Method, "FMG" Mesh generation & mesh adaptation Meshes and Metrics Applications	□ Line □ Intro 199	Solve (1-grid) ear comple oductory Te 1), Désidér	Prolongate exity : <i>O</i> (N) (N exts : Briggs (S ri. (Editions He	MG-cycle (2-grid) $J = N^d$)SIAM, 1991), ermès, Paris,	Prolongate Y! Wesseling (Jo 1998, <i>in Fren</i>	MG-cycle (3-grid) ohn Wiley, <i>ch</i>)	
Design method							
Mesh adaptation & Design							
Strong coupling: Design/Mesh adaptation							
Results							
HISAC test-case							

Mesh generation & mesh adaptation

Mesh generation

Overview

- Review of multigrid method convergence characteristics
- Mesh generation & mesh adaptation
- Mesh generation
- Panorama of methods
- Topological mesh generator
- Local topological
- optimization
- MTC: mesh generator
- State of art: without metrics
- With metrics
- Modify mesh generator with respect to metric:
- Meshes and Metrics
- Applications
- Synthesis
- Design method
- Mesh adaptation & Design
- Strong coupling: Design/Mesh adaptation
- Results
- HISAC test-case
- Synthesis

2D example :

• From a surface (boundary) mesh (CAD)

• Construct a mesh for all domain

Panorama of methods

Overview

Review of multigrid method convergence characteristics

Mesh generation & mesh adaptation

Mesh generation

Panorama of methods

- Topological mesh generator
- Local topological
- optimization
- MTC: mesh generator
- State of art: without metrics
- With metrics
- Modify mesh generator with respect to metric:

Meshes and Metrics

Applications

Synthesis

Design method

Mesh adaptation & Design

Strong coupling: Design/Mesh adaptation

Results

HISAC test-case

Synthesis

For unstructured 3D meshes (tetrahedron) :

Mesh generator	Advantages	Disadvantages
Octree	- good inside	- many nodes
	- tree structure	- little anisotropy
Frontal	- excellent quality	- non convergence
Delaunay	- very fast	- border difficult to genera
		- degenerate elements
By optimization	- very robust	- slower
	- independent dimension (4D)	

We use a topological mesh generator : MTC (developed at CEMEF)

Topological mesh generator

Overview

- Review of multigrid method convergence characteristics
- Mesh generation & mesh adaptation
- Mesh generation
- Panorama of methods
- Topological mesh generator
- Local topological
- optimization
- MTC: mesh generator
- State of art: without metrics
- With metrics
- Modify mesh generator with respect to metric:
- Meshes and Metrics
- Applications
- Synthesis
- Design method
- Mesh adaptation & Design
- Strong coupling: Design/Mesh adaptation
- Results
- HISAC test-case
- Synthesis

 $\begin{cases} \sum_{T \in \mathcal{T}} |T| > |\Omega| \\ c_0 \frac{|T|}{h(T)^d} \simeq 0 \end{cases}$

Local topological optimization

 $\downarrow \\
\left\{ \begin{array}{l} \sum_{T \in \mathcal{T}} |T| = |\Omega| \\ c_0 \frac{|T|}{h(T)^d} \simeq 1 \end{array} \right.$

Theorem	1.1	The	•	equality			
$\sum_{T \in \mathcal{T}} T $	=	$ \Omega $	is	reached			
only by the valid meshes.							

Local topological optimization

Overview

Review of multigrid method convergence characteristics

Mesh generation & mesh adaptation

Mesh generation

Panorama of methods

Topological mesh generator

Local topological

optimization

MTC: mesh generator

State of art: without metrics

With metrics

Modify mesh generator with respect to metric:

Meshes and Metrics

Applications

Synthesis

Design method

Mesh adaptation & Design

Strong coupling: Design/Mesh adaptation

Results

HISAC test-case

Synthesis

Initial topology

Candidates topologies

Maximal quality ==> Retained topology

DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Minimal

Volume

MTC : mesh generator

Overview

Review of multigrid method convergence characteristics

Mesh generation & mesh adaptation

Mesh generation

Panorama of methods

Topological mesh generator

Local topological

optimization

MTC: mesh generator

State of art: without metrics

With metrics

Modify mesh generator with respect to metric:

Meshes and Metrics

Applications

Synthesis

Design method

Mesh adaptation & Design

Strong coupling: Design/Mesh adaptation

Results

HISAC test-case

Synthesis

FIG. 2 – Local mesh optimization process in MTC

State of art : without metrics

Overview

- Review of multigrid method convergence characteristics
- Mesh generation & mesh adaptation
- Mesh generation
- Panorama of methods
- Topological mesh generator
- Local topological
- optimization
- MTC: mesh generator
- State of art: without metrics
- With metrics Modify mesh generator with respect to metric:
- Meshes and Metrics
- Applications
- Synthesis
- Design method
- Mesh adaptation & Design
- Strong coupling: Design/Mesh adaptation
- Results
- HISAC test-case
- Synthesis

For anisotropic mesh, one can proceed :By one-directional refinement [Garimella, 1998]

• By extrusion from the surface (border or median) [Knockaert,2001] [Garimella & Shephard,1998]

 \rightarrow Problem of connections in the curved zones

INRIA

15 / 78

With metrics

Overview

Review of multigrid method convergence characteristics

- Mesh generation & mesh adaptation
- Mesh generation
- Panorama of methods
- Topological mesh generator
- Local topological
- optimization
- MTC: mesh generator
- State of art: without metrics
- With metrics
- Modify mesh generator with respect to metric:
- Meshes and Metrics
- Applications
- Synthesis
- Design method
- Mesh adaptation & Design
- Strong coupling: Design/Mesh adaptation
- Results
- **HISAC** test-case
- Synthesis

Adaptation to a metric field is more flexible : In 3D, a metric = a rotation R + 3 lengths $h_1h_2h_3$ (sizes desired in the principal directions of R)

$$M = R^{T} \cdot \begin{pmatrix} h_{1}^{-2} & & \\ & h_{2}^{-2} & \\ & & h_{3}^{-2} \end{pmatrix} \cdot R$$
(1)

Modify mesh generator with respect to metric :

Overview

- Review of multigrid method convergence characteristics
- Mesh generation & mesh adaptation
- Mesh generation
- Panorama of methods
- Topological mesh generator
- Local topological
- optimization
- MTC: mesh generator
- State of art: without metrics
- With metrics
- Modify mesh generator with respect to metric:
- Meshes and Metrics
- Applications
- Synthesis
- Design method
- Mesh adaptation & Design
- Strong coupling: Design/Mesh adaptation
- Results
- HISAC test-case
- Synthesis

• The form criteria : $c_0 \frac{|T|}{h(T)^d}$ becomes $c_0 \frac{|T|_M}{h_M(T)^d}$

Where, we change the volume computation : $|T|_M = |T| \sqrt{(det(M))}$ the lengths computation : $h_M(T) = h(T)$ in the norm $|.|_M$

• and just all! the optimization strategy is the same.

Meshes and Metrics

Meshes and Metrics

Overview

Review of multigrid method convergence characteristics

Mesh generation & mesh adaptation

Meshes and Metrics

Meshes and Metrics Natural metrics: metric associated with a simplicial element Nodal metric: metric

associated to the mesh nodes

Nodal metric (1)

Nodal metric (2)

Nodal metric (3)

Nodal metric (4)

Comparison between the interpolation strategies (1) Comparison between interpolation strategies (2)

Anisotropic coarsening algorithm

Coarsening algorithm Modified anisotropic coarsening algorithm (1) Modified anisotropic coarsening algorithm (2)

Applications

Synthesis

Definition :

A Metric (also Tensor) \mathcal{M} in \mathcal{R}^d is a symmetric definite positive real matrix with d the dimension of space. It is then a $d \times d$ invertible matrix, its eigenvalues are real and positive, and its eigenvectors form a orthogonal basis of \mathcal{R}^d . such that

 $\mathcal{M} = V(\mathcal{M})^t \Lambda(\mathcal{M}) V(\mathcal{M})$

where $V(\mathcal{M})$ denotes the orthonormal matrix corresponding to the eigenvectors of \mathcal{M} while $\Lambda(\mathcal{M})$ is the diagonal matrix of its eigenvalues.

INRIA

Natural metrics : metric associated with a simplicial element

Overview

Review of multigrid method convergence characteristics

Mesh generation & mesh adaptation

Meshes and Metrics

Meshes and Metrics Natural metrics: metric associated with a simplicial element Nodal metric: metric

associated to the mesh nodes

Nodal metric (1)

Nodal metric (2)

Nodal metric (3)

Nodal metric (4)

Comparison between the interpolation strategies (1)

Comparison between interpolation strategies (2) Anisotropic coarsening

algorithm Coarsening algorithm Modified anisotropic coarsening algorithm (1) Modified anisotropic

coarsening algorithm (2)

Applications

Synthesis

We seek for a metric in which the edges length of an element T are equal :

$$x_{kl}^T M_T x_{kl} = 1 \forall (k,j) \in T$$

Proposition :

$$M_T = C_0 \left(\sum_{(k,l) \in E(T)} x_{kl} . x_{kl}^T \right)^{-1}$$

where $C_0 = (d+1)/2$

Nodal metric : metric associated to the mesh nodes

Overview

Review of multigrid method convergence characteristics

Mesh generation & mesh adaptation

Meshes and Metrics

Meshes and Metrics Natural metrics: metric associated with a simplicial element

Nodal metric: metric associated to the mesh nodes

Nodal metric (1)

Nodal metric (2)

Nodal metric (3)

Nodal metric (4)

Comparison between the interpolation strategies (1)

Comparison between interpolation strategies (2) Anisotropic coarsening algorithm

Coarsening algorithm Modified anisotropic coarsening algorithm (1) Modified anisotropic coarsening algorithm (2)

Applications

Synthesis

- Define a P1 metric field on the background mesh
- The anisotropic mesh generators currently in use [Coupez, George] take as input a metric defined only over nodes
- □ It is easier to transport P^1 fields during mesh generation process than P^0 fields.
- □ Define from a P^0 tensor field a P^1 tensor field
 - Conserve length of edges and the stretching directions.

Nodal metric (1)

Overview

Review of multigrid method convergence characteristics

Mesh generation & mesh adaptation

Meshes and Metrics

Meshes and Metrics Natural metrics: metric associated with a simplicial element

Nodal metric: metric associated to the mesh nodes

Nodal metric (1)

Nodal metric (2)

Nodal metric (3)

Nodal metric (4)

Comparison between the interpolation strategies (1) Comparison between interpolation strategies (2) Anisotropic coarsening algorithm

Coarsening algorithm Modified anisotropic coarsening algorithm (1) Modified anisotropic

coarsening algorithm (2)

Applications

Synthesis

Interpolation of element metrics to node :

$$M_i = \left(\frac{1}{card(T(i))} \sum_{T_k \in T(i)} M_{T_k}^{-\frac{1}{2}}\right)^{-2}$$
(2)

T(i): the set of elements that contain the node iCorrected interpolation of element metrics to node :

$$M_i^* = V_i . D_i^* . V_i \tag{3}$$

where V_i : the eigenvectors matrix of the original matrix M_i and

$$D_i^* = \left(\frac{1}{card(T(i))} \sum_{T_k \in T(i)} D_{T_k}^{-\frac{1}{2}}\right)^{-2}$$
(4)

is the modified diagonal matrix.

Nodal metric (2)

Overview

Review of multigrid method convergence characteristics

Mesh generation & mesh adaptation

Meshes and Metrics

Meshes and Metrics Natural metrics: metric associated with a simplicial element Nodal metric: metric

associated to the mesh nodes

Nodal metric (1)

Nodal metric (2)

Nodal metric (3)

Nodal metric (4)

Comparison between the interpolation strategies (1) Comparison between

interpolation strategies (2) Anisotropic coarsening algorithm

Coarsening algorithm Modified anisotropic coarsening algorithm (1) Modified anisotropic coarsening algorithm (2)

Applications

Synthesis

Interpolation as computing geodesics :

the intrinsic mean of points in A is defined as a minimum of the function j_A , that is,

$$\mu = \operatorname{argmin}_{x \in \mathcal{E}} j_A(x) \tag{5}$$

where

$$j_A(x) = \frac{1}{2n} \sum_{i=1}^n d(x, x_i)^2$$

and d is geodesic distance on \mathcal{E} . $d(M, N) = Trace(diag(M^{-1/2}NM^{-1/2}))$ The gradient of j_A is given by

$$\nabla j_A(x) = -\frac{1}{n} \sum_{i=1,n} Log_x(x_i)$$

where
$$Log_x(x_i) = x^{1/2}log(x^{-1/2}.x.x_i^{-1/2})x^{1/2}$$

Nodal metric (3)

Overview

Review of multigrid method convergence characteristics

Mesh generation & mesh adaptation

Meshes and Metrics

Meshes and Metrics Natural metrics: metric associated with a simplicial element Nodal metric: metric

associated to the mesh nodes

Nodal metric (1)

Nodal metric (2)

Nodal metric (3)

Nodal metric (4)

Comparison between the interpolation strategies (1)

Comparison between interpolation strategies (2) Anisotropic coarsening algorithm

Coarsening algorithm Modified anisotropic coarsening algorithm (1) Modified anisotropic coarsening algorithm (2)

Applications

Synthesis

and thus the intrinsic mean of a set of tensors can be computed by the following gradient descent algorithm [Pennec, 1999] :

Algorithm 3 : Intrinsic Mean of Tensors Input : $M_1, \dots, M_n \in SPD$ space Output : $R \in SPD$ space, the intrinsic mean

 $R_0 = M_1$

Do

$$X_i = \frac{1}{n} \sum_{k=1,n} Log_{R_i}(M_k)$$
$$R_{i+1} = Exp_{R_i}(X_i)$$

While
$$(X_i, X_i)_{R_i} > \epsilon$$

Nodal metric (4)

Overview

Review of multigrid method convergence characteristics

Mesh generation & mesh adaptation

Meshes and Metrics

Meshes and Metrics Natural metrics: metric associated with a simplicial element Nodal metric: metric

associated to the mesh nodes

Nodal metric (1)

Nodal metric (2)

Nodal metric (3)

Nodal metric (4)

Comparison between the interpolation strategies (1) Comparison between interpolation strategies (2) Anisotropic coarsening algorithm

Coarsening algorithm Modified anisotropic coarsening algorithm (1) Modified anisotropic coarsening algorithm (2)

Applications

Synthesis

Interpolation in Log-Euclidean space [Arsigny,2005] :

Definition Let $M_1, M_2 \in Sym_*^+(n)$ and $\lambda \in \mathcal{R}$. a logarithmic product of M_1, M_2 is defined as follow :

 $M_1 \odot M_2 := exp(log(M_1) + log(M_2))$

and a logarithmic scalar multiplication \otimes is defined by :

 $\lambda \otimes M_1 := exp(\lambda.log(M_1)) = M_1^{\lambda}$

Proposition. : $(Sym_*^+(n), \odot, \otimes)$ is a vector space structure. **Proposition.** : Let $(M_i)_1^N$ be a finite number of SPD matrices. Then their Log-Euclidean Fréchet mean exists and is unique. It is given by :

$$M_{LE}(M_1, \cdots, M_N) = exp(\frac{1}{N} \sum_{i=1}^N log(M_i))$$

Comparison between the interpolation strategies (1)

Overview

Review of multigrid method convergence characteristics

Mesh generation & mesh adaptation

Meshes and Metrics

Meshes and Metrics Natural metrics: metric associated with a simplicial element Nodal metric: metric associated to the mesh nodes Nodal metric (1) Nodal metric (2)

Nodal metric (3)

Nodal metric (4)

Comparison between the interpolation strategies (1)

Comparison between interpolation strategies (2) Anisotropic coarsening algorithm

Coarsening algorithm Modified anisotropic coarsening algorithm (1) Modified anisotropic coarsening algorithm (2)

Applications

Synthesis

Recalling that our main problem concerns highly stretched meshes used in boundary layers, we first compare these three strategies on a 2-D model boundary layer mesh.

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

NRIA

26 / 78

Comparison between interpolation strategies (2)

Overview

Review of multigrid method convergence characteristics

Mesh generation & mesh adaptation

Meshes and Metrics

Meshes and Metrics Natural metrics: metric associated with a simplicial element Nodal metric: metric

associated to the mesh nodes

Nodal metric (1)

Nodal metric (2)

Nodal metric (3)

Nodal metric (4)

Comparison between the interpolation strategies (1)

Comparison between interpolation strategies (2) Anisotropic coarsening algorithm

Coarsening algorithm Modified anisotropic coarsening algorithm (1) Modified anisotropic coarsening algorithm (2)

Applications

Synthesis

Anisotropic coarsening algorithm

Overview

Review of multigrid method convergence characteristics

Mesh generation & mesh adaptation

Meshes and Metrics

Meshes and Metrics Natural metrics: metric associated with a simplicial element Nodal metric: metric

associated to the mesh nodes

Nodal metric (1)

Nodal metric (2)

Nodal metric (3)

Nodal metric (4)

Comparison between the interpolation strategies (1) Comparison between interpolation strategies (2) Anisotropic coarsening algorithm

Coarsening algorithm Modified anisotropic coarsening algorithm (1) Modified anisotropic coarsening algorithm (2)

Applications

Synthesis

The target metric is constructed with respect to the following stages :

• Generate on each node of the finest mesh an initial nodal metric that reflects the size and stretching of elements belonging to this mesh.

• Modify the initial metric to establish a corresponding coarsened mesh metric. This is done by modifying the eigenvalue λ_i associated to the metric, which will modify the mesh size in the desired direction which is the corresponding eigenvector V_i .

• Provide the background mesh and the desired metric field to the MTC mesher.

Coarsening algorithm

Overview

Review of multigrid method convergence characteristics

Mesh generation & mesh adaptation

Meshes and Metrics

Meshes and Metrics Natural metrics: metric associated with a simplicial element Nodal metric: metric

associated to the mesh nodes

Nodal metric (1)

Nodal metric (2)

Nodal metric (3)

Nodal metric (4)

Comparison between the interpolation strategies (1)

Comparison between interpolation strategies (2) Anisotropic coarsening algorithm

Coarsening algorithm Modified anisotropic coarsening algorithm (1) Modified anisotropic coarsening algorithm (2)

Applications

Synthesis

Algorithm 1 : Anisotropic coarsening algorithm Input : $\lambda_1, \dots, \lambda_d$ eigenvalues of a \mathcal{M}_k Output : Update $\lambda_1, \dots, \lambda_d$ coarsened eigenvalues For each $i \in \mathcal{N}$ Set : $h_k^i = (\lambda_k^i)^{-1/2}, k = 1, \dots, d, h_1^i \leq \dots \leq h_d^i$ and $h_0 = C_{cf} \cdot h_1$. $h_k^i = \max(h_k^i, \min(C_{cf} \cdot h_k^i, h_{k-1}^i))$. Define new eigenvalues $\lambda_k \leftarrow h_k^{-2}$. End for.

Modified anisotropic coarsening algorithm (1)

Overview

Review of multigrid method convergence characteristics

Mesh generation & mesh adaptation

Meshes and Metrics

Meshes and Metrics Natural metrics: metric associated with a simplicial element Nodal metric: metric

associated to the mesh nodes

Nodal metric (1)

Nodal metric (2)

Nodal metric (3)

Nodal metric (4)

Comparison between the interpolation strategies (1)

Comparison between interpolation strategies (2) Anisotropic coarsening

algorithm

Coarsening algorithm Modified anisotropic coarsening algorithm (1) Modified anisotropic

coarsening algorithm (2)

Applications

Synthesis

FIG. 4 – metrics at interface points between two different mesh anisotropy zones

FIG. 5 – Conflict metrics

Metric smoothing : [Borouchaki & George, 1997]

Modified anisotropic coarsening algorithm (2)

Overview

Review of multigrid method convergence characteristics

Mesh generation & mesh adaptation

Meshes and Metrics

Meshes and Metrics Natural metrics: metric associated with a simplicial element Nodal metric: metric associated to the mesh nodes Nodal metric (1) Nodal metric (2)

Nodal metric (3)

Nodal metric (4)

Comparison between the interpolation strategies (1)

Comparison between interpolation strategies (2) Anisotropic coarsening algorithm

Coarsening algorithm Modified anisotropic coarsening algorithm (1) Modified anisotropic

Applications

Synthesis

Algorithm 2 : Modified anisotropic coarsening algorithm (MACA) Input : $\lambda_1, \dots, \lambda_d$ eigenvalues of a \mathcal{M}_k Output : Update $\lambda_1, \dots, \lambda_d$ coarsened eigenvalues For each $i \in \mathcal{N}$ Set : $h_{k}^{i} = (\lambda_{k}^{i})^{-1/2}, k = 1, \dots, d, h_{1}^{i} \leq \dots \leq$ h_d^i . Set $h_0 = C_{CF} \cdot h_1$. Store the initial size : $h_{k,old}^i = h_k^i$. // compare the current node size specifications with its neighbors if $\max(h_d^i, \min(C_{cf} \cdot h_d^i, h_{d-1}^i)) = C_{cf} \cdot h_d^i$ and $\exists j_0 < i \in V(i)$ such as

 $h_1^{j_0} < h_1^i$. then $h_k^i = h_{k,old}^i, k = 1, \dots d$

Define new eigenvalues $\lambda_k \leftarrow h_k^{-2}$.

End for

Applications

Coarsening synthetic mesh

Overview

Review of multigrid method convergence characteristics

Mesh generation & mesh adaptation

Meshes and Metrics

Applications

Coarsening synthetic mesh M6 wing test case (1) M6 wing test case (3) M6 wing test case (2)

Falcon test case (1)

Falcon test case (2)

Falcon test case (3)

Falcon test case (4)

Falcon test case (5)

Falcon test case (6)

Falcon test case (5)

Synthesis

Design method

Mesh adaptation & Design

Strong coupling: Design/Mesh adaptation

Results

HISAC test-case

(a)Baseline mesh (27 nodes) (b)Coarsened mesh (18 nodes)

FIG. 6 – Semi-coarsening strategy on a synthetic boundary layer mesh

M6 wing test case (1)

Overview

Review of multigrid method convergence characteristics

Mesh generation & mesh adaptation

Meshes and Metrics

Applications

Coarsening synthetic mesh

M6 wing test case (1)

M6 wing test case (3)

M6 wing test case (2)

Falcon test case (1)

Falcon test case (2)

Falcon test case (3)

Falcon test case (4)

Falcon test case (5)

Falcon test case (6)

Falcon test case (5)

Synthesis

Design method

Mesh adaptation & Design

Strong coupling: Design/Mesh adaptation

Results

HISAC test-case

FIG. 7 – finest mesh

M6 wing test case (3)

Overview

Review of multigrid method convergence characteristics

Mesh generation & mesh adaptation

Meshes and Metrics

Applications

Coarsening synthetic mesh M6 wing test case (1)

M6 wing test case (3)

M6 wing test case (2)

Falcon test case (1)

Falcon test case (2)

Falcon test case (3)

Falcon test case (4)

Falcon test case (5)

Falcon test case (6)

Falcon test case (5)

Synthesis

Design method

Mesh adaptation & Design

Strong coupling: Design/Mesh adaptation

Results

HISAC test-case

	h-interpolat	tion	log-euclidean		
	Num. of nodes	\mathcal{C} ratio	Num. of nodes	\mathcal{C} ratio	
initial mesh	67866				
1st coarsened mesh	30961	2.19	39010	1.74	
2nd coarsened mesh	15123	1.99	22264	1.75	
3rd coarsened mesh	8507	1.77	13246	1.68	
4th coarsened mesh	5213	1.63	8323	1.59	

Comparison of h-interpolation and log-euclidean methods on the M6 mesh.

 \Rightarrow We use in the sequel only the h-interpolation

M6 wing test case (2)

Overview

- Review of multigrid method convergence characteristics
- Mesh generation & mesh adaptation
- Meshes and Metrics
- Applications
- Coarsening synthetic mesh
- M6 wing test case (1)
- M6 wing test case (3)
- M6 wing test case (2)
- Falcon test case (1)
- Falcon test case (2)
- Falcon test case (3)
- Falcon test case (4)
- Falcon test case (5)
- Falcon test case (6)
- Falcon test case (5)
- Synthesis
- Design method
- Mesh adaptation & Design
- Strong coupling: Design/Mesh adaptation
- Results
- **HISAC** test-case

aspect ratio

Falcon test case (1)

Overview

Review of multigrid method convergence characteristics

Mesh generation & mesh adaptation

Meshes and Metrics

Applications

Coarsening synthetic mesh

M6 wing test case (1)

M6 wing test case (3)

M6 wing test case (2)

Falcon test case (1)

Falcon test case (2)

Falcon test case (3)

Falcon test case (4)

Falcon test case (5)

Falcon test case (6)

Falcon test case (5)

Synthesis

Design method

Mesh adaptation & Design

Strong coupling: Design/Mesh adaptation

Results

HISAC test-case

Falcon7X mesh provided by Dassault-Aviation as a representative example of the mesh used for turbulent Navier-Stokes computations.

FIG. 8 – finest mesh (2M nodes, 11M elements and more than 500K as aspect ratio)!

Falcon test case (2)

Overview

Review of multigrid method convergence characteristics

Mesh generation & mesh adaptation

Meshes and Metrics

Applications

Coarsening synthetic mesh

M6 wing test case (1)

M6 wing test case (3)

M6 wing test case (2)

Falcon test case (1)

Falcon test case (2)

Falcon test case (3)

Falcon test case (4)

Falcon test case (5) Falcon test case (6)

Falcon test case (5)

Synthesis

Design method

Mesh adaptation & Design

Strong coupling: Design/Mesh adaptation

Results

HISAC test-case

FIG. 9 – first coarsened mesh

Falcon test case (3)

Overview

Review of multigrid method convergence characteristics

Mesh generation & mesh adaptation

Meshes and Metrics

Applications

Coarsening synthetic mesh

M6 wing test case (1)

M6 wing test case (3)

M6 wing test case (2)

Falcon test case (1)

Falcon test case (2)

Falcon test case (3)

Falcon test case (4)

Falcon test case (5)

Falcon test case (6)

Falcon test case (5)

Synthesis

Design method

Mesh adaptation & Design

Strong coupling: Design/Mesh adaptation

Results

HISAC test-case

FIG. 10 – second coarsened mesh

Falcon test case (4)

Overview

Review of multigrid method convergence characteristics

Mesh generation & mesh adaptation

Meshes and Metrics

Applications

Coarsening synthetic mesh

M6 wing test case (1)

M6 wing test case (3)

M6 wing test case (2)

Falcon test case (1)

Falcon test case (2)

Falcon test case (3)

Falcon test case (4)

Falcon test case (5)

Falcon test case (6)

Falcon test case (5)

Synthesis

Design method

Mesh adaptation & Design

Strong coupling: Design/Mesh adaptation

Results

HISAC test-case

FIG. 11 – third coarsened mesh

Falcon test case (5)

Overview

Review of multigrid method convergence characteristics

Mesh generation & mesh adaptation

Meshes and Metrics

Applications

Coarsening synthetic mesh

M6 wing test case (1)

M6 wing test case (3)

M6 wing test case (2)

Falcon test case (1)

Falcon test case (2)

Falcon test case (3)

Falcon test case (4)

Falcon test case (5)

Falcon test case (6)

Falcon test case (5)

Synthesis

Design method

Mesh adaptation & Design

Strong coupling: Design/Mesh adaptation

Results

HISAC test-case

FIG. 12 – fourth coarsened mesh

Falcon test case (6)

Overview

Review of multigrid method convergence characteristics

Mesh generation & mesh adaptation

Meshes and Metrics

Applications

Coarsening synthetic mesh

M6 wing test case (1)

M6 wing test case (3)

M6 wing test case (2)

Falcon test case (1)

Falcon test case (2)

Falcon test case (3)

Falcon test case (4)

Falcon test case (5)

Falcon test case (6)

Falcon test case (5)

Synthesis

Design method

Mesh adaptation & Design

Strong coupling: Design/Mesh adaptation

Results

HISAC test-case

	Number of nodes	coarsening ratio
initial mesh	2008248	
first coarsened mesh	779558	2.57
second coarsened mesh	338762	2.3
third coarsened mesh	218850	1.54
fourth coarsened mesh	139522	1.56

Table of initial and coarsened meshes, number of nodes and coarsening ratio

Falcon test case (5)

Overview

Review of multigrid method convergence characteristics

Mesh generation & mesh adaptation

Meshes and Metrics

Applications

Coarsening synthetic mesh

M6 wing test case (1)

M6 wing test case (3)

M6 wing test case (2)

Falcon test case (1)

Falcon test case (2)

Falcon test case (3)

Falcon test case (4)

Falcon test case (5)

Falcon test case (6)

Falcon test case (5)

Synthesis

Design method

Mesh adaptation & Design

Strong coupling: Design/Mesh adaptation

Results

HISAC test-case

FIG. 13 – Number of vertices (in % of the total number of nodes) belonging to the correspond Aspect ratio class

Synthesis

Overview

Review of multigrid method convergence characteristics

Mesh generation & mesh adaptation

Meshes and Metrics

Applications

Synthesis

Overview

Design method

Mesh adaptation & Design

Strong coupling: Design/Mesh adaptation

Results

HISAC test-case

Synthesis

For mesh generation and adaptation :

Generate unstructured anisotropic 3D meshes for multigrid methods is not a challenge :

- Local optimization method : robust
- Complex geometries with height aspect ratio (10^5) are manageable
- It is possible to construct metrics :
 - Natural metrics to localize anisotropic specifications of the fine mesh.
 - Target metrics to construct a new coarsened mesh.
 - A C++/MPI parallel code is delivered to the industrial partner (Dassault-Aviation)

Table of content

Review of multigrid method convergence characteristics Mesh generation & mesh adaptation **Meshes and Metrics Applications Synthesis Design method** Mesh adaptation & Design Strong coupling: Design/Mesh adaptation **Results HISAC** test-case **Synthesis**

Overview

Overview

Review of multigrid method convergence characteristics

Mesh generation & mesh adaptation

Meshes and Metrics

Applications

Synthesis

Overview

Design method

Mesh adaptation & Design

Strong coupling: Design/Mesh adaptation

Results

HISAC test-case

Synthesis

Make an efficient shape optimization process over supersonic jets.

 \Downarrow

□ Mesh adaptation.

- □ Shape optimization.
- Both.

FIG. 14 – Pressure contours over the HISAC geometry

Design method

Review of Design methods (1)

Overview

- Review of multigrid method convergence characteristics
- Mesh generation & mesh adaptation
- Meshes and Metrics
- Applications
- Synthesis
- Design method
- Review of Design methods
- (1)
- Review of Design methods
- (2)
- Design using Euler
- equations (1)
- Design using Euler
- equations (2)
- Design Cycle
- Mesh adaptation & Design
- Strong coupling: Design/Mesh adaptation
- Results
- HISAC test-case
- Synthesis

- Theory of control of PDE (of the flow) by boundary control (the shape).
 - Continuous Adjoint approach. [Jameson,1988]
 ⇒ Continuous PDE → continuous gradient → discrete gradient
 - Discrete exact gradient. [Giles,2001]
 ⇒ Continuous PDE → discrete PDE → discrete exact gradient
- □ Shape variation :
 - 1. Free form deformation. [Barr,1984]
 - 2. Torsional springs or Elliptic operators. [Farhat & Degand, 2002]
 - 3. Transpiration (Hadamard).

Review of Design methods (2)

Overview	The discrete exact gradient developed by automatic differentiatio
Review of multigrid method convergence characteristics	reverse mode.
Mesh generation & mesh adaptation	
Meshes and Metrics	Differentiator tool : Tapenade (L. Hascoet & V. Pascual). ¹
Applications	
Synthesis	
Design method Review of Design methods (1) Review of Design methods	Shape deformation by transpiration boundary conditions.
(2) Design using Euler equations (1) Design using Euler equations (2) Design Cycle	Mesh deformation by torsional springs.
Mesh adaptation & Design	
Strong coupling: Design/Mesh adaptation	
Results	
HISAC test-case	
Synthesis	¹ TAPENADE 2.1 user's guide,RT-0300,INRIA,2004

Design using Euler equations (1)

Overview

Review of multigrid method convergence characteristics

Mesh generation & mesh adaptation

Meshes and Metrics

Applications

Synthesis

Design method

Review of Design methods

(1)

Review of Design methods

(2)

Design using Euler

equations (1)

Design using Euler

equations (2)

Design Cycle

Mesh adaptation & Design

Strong coupling: Design/Mesh adaptation

Results

HISAC test-case

Synthesis

The three-dimensional Euler equations may be written as

$$\Psi(W) = \frac{\partial W}{\partial t} + \frac{\partial F_i(W)}{\partial x_i} = 0$$

where

$$W = \begin{pmatrix} \rho \\ \rho u_1 \\ \rho u_2 \\ \rho u_3 \\ \rho E \end{pmatrix}, \quad F_i(W) = \begin{pmatrix} \rho u_i \\ \rho u_i u_1 + P\delta_{i1} \\ \rho u_i u_2 + P\delta_{i2} \\ \rho u_i u_3 + P\delta_{i3} \\ (\rho E + P)u_i \end{pmatrix}$$

and δ_{ij} is the Kronecker delta function. Also,

$$P = (\kappa - 1)[\rho E - \frac{1}{2}\rho(u_1^2 + u_2^2 + u_3^2)] \text{ with } \kappa = 1.4$$

Design using Euler equations (2)

Overview

Review of multigrid method convergence characteristics

Mesh generation & mesh adaptation

Meshes and Metrics

Applications

Synthesis

Design method Review of Design methods (1) Review of Design methods (2) Design using Euler equations (1) Design using Euler equations (2) Design Cycle Mesh adaptation & Design

Strong coupling: Design/Mesh adaptation

Results

HISAC test-case

Synthesis

In order to design a shape which will lead to a desired pressure distribution, a natural choice is to set

$$j(\gamma) = J(\gamma, W(\gamma)) = 1/2 \int_C (P - P_{target})^2 dS$$

where P_{target} is the target surface pressure and the integral is evaluated over a surface area.

Design Cycle

Overview

- Review of multigrid method convergence characteristics
- Mesh generation & mesh adaptation
- Meshes and Metrics
- Applications
- Synthesis
- Design method
- Review of Design methods (1)
- Review of Design methods
- (2)
- Design using Euler
- equations (1)
- Design using Euler
- equations (2)
- Design Cycle
- Mesh adaptation & Design
- Strong coupling: Design/Mesh adaptation
- Results
- HISAC test-case
- Synthesis

The design procedure can be summarized as follows :

- 1. Solve the flow equations
- 2. Solve the adjoint equations
- 3. Evaluate the gradient
- Update the shape based on the direction of steepest descent
- 5. Return to 1. until convergence is reached

INRIA

52 / 78

Mesh adaptation & Design

Mesh adaptation & Design

Strong coupling: Design/Mesh adaptation

Results

Review of adaptation strategies with respect to the criterion

Overview

Review of multigrid method convergence characteristics

Mesh generation & mesh adaptation

Meshes and Metrics

Applications

Synthesis

Design method

Mesh adaptation & Design Mesh adaptation & Design Review of adaptation strategies with respect to the criterion

Metric-based adaptation Review of continuous Metric [Dervieux & al. 2004,2006]

Continuous Metric

Local error modeling

Global calculus of variation

Global calculus of variation Sample: Adapted mesh corresponding to HISAC geometry

Strong coupling: Design/Mesh adaptation

Results

Metric-based adaptation [Hecht 1997, ALauzet 2003] \Rightarrow Reduce approximation error $(W - W_h)$ on W.

* Goal-oriented adaptation

 Super-convergence(adjoint based error estimate).[Giles & Pierce, 2001]

□ A posteriori adaptation. [Becker,Kapp & R. Rannacher,2001]

 \Rightarrow Reduce error on j(W).

* Mesh adaptation for optimization.

 \Rightarrow Adapt the mesh to an optimum parameter γ_{opt} [Becker, 2001]

Metric-based adaptation

Overview

Review of multigrid method convergence characteristics

Mesh generation & mesh adaptation

Meshes and Metrics

Applications

Synthesis

Design method

Mesh adaptation & Design Mesh adaptation & Design Review of adaptation strategies with respect to the criterion

Metric-based adaptation Review of continuous Metric [Dervieux & al. 2004,2006]

Continuous Metric

Local error modeling

Global calculus of variation

Global calculus of variation Sample: Adapted mesh corresponding to HISAC geometry

Strong coupling: Design/Mesh adaptation

Results

Classical mesh adaptation algorithm.

□ Find a local error model $e_{\mathcal{M}}$ based on interpolation error.

Compute the L^p -optimum metric.

 Re-meshing takes into account the error analysis.

INRIA

56 / 78

Overview

Review of multigrid method convergence characteristics

Mesh generation & mesh adaptation

Meshes and Metrics

Applications

Synthesis

Design method

Mesh adaptation & Design Mesh adaptation & Design Review of adaptation strategies with respect to the criterion

Metric-based adaptation Review of continuous Metric [Dervieux & al. 2004,2006]

Continuous Metric

Local error modeling

Global calculus of variation

Global calculus of variation Sample: Adapted mesh corresponding to HISAC geometry

Strong coupling: Design/Mesh adaptation

Results

Problematic

- A theoretical analysis of anisotropic efficiency on unstructured meshes is really difficult to carry out.
- No simple Hilbert structure for non-isotopological meshes required in any variational study is available.
- Two different meshes may give the same interpolation error \Rightarrow classes of equivalence ?

\Box Idea :

- Interpreting metric as continuous functional of the domain \Rightarrow continuous metric ${\cal M}$
 - A continuous metric is an analytical representative of the set of unit meshes with respect to $\mathcal{M} \Rightarrow \mathcal{M}$ define a classes of equivalence between meshes
 - Variational calculus to minimize a given error model

Continuous Metric

 \square

Overview

Review of multigrid method convergence characteristics

Mesh generation & mesh adaptation

Meshes and Metrics

Applications

Synthesis

Design method

Mesh adaptation & Design Mesh adaptation & Design Review of adaptation strategies with respect to the criterion

Metric-based adaptation Review of continuous Metric [Dervieux & al. 2004,2006]

Continuous Metric

Local error modeling

Global calculus of variation

Global calculus of variation Sample: Adapted mesh corresponding to HISAC geometry

Strong coupling: Design/Mesh adaptation

Results

Metric construction road-map :

- Local error modeling stage :
 - find a local error model $e_{\mathcal{M}}(a)$ based on interpolation error.
- Global calculus of variation stage :
 - minimize the error model in L^P -norm :

find \mathcal{M} such that $\min_{\mathcal{M}} \int_{\Omega} |e_{\mathcal{M}}(x)|^p dx$

under the constraint

$$\mathcal{C}(\mathcal{M}) = \int_{\Omega} \frac{1}{h_1 h_2 h_3} dx = \int_{\Omega} d(x) dx = N.$$

Local error modeling

□ Continuous error :

$$e_{\mathcal{M}}(a) = \max_{x \in \mathcal{B}(a)} |u(x) - \prod_{h} u(x)|$$

Discrete error :

$$e_{\mathcal{M}}(a) = ||u - \Pi_h u||_{K^*,\infty}$$

$$e_{\mathcal{M}}(a) = \max_{||\mu||_{2} \le 1} \sum_{j=1,3} (\sum_{i=1,3} \mu_{i} h_{i}(\vec{u_{i}}, \vec{u_{j}})^{2} |\frac{\partial^{2} u}{\partial \alpha_{j}^{2}}|)$$

□ Final continuous error :

$$e_{\mathcal{M}}(a) = h_1^2 \left| \frac{\partial^2 u}{\partial \alpha_1^2} \right| + h_2^2 \left| \frac{\partial^2 u}{\partial \alpha_2^2} \right| + h_3^2 \left| \frac{\partial^2 u}{\partial \alpha_3^2} \right|$$

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Overview

Review of multigrid method convergence characteristics

```
Mesh generation & mesh adaptation
```

Meshes and Metrics

Applications

Synthesis

Design method

```
Mesh adaptation & Design
Mesh adaptation & Design
Review of adaptation
strategies with respect to
the criterion
```

Metric-based adaptation Review of continuous Metric [Dervieux & al. 2004,2006]

Continuous Metric

Local error modeling

Global calculus of variation

Global calculus of variation Sample: Adapted mesh corresponding to HISAC geometry

Strong coupling: Design/Mesh adaptation

Results

Overview

Review of multigrid method convergence characteristics

Mesh generation & mesh adaptation

Meshes and Metrics

Applications

Synthesis

Design method

Mesh adaptation & Design Mesh adaptation & Design Review of adaptation strategies with respect to the criterion

Metric-based adaptation Review of continuous Metric [Dervieux & al. 2004,2006]

Continuous Metric

Local error modeling

Global calculus of variation

Global calculus of variation Sample: Adapted mesh corresponding to HISAC geometry

Strong coupling: Design/Mesh adaptation

Results

Find the optimal functional $\mathcal M$ that solves the problem

$$\min_{\mathcal{M}} \mathcal{E}(\mathcal{M}) = \min_{\mathcal{M}} \int_{\Omega} |e_{\mathcal{M}}(x)|^{p} dx = \min_{h_{i}} \int_{\Omega} (\sum_{i=1,3} h_{i}^{2}(x) |\frac{\partial^{2} u}{\partial \alpha_{i}^{2}}|)^{p} dx$$

under the constraint

$$\mathcal{C}(\mathcal{M}) = \int_{\Omega} \frac{1}{h_1 h_2 h_3} dx = \int_{\Omega} d(x) dx = N.$$

To this end

- perform a variable substitution with the anisotropic quotients denoted r_i and the the density d
- get the anisotropic quotients
- the optimal density

Overview

Review of multigrid method convergence characteristics

- Mesh generation & mesh adaptation
- Meshes and Metrics
- Applications
- Synthesis
- Design method
- Mesh adaptation & Design Mesh adaptation & Design Review of adaptation strategies with respect to the criterion
- Metric-based adaptation Review of continuous Metric [Dervieux & al. 2004,2006]
- **Continuous Metric**
- Local error modeling
- Global calculus of variation
- Global calculus of variation Sample: Adapted mesh corresponding to HISAC geometry

Strong coupling: Design/Mesh adaptation

Results

Final solution The optimal metric is written as :

$$\mathcal{M}_{L_p} = D_{L_p} \quad (det|H_u|)^{\frac{-1}{2p+3}}) \quad R_u^{-1} \quad |\Lambda| \quad R_u$$

$$1 \qquad 2 \qquad 3 \qquad 4$$

- 1. Global normalization \Rightarrow used to reach the targeted number of points N with : $D_{L^p} = N^{\frac{2}{3}} (\int_{\Omega} (det|H_u|)^{\frac{p}{2p+3}})^{\frac{-2}{3}}$ and $D_{L^{\infty}} = N^{\frac{2}{3}} (\int_{\Omega} det(|H_u|)^{\frac{1}{2}})^{\frac{-2}{3}}$
- 2. Local normalization \Rightarrow refinement even with small solution variations, depends on L^p
- 3. Optimal directions equal to Hessian eigenvectors
- 4. Diagonal matrix of absolute values of Hessian eigenvalues

Sample : Adapted mesh corresponding to HISAC geometry

Overview

Review of multigrid method convergence characteristics

Mesh generation & mesh adaptation

Meshes and Metrics

Applications

Synthesis

Design method

Mesh adaptation & Design Mesh adaptation & Design Review of adaptation strategies with respect to the criterion

Metric-based adaptation Review of continuous Metric [Dervieux & al. 2004,2006]

Continuous Metric

Local error modeling

Global calculus of variation

Global calculus of variation Sample: Adapted mesh corresponding to HISAC geometry

Strong coupling: Design/Mesh adaptation

Results

Pressure distribution

associated adapted mesh

INRIA 62/78

Strong coupling : Design/Mesh adaptation

Strong coupling (1)

Overview

Review of multigrid method convergence characteristics

Mesh generation & mesh adaptation

Meshes and Metrics

Applications

Synthesis

Design method

Mesh adaptation & Design

Strong coupling: Design/Mesh adaptation Strong coupling (1) Strong coupling (2)

Strong coupling algorithm

Results

HISAC test-case

Synthesis

Adapted problem :

$$\mathcal{M}_{adap}(\gamma) = \operatorname{argmin} \mathcal{E}(\mathcal{M}, \gamma)$$

$$\overline{j}(\gamma) = j(\gamma, \mathcal{M}_{adap}(\gamma))$$

Then we shall minimize the following approximated functional :

 $\operatorname{Min}_{\gamma}\overline{j}(\gamma).$

Problem : \overline{j} is not differentiable !!

Strong coupling (2)

Overview

Review of multigrid method convergence characteristics

Mesh generation & mesh adaptation

Meshes and Metrics

Applications

Synthesis

Design method

Mesh adaptation & Design

Strong coupling: Design/Mesh adaptation

Strong coupling (1)

Strong coupling (2)

Strong coupling algorithm

Results

HISAC test-case

Synthesis

Remedy :

□ Exact gradient for each step descent

- \rightarrow Do not adapt during an elementary descent step.
- \rightarrow But the mesh must be adapted to both solutions of descent

Keep \overline{j} well approximated \rightarrow To adapt after each shape update.

Strong coupling algorithm

Results

Context

Overview

Review of multigrid method convergence characteristics

Mesh generation & mesh adaptation

Meshes and Metrics

Applications

Synthesis

Design method

Mesh adaptation & Design

Strong coupling: Design/Mesh adaptation

Results

HISAC test-case

Context

Test-case 1

Test-case 2

Test-case 3

test-case 3

Test-case 3' Analysis of the sonic boom pressure signature: test-case 1 Analysis of the sonic boom pressure signature: test-case 2 Analysis of the sonic boom pressure signature:

Hisac test-case : angle attack $\alpha = 3^{\circ}$ and a Mach number M = 1.6.

Test-case 1

Overview

Review of multigrid method convergence characteristics

- Mesh generation & mesh adaptation
- Meshes and Metrics
- Applications
- Synthesis
- Design method
- Mesh adaptation & Design
- Strong coupling: Design/Mesh adaptation
- Results
- HISAC test-case
- Context
- Test-case 1
- Test-case 2
- Test-case 3
- Test-case 3'
- Analysis of the sonic boom
- pressure signature:
- test-case 1
- Analysis of the sonic boom
- pressure signature:
- test-case 2
- Analysis of the sonic boom
- pressure signature: test-case 3

Pressure before at z=-30m

Pressure comparison

test-case 1 : $l_{front} = 25$ and $l_{back} = 65$.

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Pressure after at z=-30m

Cost evaluation

Test-case 2

Overview

Review of multigrid method convergence characteristics

Mesh generation & mesh adaptation

Meshes and Metrics

Applications

Synthesis

Design method

Mesh adaptation & Design

Strong coupling: Design/Mesh adaptation

Results

HISAC test-case

Context

Test-case 1

Test-case 2

Test-case 3

Test-case 3'

Analysis of the sonic boom

pressure signature:

test-case 1

Analysis of the sonic boom

pressure signature:

test-case 2

Analysis of the sonic boom

pressure signature: test-case 3

Pressure before at z=-30m

Pressure comparison

test-case 2 : $l_{front} = 25$ and $l_{back} = 45$.

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

7.5e-05

7e-05

6e-05

5e-05

4.5e-05

4e-05

3.5e-05

3e-05

0

1

Cost evaluation

2

3

4

Number of evaluations

5

6

7

8 9

2.5e-05

6.5e-05

5.5e-05

Cost

PRESSURE 0.276 0.278 0.281 0.283 0.286

Pressure after at z=-30m

Cost evaluations

cost evaluation

Test-case 3

Overview

Review of multigrid method convergence characteristics

- Mesh generation & mesh adaptation
- Meshes and Metrics
- Applications
- **Synthesis**
- Design method
- Mesh adaptation & Design
- Strong coupling: Design/Mesh adaptation
- Results
- HISAC test-case
- Context
- Test-case 1
- Test-case 2
- Test-case 3
- Test-case 3'
- Analysis of the sonic boom
- pressure signature:
- test-case 1
- Analysis of the sonic boom
- pressure signature:
- test-case 2
- Analysis of the sonic boom
- pressure signature:

Pressure before at z=-30m

Pressure comparison

test-case 3 : $l_{front} = 25$ and $l_{back} = 35$.

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Cost

PRESSURE 0.276 0.278 0.281 0.283 0.286

Cost evaluation
Test-case 3'

Overview

Review of multigrid method convergence characteristics

- Mesh generation & mesh adaptation
- Meshes and Metrics
- **Applications**
- **Synthesis**
- **Design method**
- Mesh adaptation & Design
- Strong coupling: Design/Mesh adaptation
- Results
- **HISAC** test-case
- Context
- Test-case 1
- Test-case 2
- Test-case 3
- Test-case 3'
- Analysis of the sonic boom pressure signature: test-case 1 Analysis of the sonic boom pressure signature:
- test-case 2

test-case 3

Analysis of the sonic boom pressure signature:

Pressure before at z=-30m

PRESSURE 0.276 0.278 0.281 0.283 0.286

Pressure comparison

Pressure after at z=-30m

Cost evaluation

test-case 3': $l_{front} = 25$ and $l_{back} = 35$ with well converged intermediate meshes.

Analysis of the sonic boom pressure signature : test-case 1

Overview

Review of multigrid method convergence characteristics

- Mesh generation & mesh adaptation
- Meshes and Metrics
- Applications
- Synthesis
- Design method
- Mesh adaptation & Design
- Strong coupling: Design/Mesh adaptation
- Results
- HISAC test-case
- Context
- Test-case 1
- Test-case 2
- Test-case 3
- Test-case 3'
- Analysis of the sonic boom
- pressure signature:
- test-case 1
- Analysis of the sonic boom
- pressure signature:
- test-case 2
- Analysis of the sonic boom
- pressure signature:

Test case 1 : H = 45000 ft

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Analysis of the sonic boom pressure signature : test-case 2

Overview

Review of multigrid method convergence characteristics

- Mesh generation & mesh adaptation
- Meshes and Metrics
- Applications
- Synthesis
- Design method
- Mesh adaptation & Design
- Strong coupling: Design/Mesh adaptation
- Results
- HISAC test-case
- Context
- Test-case 1
- Test-case 2
- Test-case 3
- Test-case 3'
- Analysis of the sonic boom
- pressure signature:
- test-case 1
- Analysis of the sonic boom
- pressure signature:
- test-case 2
- Analysis of the sonic boom
- pressure signature: test-case 3

Test case 2 : H = 45000 ft

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Analysis of the sonic boom pressure signature : test-case 3

Overview

Review of multigrid method convergence characteristics

Mesh generation & mesh adaptation

Meshes and Metrics

Applications

Synthesis

Design method

Mesh adaptation & Design

Strong coupling: Design/Mesh adaptation

Results

HISAC test-case

Context

Test-case 1

Test-case 2

Test-case 3

Test-case 3'

Analysis of the sonic boom

pressure signature:

test-case 1

Analysis of the sonic boom

pressure signature:

test-case 2

test-case 3

Analysis of the sonic boom pressure signature:

Test case 3 : H = 45000 ft

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

RINRIA 75/78

Analysis of the sonic boom pressure signature : test-case 3'

Overview

Review of multigrid method convergence characteristics

Mesh generation & mesh adaptation

Meshes and Metrics

Applications

Synthesis

Design method

Mesh adaptation & Design

Strong coupling: Design/Mesh adaptation

Results

HISAC test-case

Context

Test-case 1

Test-case 2

Test-case 3

Test-case 3'

Analysis of the sonic boom

pressure signature:

test-case 1

Analysis of the sonic boom

pressure signature:

test-case 2

Analysis of the sonic boom

pressure signature: test-case 3 Analysis of the sonic boom

pressure signature: test-case 3'

Test case 3' : H = 45000 ft

Summary of the sonic boom analysis

Overview

Review of multigrid method convergence characteristics

Mesh generation & mesh adaptation

Meshes and Metrics

Applications

Synthesis

Design method

Mesh adaptation & Design

Strong coupling: Design/Mesh adaptation

Results

HISAC test-case

Context

Test-case 1

Test-case 2

Test-case 3

Test-case 3'

Analysis of the sonic boom

pressure signature:

test-case 1

Analysis of the sonic boom

pressure signature:

test-case 2

test-case 3

Analysis of the sonic boom pressure signature:

	<u>^</u>	0
case	ISPR (Pa) ²	MSPR $(Pa)^3$
Not optimized	42	68.29
Test case 1	42	43.47 (36%)
Test case 2	42	52.94 (28%)
Test case 3	37.5 (12%)	68.29
Test case 3'	35 (20%)	68.85

Initial and maximal shock pressure rise in Pascal for different cases

²ISPR : Initial shock pressure rise ³MSPR : Maximal shock pressure rise

Synthesis

Overview

- Review of multigrid method convergence characteristics
- Mesh generation & mesh adaptation
- Meshes and Metrics
- Applications
- Synthesis
- Design method
- Mesh adaptation & Design
- Strong coupling: Design/Mesh adaptation
- Results
- HISAC test-case
- Synthesis

- We have proposed a strongly coupled algorithm between mesh adaptation and optimization.
- □ Mesh adaptation improves the efficiency of the optimization loop.
- Preliminary application to sonic boom reduction have been presented.
- □ For difficult cases the advantage of the strongly coupled adaptation/optimization is evident :
 - \rightarrow the convergence is fast and the result are reliable
 - **Future work**
 - Further improvements are envisaged from introducing goal-oriented adaptation based on adjoint mesh

