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SUMMARY

We consider the adaptation of a level set method for the simulation of capillary flows on
unstructured meshes. The advection step is first analysed. In order not to loose accuracy, this step
should be one order more accurate that the discretisation of velocity. We then compare different
ways in choosing the level set velocity and in re-initialising the level set function between advection
phases without loosing too much accuracy. Applications to Rayleigh flows and to reorientation
with contact angle are presented.

KEY WORDS: incompressible Navier-Stokes; finite element method; interface tracking; capil-
larity; contact angle

1 Introduction

Interface motion simulation has been studied from the early start of computer simulation. The
Level Set (LS) principle introduced in the late 80’s by Osher and Sethian proposes to advect a rel-
atively smooth field ¢ the zero contour of which is the interface to represent. Since the function to
advect is smooth, this method opens the door to an accuracy higher than first-order. It combines
also well to a finite-element discretization, the intrinsic interpolation of which specifies accurately
the interface location.

Also, the combination of level set and finite element lends itself to an easy discretisation on unstruc-
tured meshes. However, cartesian discretisations may enjoy convergence of dependant variables
and of their derivatives. In contrast, for unstructured meshes, surfaces traces and derivatives may
have much poorer convergence, if any. Then, in order to obtain for the global scheme an order of
accuracy better than unity, several numerical mechanisms have to be carefully combined with the
initial simple idea:

- Function ¢ should be advected with sufficient accuracy.

- Function ¢ should be maintained sufficiently smooth, and of not too small gradient near its zero
contour, this for an accurate motion, an accurate location of the interface, and an accurate evalu-
ation of its curvature. This will be the role of a re-initisalisation step.

- Contact angle modelling also require particular attention in order to avoid a too unsmooth level
set volumic field and velocity.

Next section recalls the main features of LS method. In Sec.3, by analysing the advection
step, we give a lower estimate of the accuracy of the method under gradient conditions. Section 4
examines some means for satisfying gradient conditions without introducing new error sources. We
propose a family of formulation which permits to take into account accurately the local orientation
of a solid wall. Sections 5 and 6 are devoted to the experimentation of the proposed options for
capillary flows without and with contact angle.



2 Main features of the Level Set Method

Let us consider the following model for the flow of two incompressible immiscible fluids with
interface tension:

ou

pgy T PV(URU) = V.2u(p)D) + Vp + or(p)i(p)n — pg = 0

Op+V.(pU) =0  p=p orp,

V.U=0 1)

In this formulation , the fluid velocity is denoted U, and the pressure p. The density p takes only
two values in two subdomains separated by an interface smooth enough for allowing to consider
its normal:

1
ni(p) = 7 Vp,
g

(2)

further, §(p) denotes the Dirac delta function on the interface, o the surface tension coeflicient,
k(p) the curvature of the interface, g the gravity volumic force, D = %(VU + V(U)T) the defor-
mation tensor, p(p) the dynamic viscosity and p;, pgy the two values taken by the density in each
fluid. Typically p; in the liquid and p, in the gas.

In the case where o = 0 and u(p) is a constant, this model is a particular case of the heteroge-
neous Navier-Stokes model as analysed in [2] and [3] . The discontinuity in the density is the cause
of difficulties in the approximation of the advection of the interface I' separing the two components
of different density, in conservation of moments, and in imposing incompressibility. In this paper
we concentrate on the interface advection. It can be written with the characteristic function x of
liquid phase

9x
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The characteristic function can be used to define the density distribution.

+ UVyx =0 (x=0o0r1l).

p=xm + (1=x)p,-

The formal accuracy of the advection of a step function as Y is severely limited to first order unless
the numerical scheme cleverly exploits the fact that x takes only two different values. A particular
way of doing this is the second-order VOF method (see for example [1]) which we do not discuss
further here.

Let H be the step function such that H(z) = 1 if z > 0 and H(z) = 0 elsewhere. The Level
Set method introduced by Osher et Sethian ([6]) relies on smoother function ¢ such that x = H(¢)
where H(¢) is the Heavyside function on the interface I':
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ot
¢ is initialised and periodically reset as the signed-distance to the interface ¢ = =+ d(T) ([7],[8]).

We take ¢ < 0 in the gas region and ¢ > 0 in the liquid region. The interface is the zero level
set of ¢.

+ UV =0; x=H(g) (3)

I = {x]¢(x,t) =0} (4)
We take ¢ < 0 in the gas region and ¢ > 0 in the liquid region. Using the ¢ function, the previous
governing equation for the fluid velocity U and the pressure p along with boundary conditions can
be written as a single equation with a Continuous Surface Force ([5]) formulation of the surface
tension term ([9]),

DU

P05y = —Vp+V.2u(¢)D) — ok(9)d($V(9) + r(¢)g - (5)



The surface tension force is modelled as a volumic interfacial force on a thickened interface. x(¢)
is the curvature computed in all the domain as the second derivative of ¢.

K@) = V() = v(%) (6)

The density and the viscosity are constant in each fluid, we can write

p(@) = pg + (pg —p) H()
W) = pg + (pg — ) H(9).

The most usual level set method can be defined rather accurately according to the following
stages:

Stage 1: define an advection velocity for the level set,
Stage 2: advect the ¢ function with V from time level n to time level n + 1,

Stage 3: replace the advected ¢"t! by a reinitialised or redistanced q~5"+1 in order to satisfy
the condition:
meas(—n < ¢ <n) < Kin (7)

time step after time step,
Stage 4: replace the re-initialised ¢"*! by a ¢"! enjoying a conservation property,
Stage 5: compute a volumic extension of the zero contour curvature.
Stage 6: advance Equation (5) for moments .

This desserves some comments:

In stage 1, the advection velocity for the level set is not necessarily the material velocity. This point
will be discussed in Section 4. Condition (7) in stage 3 controls the level set function gradient near
the zero contour. In practice, function ¢ is re-initialised, i.e. replaced periodically by a function
satisfying surely condition (7). In ([7],[8],[9])), a signed distance is built by solving to steady-
state an Hamilton-Jacobi equation. In our study, the basic option is to rebuilt a distance from
a geometrical algorithm, defining ¢g4;s¢ at each vertex as the minimum distance to discrete zero
countour of ¢. For stage 4, we use a global volume conservation correction; a small perturbation
Cy is added to ¢ in each point of the domain to ensure conservation

B = ot Ca, [ G = [ G

As far as H(¢y) is an higher order accurate approximation of x, the error in [ |H(¢) — x|dv is of
higher order and the global volume correction step will not degrade the accuracy.

3 Error analysis of Level Set advection

The LS method has permitted a lot of accurate applications, particularly in combination with
cartesian meshes. Taking into account irregular meshes is a more difficult task, since in general,
approximation convergence applied to the unknown functions and not to their derivatives and
boundary traces. Fortunately, assuming only a L? (p > 1) convergence of the level set, we can
still get an interesting approximation error estimate. Let us assume that we know how to numer-
ically advect the level set ¢ by approximating it with a discrete level set function ¢p. Since ¢
is advected, the usual convergence property for ¢; on non-regular meshes is a convergence in L?,



possibly of high-order. Let us examine the consequence for the corresponding x, = H(¢) functions.

Proposition 1: Let ¢ be a LP(Q) function where Q = 2x]0,T] is the flow integration domain in
space and time. Let (¢n)n o sequence of LP(Q) we assume that:

meas(—n < ¢ <n) < Kin (8)
Il 1 — ¢ llLr(@)< K2h* 9)

with h,n sufficiently small, k the convergence order on ¢ and K,,K, independant of h,n then for
all real number ¢ > 1, there is a constant C(q) independant of h such as

| H(¢n) — H(®) |lLai@)< Clg)h5. (10)

Proof: the above integral can be decomposed as follows:

/ H(gn) — H@)ldt < meas(|é| < ) +meas(|én] <)

+meas(¢ > 1, o < —n) + meas(¢ < —n, ¢ > 1)

< meas(|g| < n) +meas(|¢n| < n) + meas(|pn — ¢| > 2n)
but
meas(|¢| <n) < Kin, according to (8)
and
meas(|pn| <n) < meas(|¢] < 2n)
+ meas(|¢n — ¢| > 1),
that is
meas(|¢n| <n) < 2Kin+meas(|pp — ¢ > n)
thus
/ |H(¢r) — H(¢)|dUdt < 3K1n + 2meas(|dp — ¢| > 1) . (11)
The last sum part can be estimated as follows:
1 1
meas((én—| ) = [ vaga < [ o= 6P dSdt < —|ln—9l1L ) (12)
(n—ple>ne TP Jign—olo>np nP L@
and with (11) and (12), we get:
/ [H(gn) — H@)ldt < 3Kin+ — 60— 0l -
By choosingn =h? , § = p’_’fl, we get
/ |H(¢n) — H($)|ddt < 3K hY + 2K2h P hPk < (3K, + 2K2)hi T,
thus
/ \H(én) — H(9)|ddt < (3K + 2K2)h

or equivalently, for ¢ > 1:
pk
[[H(¢n) — H($)||« < Ksha@+D .0 (13)



Remark 1: Assumption on convergence of ||¢, — ¢||z» is inspired by the L? convergence
which can be obtained by an unstructured, P;-continuous finite-element approximation for the
advection of ¢. O

Remark 2: Estimate (13) is not optimal and the order of accuracy is located between q(f)’—il)

and k. In the sequel we shall refer to the case p = 2,¢ = 1, which give an order between % and k.
O

The above analysis suggest that in order to get a global second-order convergence for a level
set multifluid calculation, a second-order Navier-Stokes approximation should be combined with a
third-order accurate advection of functions ¢. This is the option taken in the sequel.

4 Interface variables extension

The LS method relies on the representation of several variables defined on the interface as volumic
variables:

- the interface location is extended into a LS function,

- the interface velocity is used under a volumic shape,

- for capillarity, the interface normal and curvature also become volumic fields.

We observe that there is some constraints on these representations. They must be smooth enough,
easy to compute accurately. Lastly, Condition (7) on LS gradient is a rather constraining one.
However, these conditions still allow for many possible choices between the possible extensions
of the above variables. The purpose of the reinitialisation Stage 3 is to replace function ¢ by a
new one of same zero contour but satisfying Condition (7). Further, this new function should be
smooth enough to permit an accurate computation of interface curvature. In the discrete case,
there is no guarantee that the new function has exactly the same zero contour, nor that it will be
enough smooth. If the advection step provides a ¢ function which already satisfies, at least close
to interface, the unit gradient condition. we can imagine that error in reinitialisation step can be
made smaller, because the reinitialisation step needs not large changes of function ¢ or even needs
not changing it at all. In order to improve these points, we propose to reconsider either interface
motion direction, or the extension of level set function from interface, which concerns
Stage 3 (both option can also be combined).

4.1 Parametrizing LS extensions

LS function’s gradient has to be controlled in order to satisfy condition (7). In usual LS method,
this is performed by two means: (1) a canonical extension of the zero level is built with a signed
distance, and (2) LS function is advected with the material velocity U. To build a more general
context, we identify two design criteria:

- control of LS gradient,

- consistent interface motion,

and we consider two main choices:

- the canonic LS extension.

- the interface velocity,

We restrict to 2D case for simplicity.

Consistent interface motion: let us return to the advection of the characteristic function y
which writes (in sense of distributions):

= +UVyx =0 (x=00r1l). (14)

Let n, be the normal vector to the interface I' and 7, the tangential vector to the interface, i.e.
such as V-7, = 0. The function x is equivalently advected with any velocity V' such that:

(U-V)n, =0on T, Vt>0. (15)



To parameterize the set of possible V' over the whole computational domain we first introduce a
unit field specifying in the whole domain the direction of motion. Let Vr be a vector defined on
 such that
‘Nfr sy 75 0
[Vp|=1.

If we construct a scalar field « such that
<V,n, >

a = ———=—  on the interface
< Vr, n, >

then the vector field V! = oV advects X in an equivalent way to U. To complete the definition
of V', it remains to define an extension of «

LS gradient control: we look for an advection step which conserves in a neighborhood of inter-
face LS function’s streamline derivative, i.e. ¢’s derivative parallel to interface velocity. Interface
velocity gradient needs be zero in this neighborhood. We need a streamline constant extension
operator for this velocity:

Constant extension: a — Sa: given « on the interface, we can extend it along the field \' by

imposing its extension Sa to be constant on each trajectory. This extends the interface velocity
V'

Vr.VSa = 0 (16)
V' = SaVr. (17)

In a dual manner, the corresponding extension operator for ¢ is a constant-gradient extension
operator:

Constant-gradient extension: ¢ — 13¢: given a scalar field ¢ on the interface, we can define 13¢ as
the function equal to ¢ on the interface and such that:

Vr.VP$ = 1. (18)
The main properties of our construction is now summed up:

Proposition 2: Starting from a LS function satisfying the gradient property (18), for example
defined as P¢ , and advecting it with the streamline constant extension V' = SaVr

% + SaVr-VP¢ = 0. (19)

will produce an advected ¢ which still satisfies the gradient property (18) in the vicinity of interface.
Proof: We assume that we can construct a prolongation of ¢ such that
V13¢ - \~/'p =1 with \N/'p constant in time
To demonstrate that VP¢ - Vr is constant in time, we use (16),(18) and (19):

‘WP;’;' Vr) _ Vg‘ﬁ Ve = V(Ig—f) V= —V(EaV - VPg) - Vp = —VEa - Vi = 0.0




4.2 A dilemma

The important consequence of Proposition 4 is that since (18) is satisfied, the reinitialization will
not introduce a large error or can in some case be purely skipped. However, the operation of taking
the trace of the velocity V on the interface I' introduce a new error which needs to be analysed.
We assume that :

- either the velocity is a smooth known function V which we interpolate on P; functions. V, = II,V.
then for s = 0 and 1:

Ve =Vllg: = |V -=V|[g < KV)h**, (20)

- or the velocity is accurately computed from a discretized system satisfying the following error
estimate:
Vi = V]l < K(V)R**. (21)

By the trace theorem and by the convexity inequality, we get:

1 1
IV=Villezwy < Ki(V) [IV=Vall,3 < Kao(V) [[V=Va|[Z0llV=Valln < Ks(V) b2 (22)
This means that working with any extension of the velocity from its trace on the interface implies
a lost of accuracy order with a gap of %, in particular:

Proposition 3: With a second-order accurate Navier-Stokes scheme, we can expect an accuracy
order of at least %

To sum up, it is possible to build a velocity field which avoids to some degree the error associated
to redistancing but some other loss of accuracy may arise, especially when irregular/unstructured
meshes are used, due to the fact that we take a trace of advection velocity on the interface.

4.3 Provisional conclusion

We have identified a general class of interface velocity and extension. The impact on global accuracy
is analysed. In the absence of wall effect, re-initialisation by a signed distance can be improved by
increasing the consistency of the combined advection and redistancing steps. When the problem
under study involves a contact angle condition, we shall choose in Sec.6 a different re-initialisation.

5 First experiment: capillary instability

This section is devoted to illustrate Sec.3. We investigate how accurate is the level set algorithm
based on a reinitialisation by signed distance and the third-order advection scheme of the LS
function. We consider the Rayleigh instability of a liquid cylinder in the case where capillary
effects are dominant. The cylinder is perturbed with a perturbation equation in the half plane
(z > 0) containing the symmetry axis of the cylinder defined as

2
xT=a+7 sin()\iy+K1) (23)
d

in which Ay and 7 are respectively the wave length and the perturbation height. For Ay > 27a
where @ is the liquid cylinder radius, the perturbation amplifies.

We use the numerical algorithm, stages 1 to stage 6, described in the second section, with:

- an axisymmetric formulation,

- for advecting the LS function, we use a third-order accurate upwind-biased scheme which enjoys
third-order accuracy on regular meshes,

- a geometric re-distancing of ¢ every ten time steps,

- a mass conservation of each disconnected phase in the manner described at the end of the third
section,

- a second-order accurate vertex-centered mixed finite-element /finite-volume method with projec-
tion for advancing the velocity.



Surface tension Coefficient : o = 0.07275 ST

Liquid cylinder radius :r = 001lm
Density ratio : p = 1000 kg.m? p, = 1.2 kg.m?
Computation domain size : L, =001lmL, = 002m

a = 0.0025m Ay = 0.02m

Table 1: Test case: Capillary instability
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Figure 1: Initialisation of the perturbation. Vizualisation of pressure field, velocity vectors and
interface (black line).

According to the previous analysis, a global second-order spatial accuracy should hold for regular
cases.

We measure the numerical order of accuracy before and after the formation of a drop. The
different parameters of the test case are described in Tab.1. We compare the results obtained
with three meshes embedded with respectively 902, 3402 and 13202 mesh nodes (grid space step
respectively of 4h, 2h and h with h = 0.125 mm).

The breaking occurs at ¢ = 0.136 s for the coarse mesh, ¢ = 0.125 s for the intermediate
mesh and ¢ = 0.122 s for the fine mesh. We measure the convergence on both the Ly error norm
of ¢ and the L, error norm of H(¢) at ¢ = 0.11 s (before the breaking for the three meshes)
t = 0.12s,and ¢t = 0.13 s (after the breaking for all meshes). Fig.2 and 3 representing the mesh
convergence on interface location at ¢ = 0.11 s, = 0.12s s and t = 0.13 s give already a visual
idea of the accuracy lost. Tab. 2 shows the convergence order on the deviations

ll6n — donllL, and ||[H(pn) — H(g2n)l|L,
between embedded meshes. The numerical convergence order is evaluated through computations
on three embedded meshes by the following equation

[[Wor —Panl|
_ logC =)

log(2) ’

where ¥, ¥y, and Py, are discrete solutions on the mesh with h,2h and 4h as space step.

Beginning of Tab. 2 and Fig.2 illustrate the case for which our error analysis of the third section
applies. Tab. 2 shows a numerical order of convergence on ||H(¢p)||L, even better than Ly error
on ¢. Considering that we use a third-order accurate scheme for the advection of ¢, this result
shows a better order than predicted by the lower estimate of Section 3. At time ¢ = 0.13, breaking
occured for medium and fine meshes but not for the coarse-mesh computation. The accuracy on
that coarse mesh is much degraded for the ¢ function. The level of error for H(¢) becomes also

(24)



Rayleigh instability in liquid cylinder. Mesh convergence on
interface location. T=0.11s. Before break of the liquid bridge
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Rayleigh instability in liquid cylinder. Mesh convergence on
interface location. T=0.12s. Around break time.
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Figure 2: Left: Mesh convergence on interface at T=0.11s Right: Mesh convergence on interface

at T=0.12s.

Rayleigh instability in liquid cylinder. Mesh convergence
on interface location. T=0.13s. After break of the liquid bridge.
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Rayleigh instability in liquid cylinder. Mesh convergence
on interface location T=0.15s. Around stabilization
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Figure 3: Left: Mesh convergence on interface at T=0.13s. Right: Mesh convergence on interface

at T=0.15s.




Physical time (s.) Grid size L, deviation on ¢ | L; deviation on H ()
0.11 902 - -
0.11 3402 1.6253.106 2.45461.10~6
0.11 13202 2.46967.10°7 3.23397.10°7
0.11 Numerical order 2.7 2.92
0.12 902 - -
0.12 3402 2.982.10°6 5.515.10 ¢
0.12 13202 7.915.1077 1.520.10¢
0.12 Numerical order 1.91 1.86
0.13 902 - -
0.13 3402 9.33789.10~6 1.38947.107°
0.13 13202 3.233.1076 2.236.1076
0.13 Numerical order 1.53 2.63

Table 2: Capillary instability. Numerical order on the interface position at ¢ = 0.11s, ¢t = 0.12s,
and t = 0.13s.
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Figure 4: FEquilibrium circular meniscus with contact angle. Left: Signed Distance ¢ function .

Thickened line represents the interface. Right: Curvature “k” computed as 2" derivative of ¢.

high for the coarse mesh and the high numerical order measured is not significative of anything
but the large error of coarse mesh.

6 Application to capillarity with contact angle

We consider now the numerical modelling of axisymmetric capillary effects with gravity and contact
angle in a vertical tube. In the differential model that we study, a prescribed static angle (s is
satisfied by the interface. In terms of the level set function, this means that at contact point A we
have:

Vé(A).ny = cos(Bs) .

Since fs is generally not equal to 7/2, the corresponding signed distance to interface is not
smooth in the vicinity of contact point. A consequence is that interface curvature is more difficult
to evaluate from the level set function (6) as we can observe on Fig.4. We need consider another
option for re-initialisation of ¢. Then, excluding the particular case of a 7/2 contact angle, we
observe that the option consisting of advecting the interface with a normal-to-interface velocity



seems not well adapted to the contact point motion. In the next section in the case of a vertical
wall, we propose an axial velocity field construction and an axial extension operator and we study
their impact on the computation of the reorientation of a free surface after a sudden decreasing of
gravity to zero.

6.1 Axial velocity field and axial extension operator

With the particular geometry of a tube, we can use a very simple particular case of the previous
theory. We take as velocity Vr the constant unitary field parallel to vertical axis:

VF = e,
At an instant ¢, we extend the level set function from the interface position (¢r = 0) along e, with :

¢
g—l

Let hp, = f(r) be the bijective representation of the interface. We define function ¢’s z-affine
extension with:

(25)

¢(r,2) = —(z = hp(r)) . (26)

As the represention of the interface can be represented as a bijective funtion h, = f(r) and the
contact angle not equal to zero.
According to the above theory, for any point M(r,z) of T', we have

e.-ny, # 0.

We derive a new velocity field V' as follows:

’

V' = ae, and V' =(U-n,)-n, + fry.

This choice allows the satisfaction of Condition (7) specified in Section 2 as far as the interface
orientation does not show vertical parts, i.e. its normal is never orthogonal to z-axis.

V., =0 =({(U-n) n), +prn (27)

V, = ((U-n)-n), + B (28)

o ), 20

V., = ae, with o = ((U-n)-n)-e, + B (30)

In the whole domain V'(r,z) = a(r)e, where a(r) is the value of o at radius r on I'. Fig.5
shows the desired transformation. The advancing of ¢ in time with \'a (r, z) keeps the property
¢(r,z) = —(2 — hp(r)). On Fig.6, we can also observe how the extension of the ¢ fonction along
e, improves the computation of the curvature on a circular equilibrium interface compared to the
case of ¢ as a signed distance to the interface.

6.2 Numerical results

We consider the reorientation computation of a free surface in an axisymmetric vertical cylinder
after a sudden decreasing of the gravity to zero. The motion is dominated by two effects, the
surface tension force and the contact angle at wall. In this study, we are interested by numerical
accuracy and we restrict our study to a constant contact angle model.

The reoriented liquid (first phase) is M3 with physical properties given in Tab. 3.
We refer to the works of ZARM research center of Bremen, ([11],[12],[13]) for further details and
for investigations of physical aspects of the problem under study. The model is viscous, two-phase
Navier-Stokes equations for an incompressible fluid, involving surface tension effects and a fixed
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Figure 5: Transformation of the velocity field V. — V' = aV with V =e,.
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Figure 6: FEquilibrium circular meniscus with contact angle. Left: ¢ function extended along e, .
Right: Curvature “c” computed as 2™ derivative of ¢ extended along e,. Thickened line represents
the interface.



Dynamic viscosity of the liquid : 2.566 10~° kg.m™'.s

Contact angle : 55 degrees

Surface tension coefficient : o = 0.0181074 ST

Cylinder radius : r = 001lm

Cylinder height : h = 0.048m

Density values . g = 879 kgm?® p, = 1.2 kg.m?

Table 3: Physical properties of liquid phase

Number of nodes in the cylinder radius | L, deviation norm on ¢ | L; deviation norm on H(¢)
11 - -
21 1.06668.10~7 3.40992.10~8
41 5.32013.10 8 1.45119.108
Numerical order 1.003 1.233
81 2.51436.10~8 4.73495.10°°
Numerical order 1.081 1.62

Table 4: Capillary meniscus reorientation. Numerical order on the deviation norms at ¢ = 0.005s
for Scheme 1.

contact angle. The numerical scheme relies on a continuous linear finite element approximation for
level set function, velocities and pressure, with a time-advancing combining an explicit advection
diffusion and a pressure projection. The surface tension coupling is modelled with a thickened
interface [10]. The contact angle g is maintained to 55 degrees. We compute the reorientation
oscillations over ¢t = 4.7s on four meshes embedded but not uniform (refined on the wall) with
respectively 11, 21,41, 81 grid nodes in the cylinder radius. The reorientation starts from a flat free
surface with large curvature and contact angle on the wall, to oscillate around the final equilibrium
free surface which is a spherical cap(constant curvature). Fig.7 shows the smooth advection of
the interface other the first 0.05s. In such smooth conditions,we can make a convergence study at
t = 0.005s t = 0.01s, t = 0.02s for two schemes to get a confirmation of the two estimates (13)
and (22). We initialize the level set function ¢ as the z-affine extension introduced in (26). We
test two advection schemes for ¢:

- Scheme 1 we advect ¢ with the axial velocity field (30) deduced from the physical velocity and
apply no reinitialisation.

- Scheme 2 we advect ¢ with the physical velocity and we reinitialise the ¢ as the z-affine exten-
sion introduced in (26).

Fig.8 shows the mesh convergence on the time evolution of the interface position on the wall
using Scheme 2 for the computation. We measured a global second-order convergence on the
contact point of interface location at the maxima of this curve (¢ = 0.12s). To measure the
convergence on global interface position, we consider the same norms as before, i.e. ||¢pn — d2n||L,
and H(¢), ||H(¢r) — H(¢2p)||L,- Tabs.4 and 5 show lower numerical convergence. Tab.4 shows
however a less good convergence of the deviation norm Ls on ¢ for Scheme 1 than for Scheme 2.
This numerical result confirmed our estimation done on the trace (22). However, in our variational
implementation of curvature at contact angle a singularity remains during the transient phases. It
is probably the main obstacle to full second-order accuracy.



Number of nodes in the cylinder radius | Ly deviation norm on ¢ | L; deviation norm on H(¢)
11 - -
21 1.10242.1077 3.43735.10~8
41 4.72528.108 1.38395.1078
Numerical order 1.22 1.31
81 1.84879.108 4.70746.107°
Numerical order 1.35 1.555

Table 5: Capillary meniscus reorientation. Numerical order on the deviation norms at ¢ = 0.005s
for Scheme 2.
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Figure 7: Capillary reorientation. Free surface evolution t = 0.;0.01;0.02;0.03;0.04; 0.05s.

7 Concluding remarks

The level set principle introduces a smooth function ¢ in place of a step function, opening the
door to higher-order accuracy advection. However, dependant variable ¢ has to be re-initialised
periodically, in a way that introduce as small new errors as possible. We analyse with only very
few assumptions how higher order can be obtained, and under which conditions. We then define a
large set of possible interface velocities constructions and of possible level set re-initialisations and
we study the interaction between these options.

The first part of the analysis is confronted with the practical calculation of a capillary Rayleigh
instability. In this flow, although a singularity appears at breaking time, the overall accuracy
remains close to second order.

In the case of a capillarity phenomena with contact angle, we propose to avoid as much as possible
any non-physical singularity. The proposed extension of level set function provides a smooth
curvature field and is of paramount impact on global accuracy. The proposed extension of interface
velocity proves to perform rather well, but not better than advecting level set directly with material
velocity field.

In a general geometry, an extension of the proposed method would involve the evaluation of the
parameterizing field by a numerical algorithm. Under this condition, the method would extend to
3D geometries.



Capillarity interface reorientation.
Mesh convergence on the position of the interface on the wall.
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Figure 8: Capillary reorientation. Mesh convergence for the interface position on the wall.
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